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Using the Comparison Curve Fix Index (CCFI) in Taxometric Analyses:
Averaging Curves, Standard Errors, and CCFI Profiles

John Ruscio, Lauren M. Carney, Lindsay Dever, Melissa Pliskin, and Shirley B. Wang
The College of New Jersey

Determining whether a construct is more appropriately conceptualized and assessed in a categorical or
a dimensional manner has received considerable research attention in recent years. There are a variety of
statistical techniques to address this empirically, and Meehl’s (1995) taxometric method has been among
the most widely used methods applied to constructs in the areas of personality and psychopathology. In
taxometric analysis, the comparison curve fit index (CCFI; Ruscio, Ruscio, & Meron, 2007) is an
objective measure of whether parallel analysis of categorical or dimensional comparison data better
reproduce empirical data results. The development and use of the CCFI helps to reduce the subjectivity
involved in performing taxometric analyses and interpreting the results. In a series of simulation studies,
we examine the use of the CCFI to flesh out some empirically supported guidelines. We find that a panel
of curves should be averaged to calculate a single CCFI value (rather than calculating the CCFI for each
curve and averaging these values), that an ambiguous range of CCFI values should be defined using a
fixed-width interval (rather than a multiple of the estimated standard error), and that constructing a CCFI
profile can help to differentiate categorical and dimensional data and provide a less biased and more
precise estimate of the taxon base rate than conventional methods. Implications of these findings for
taxometric research relevant to psychological assessment are discussed along with ways to perform
analyses consistent with these recommendations.

Public Significance Statement
For the theory, research, and practice of psychological assessment, it is important to determine
whether individuals should be classified into categories (e.g., psychopaths vs. nonpsychopaths) or
located along a continuous dimension (e.g., degree of psychopathy). The present research helps to
refine data-analytic methods for determining as objectively as possible when to use categories and
dimensions.

Keywords: categories, dimensions, taxometric analysis, comparison curve fit index, taxon base rate

Psychologists, like other social and behavioral scientists, often
wonder whether people differ on any given construct by belonging
to discrete groups or by varying along a continuum. Researchers
studying the assessment of constructs in the realm of personality
and psychopathology have been especially interested in making
this distinction (Ruscio, Walters, Marcus, & Kaczetow, 2010). For
example, do depressed and nondepressed individuals form two
separate groups of people, or does everyone fall along a continuous

spectrum of depression? Either a categorical or a dimensional
structural model may be more appropriate for any given construct
(Meehl, 1995). Often, practitioners and researchers implicitly or
explicitly endorse a priori preferences for how they will concep-
tualize and measure a construct. For instance, practitioners regu-
larly diagnose mental disorders as either present or absent, treating
individual differences as categorical in nature. On the other hand,
researchers often evaluate disorders on a continuum of symptom
severity, thus leaning toward a dimensional model.

Rather than relying on these preferences, empirically evaluating the
structure of psychological constructs can have implications for assess-
ment, classification, diagnosis, research design, statistical analysis,
and theorizing (MacCallum, Zhang, Preacher, & Rucker, 2002;
Meehl, 1992; Ruscio, Haslam, & Ruscio, 2006). For example, a
measurement instrument intended to classify individuals into groups
could use a relatively small number of items that maximize their
discriminating power near the boundary between groups. In contrast,
a measurement instrument intended to locate individuals along a
continuum would require a larger number of items to make reliable
and valid discriminations at all levels along that continuum (Ruscio &
Ruscio, 2002). Thus, research should proceed quite differently de-
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pending on whether the construct to be assessed is conceptualized as
categorical or dimensional.

Meehl’s (1995) taxometric method is designed to determine
empirically whether it is more appropriate to use a categorical or
dimensional model for a construct of interest, and it has been used
in approximately 200 published studies (Haslam, Holland, & Kup-
pens, 2012, provide a quantitative review of the 177 studies
available at the time). This method contains a family of data-
analytic procedures that produce graphical results. Historically, the
shapes of the curves in these panels of graphs were compared to
those for prototypes produced from analyses of artificial categor-
ical and dimensional data (Meehl & Yonce, 1994, 1996). Despite
the clever and innovative methodology used to generate results, the
subjective nature of the interpretive process imposed several lim-
itations on taxometric research.

First, the categorical and dimensional curve prototypes were
produced using a fairly small number of data sets with idealized
data characteristics. Because the empirical data might differ in
important ways (e.g., having skewed rather than normal score
distributions), it was possible that comparisons to the prototypes
could be misleading (Ruscio, Ruscio, & Keane, 2004). Second, the
prototypes were produced using one particular implementation of
each taxometric procedure. Many thoughtful decisions must be
made to perform a taxometric procedure, and it was unknown how
another implementation of the same procedure might affect the
results (Ruscio et al., 2006). Third, the subjective process of
interpreting taxometric results raised concerns about confirmation
bias (Nickerson, 1998). Researchers might be tempted to see what
they hoped or expected to see in the results, and it could be
difficult to make a compelling case for the proper conclusions to
draw. Fourth, the visual inspection of taxometric graphs placed
severe limits on the size and scope of research on taxometric
methodology. Investigating the most appropriate ways to perform
taxometric analysis was difficult because it required that all results
in a simulation study be plotted and then interpreted by experts.

Reducing the Subjectivity of Taxometric Analysis

To reduce the subjectivity of taxometric analysis, and thereby to
address each of the problems this entailed, Ruscio, Ruscio, and
Meron (2007) introduced a technique to produce comparison
graphs using parallel analyses of artificial categorical and dimen-
sional data. These artificial data reproduced important character-
istics of the empirical data (e.g., sample size, number of variables,
marginal distributions, correlation matrices; Ruscio & Kaczetow,
2008), and they could be analyzed using the same procedural
implementation as the empirical data. This yields taxometric
graphs for data of known categorical and dimensional structure,
holding everything else constant. Rather than relying on general-
purpose prototypes, investigators could obtain comparison graphs
tailored to the data and analysis plan in a particular study. This
circumvented the first two problems, using a small number of
prototypes for idealized data conditions that had been analyzed
using just one procedural implementation.

The other two problems were addressed by developing the
comparison curve fit index (CCFI). The CCFI is an objective
measure of the extent to which the results for the empirical data are
a closer match to those for the artificial categorical or dimensional
comparison data. To calculate the CCFI, one begins by calculating

the fit between graphs for the empirical data and the categorical
comparison data. This is done via root-mean-square residual
(RMSR) as follows:

RMSRc � ��(ye � yc)
2 ⁄ N�1⁄2 (1)

For each of the N data points on a taxometric graph, the residual
is calculated as the distance between the point for the empirical
data (ye) and the corresponding point for the categorical comparison
data (yc). Perfect fit would yield residuals of 0, hence RMSRc � 0.
The larger the divergence between the points for the empirical and
categorical comparison data, the larger the value of RMSRc. This
calculation is performed a second time, using the points for the
dimensional rather than the categorical comparison data, to obtain
RMSRd. These two fit values are then combined into the CCFI:

CCFI � RMSRd ⁄ (RMSRd � RMSRc) (2)

CCFI values range from 0 (strongest support for dimensional struc-
ture, obtained when RMSRd � 0 and RMSRc � 0) to 1 (strongest
support for categorical structure, obtained when RMSRc � 0 and
RMSRd � 0). A value of .50 is ambiguous (obtained when
RMSRc � RMSRd).

A number of studies found that the CCFI effectively differen-
tiates categorical and dimensional data across a wide range of
challenging data conditions, using a number of taxometric proce-
dures (Ruscio, 2007; Ruscio & Kaczetow, 2009; Ruscio & Marcus,
2007; Ruscio et al., 2007; Ruscio & Walters, 2009, 2011; Ruscio
et al., 2010; Walters, McGrath, & Knight, 2010; Walters & Ruscio,
2009, 2010). On the basis of not only this evidence, but also on the
role that it played alongside other indicators of methodological
strength in their quantitative review of taxometric research, Has-
lam et al. (2012) concluded that “the most important historical
development in taxometric practice has been the analysis of sim-
ulated comparison data and use of the CCFI . . . This technique has
rapidly become dominant in taxometric research” (p. 911).

Using the CCFI reduces—but by no means eliminates—the
threat of confirmation bias in the interpretation of taxometric
results. There are still concerns about researcher degrees of free-
dom in the collection, preparation, analysis, and reporting of the
data that ultimately produce the CCFI values (Simmons, Nelson, &
Simonsohn, 2011). Nonetheless, the degree of subjectivity in the
interpretive process itself is diminished with the use of an objec-
tive index.

In addition, the development of the CCFI enabled large-scale
simulation studies of the taxometric method. Because the results could
be evaluated in an objective manner, the process could be automated.
This afforded the opportunity to generate and analyze many more
samples of data. The data could span wider ranges of values, which
helped to establish the acceptable data conditions for informative
taxometric analyses, and be analyzed in multiple ways, which helped
to establish the most effective ways to implement taxometric proce-
dures (see Ruscio et al., 2011, for an overview). In addition, CCFI
values obtained using multiple procedures could be used to check the
consistency of results (Ruscio et al., 2010).

The Present Research

Although the CCFI has become ubiquitous in taxometric inves-
tigations, several important questions remain unanswered. These
are addressed through a series of simulation studies.
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Averaging Curves Versus Averaging CCFI Values

What is the most appropriate way to calculate a single CCFI
value when a taxometric procedure yields a panel of curves?
Because a cornerstone of the taxometric method is consistency
testing, procedures provide separate results by allowing variables
to serve in the required data-analytic roles in different configura-
tions. For example, one procedure requires that two variables serve
in roles labeled as input and output. If there are three variables A,
B, and C available for analysis, these can be used in all possible
input-output pairings—AB, BA, AC, CA, BC, and CB—to yield a
panel of six curves. From this panel of curves, a single CCFI value
for the procedure can be calculated in either of two different ways.

First, one could average the curves and then calculate the CCFI
using this single, averaged curve. Second, one could calculate a
CCFI value for each curve and then average these values. It is not
obvious which method would work best, as both involve a type of
aggregation that should reduce the influence of sampling error on
the final results. When the CCFI was originally created, Ruscio et
al. (2007) found it simpler to present and work with averaged
curves, and Ruscio (2016) found it easier to incorporate the curve-
averaging approach into his suite of taxometric programs. For the
first time, we put this choice to an empirical test to determine
whether the CCFI-averaging approach should be used instead.

A secondary aim of this portion of our research was to deter-
mine whether CCFI values calculated for individual curves within
a full panel could be used to screen for particular variables that are
insufficiently valid to provide informative results.

Estimating the Standard Error of the CCFI

Like any statistic, the CCFI is subject to sampling error. In fact,
there are two sources of sampling error when calculating the CCFI.
The first source of sampling error is, as usual, that each unique
sample of empirical data drawn from a particular population will
yield somewhat different statistical results. This source of sam-
pling error can be reduced by using larger samples. The second
source of sampling error is introduced by the technique used to
generate and analyze the artificial comparison data. A finite but very
large population of comparison data is generated, and then random
samples that match the size of the empirical data are selected for
parallel analysis. Both the generation of the population of artificial
comparison data and the random sampling of cases from this popu-
lation contribute to sampling error in the CCFI. This can be reduced
by creating a larger population and performing parallel analyses of a
larger number of samples of comparison data.

Although there is no analytic formula to estimate the standard error
of the CCFI, it can be estimated as the standard deviation of an
empirical sampling distribution (Efron & Tibshirani, 1985). The first
aim of this portion of our research was primarily descriptive, to
explore the estimated standard error of the CCFI for multiple taxo-
metric procedures performed using a wide range of data conditions.

The second aim was to determine whether the estimated standard
error could be used to increase the accuracy with which the CCFI can
be used to differentiate between categorical and dimensional data. To
understand how this might help, recall that CCFI values of approxi-
mately .50 are considered ambiguous. In their work on consistency
testing, Ruscio et al. (2010) showed that classifying data as categor-
ical when CCFI � .50 and as dimensional when CCFI � .50 achieved
an accuracy rate of 98.0%. When setting aside as ambiguous the 5.2%

of results with .45 � CCFI � .55, accuracy increased to 99.4%. Thus,
an investigator willing to risk ambiguous findings can reduce the risk
of mistaken conclusions.

There are two ways to define the ambiguous range of CCFI
values. The first is to use fixed-width intervals centered around .50
(e.g., .50 � .05). Alternatively, the ambiguous region could be
centered around .50 with a width calculated as a multiple of the
estimated standard error (e.g., .50 � 2 � SE). This would take
sampling error into account in a manner analogous to constructing
a confidence interval and would situate the interpretation of CCFI
values within a more conventional statistical framework. It is not
obvious which method would work best, so we put this to an
empirical test.

Constructing CCFI Profiles

When taxometric results appear to be categorical, one might
want to estimate the relative sizes of the two groups, referred to as
the taxon and its complement. Each taxometric procedure can be
used to estimate the taxon base rate through a formula that is based
on the shape of a graph (Ruscio et al., 2006). While these formulas
generally work well, they can be problematic. Factors other than
the actual taxon base rate can influence the shapes of taxometric
graphs and thereby bias base rate estimates (Ruscio et al., 2006).

Ruscio and Walters (2009) suggested an alternative method
of base-rate estimation that requires the construction of a profile of
CCFI values. This is done by creating multiple populations of
categorical comparison data that vary in their known base rates and
analyzing many random samples from each to calculate a new
RMSRc value, and thereby a new CCFI, at each taxon base rate.
The CCFI profile is then constructed by plotting the CCFI value
that was obtained for each population of categorical comparison
data. The location of the peak value in the CCFI profile is used to
infer the taxon base rate. Ruscio and Walters illustrated this
method and found that as the taxon base rate in populations of
categorical comparison data varied from p � .05 to .50 in incre-
ments of .05, the CCFI peaked at a value of .687 at p � .40. This
was very close to the true taxon base rate of .416 in that sample.

The present research builds on that demonstration by systemat-
ically testing the bias and precision of taxon base rate estimates
calculated using formulas and obtained using CCFI profiles. A
secondary aim of this portion of our research is to determine
whether a CCFI profile can help to differentiate categorical and
dimensional data. If so, this would provide a method for doing so
that does not require the user to speculate about the relative sizes
of putative groups prior to analysis. This might be especially
helpful in the study of constructs that are frequently assessed but
that do not have explicit criteria (e.g., diagnostic algorithms) for
assigning individuals to putative groups.

Simulation Methods

All simulations were performed in the R computing environ-
ment (R Core Team, 2017) using functions written by the authors.
For each study, we generated a large number of samples of data
that varied across a wide range of challenging but realistic condi-
tions and analyzed these data using multiple taxometric proce-
dures. The number of samples depended on the purpose of each
study, how computing-intensive the necessary analyses would be,
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and the availability of computing power at the time we performed
that study. This research was exempt from review by an instuti-
tional review board because all data were simulated and none of
the studies included any human participants.

Data Generation

When deciding on data conditions, we followed the lead of prior
methodological research in the taxometric literature (e.g., Ruscio
& Kaczetow, 2009; Ruscio & Walters, 2009, 2011; Ruscio et al.,
2010; Walters & Ruscio, 2009). Unless otherwise noted, the fol-
lowing procedure was used to generate samples for analysis.

For categorical samples, random values were drawn indepen-
dently for the following parameters: sample size (N � 300 to
1,000), number of variables (k � 3 to 8), taxon base rate (p � .10
to .50), between-groups validity (standardized mean difference
between groups of d � 1.25 to 2.00), within-group correlation (r �
.00 to .30), asymmetry (g � .00 to .30), tail weight (h � .00 to .15),
and variance ratio (VR � .25 to 4.00; this is the ratio of variance
in the taxon, or higher-scoring group, relative to variance in its
complement group).

Values of N, k, P, d, r, g, and h were drawn from uniform
distributions (continuous for all but N and k, which were discrete)
spanning the ranges listed above. The value of VR was determined
by drawing a random value X from a uniform, continuous distri-
bution ranging from 1 to 4; with probability .50, VR � X, and with
probability .50, VR � 1/X. The values of g and h were used to
generate data from a g-and-h distribution (Hoaglin, 1985, p. 486).
The magnitude of g controls the asymmetry relative to a normal
distribution (in which g � 0), and the magnitude of h controls the
tail weight relative to a normal distribution (in which h � 0).
Because only positive values of g and h were used, conditions of
positive skew and heavy tail weight (leptokurtosis) were studied.
For the g-and-h populations used in this research, the smallest
skew (�1) and kurtosis (�2) values were �1 � 0, �2 � 0 for g �
0 and h � 0, respectively (a normal distribution) and the largest
values were �1 � 2.60, �2 � 38.89 for g � .30 and h � .15,
respectively; other pairings of g and h correspond to �1 and �2

values within this range. This covers a wide range of symmetric
and asymmetric distributions that should span those encountered in
most empirical data (Micceri, 1989) and pose a substantial chal-
lenge for taxometric analysis.

To generate a categorical sample, the iterative technique of
Ruscio and Kaczetow (2008) was used to sample N cases from a
g-and-h distribution with � � 0, 	 � 1, and a correlation matrix
in which all indicators correlated r with one another. Next, a
proportion P of cases was randomly selected and identified as
taxon members, with the remainder identified as members of the
complement group. The variance ratio was achieved by multiply-
ing scores in the taxon by X (when VR � 1) or 1/X (when VR � 1).
Then, separation between groups was achieved by adding a con-
stant to scores for taxon members such that the standardized mean
difference equaled d.

For dimensional samples, data parameter values were drawn in
the same way. However, because P, d, and r do not correspond to
parameters of the dimensional (common factor) model, they were
combined to yield an expected indicator correlation (Meehl &
Yonce, 1994). The iterative algorithm of Ruscio and Kaczetow
(2008) was used to sample N cases from a g-and-h distribution

with � � 0, 	 � 1, and a correlation matrix in which all variables
correlated rxy with one another. Because VR does not correspond to
a parameter of the dimensional model, it was not used in the
generation of dimensional data. Extensive checking showed that
our data generation programs created categorical and dimensional
samples with the intended correlations, distributions, and variance
ratios. These data conditions go well beyond those used to produce
the prototypical curve shapes that were used to interpret results
prior to Ruscio et al. (2007).

Taxometric Procedures

We performed the procedures used most commonly in published
taxometric studies. Below, we briefly describe each procedure and
explain how it was implemented.

The MAMBAC (mean above minus below a cut; Meehl &
Yonce, 1994) procedure assigns one variable to the role of input
and another to the role of output. Cases are sorted according to
their scores on the input variable, which is then used to locate a
series of cutting scores. We located 50 evenly spaced cutting
scores beginning and ending 25 cases from each extreme. The
mean difference on the output variable is calculated for scores
falling above and below each cutting score. A MAMBAC graph
plots the series of mean differences, on the ordinate, by the
location of each cutting score along the series of cases as sorted by
the input variable. For categorical data, the prototypical MAM-
BAC graph exhibits a peak near the cutting score that optimally
separates the two groups. For dimensional data, the prototypical
MAMBAC graph is concave rather than peaked. With k � 2
variables, one can perform a total of k(k – 1) MAMBAC analyses
by assigning variables to all possible input-output pairings.

The MAXEIG (MAXimum EIGenvalue; Waller & Meehl,
1998) procedure assigns one variable to the role of input and all
remaining variables to the role of outputs.1 Cases are sorted
according to their scores on the input variable, which is then used

1 Because the MAXCOV (MAXimum COVariance; Meehl & Yonce,
1996) procedure operates in very similar ways and provides very similar
results, we chose not to use both procedures. The fundamental difference
is that whereas MAXCOV involves only two output indicators so that their
covariance can be calculated within each ordered subsample of cases,
MAXEIG can accommodate more than two output indicators by calculat-
ing the first (largest) eigenvalue of their covariance matrix (a variance-
covariance matrix modified by replacing each variance with 0). In a study
of how best to implement taxometric procedures, Walters and Ruscio
(2010) found that both MAXCOV and MAXEIG worked best when using
overlapping windows rather than nonoverlapping intervals and when using
a small, fixed number of windows. At 25 windows, the results for MAX-
EIG and MAXCOV were nearly identical, with a very slight edge for
MAXEIG. In their study of consistency testing, Ruscio et al. (2010)
performed MAXCOV and MAXEIG analyses with 50 windows on the
same 100,000 samples included in the present Study 3 and found that the
CCFIs for these procedures correlated at r � .999. Using a single threshold
at CCFI � .50, MAXCOV achieved an accuracy of 92.34% and MAXEIG
achieved 92.28%. Using the RTaxometrics package described in the Gen-
eral Discussion, only the MAXEIG procedure is included. However, the
default implementation assigns variables to input-output indicator roles in
all possible triplets. Thus, within each ordered subsample of cases the
eigenvalue will equal the absolute value of the covariance between these
two indicators. Because it is highly unusual for covariances to be negative
in taxometric analyses, and it is virtually impossible for this to occur in an
interpretively important region of a curve, the results will be identical or
nearly identical to what would be obtained using MAXCOV.
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to form a series of ordered subsamples. We constructed a series of
50 overlapping windows such that all windows had the same n and
adjacent windows overlapped 90% with one another. The first
(largest) eigenvalue of the covariance matrix for all output vari-
ables is calculated within each window. The covariance matrix is
a modified variance-covariance matrix with 0s placed on the
diagonal so that variances are removed and only covariances
remain. A MAXEIG graph plots the series of eigenvalues, on the
ordinate, by the mean score for cases within each window along
the input variable. For categorical data, the prototypical MAXEIG
graph exhibits a peak near the score that optimally separates the
two groups. For dimensional data, the prototypical MAXEIG
graph is flat rather than peaked. With k � 3 variables, one can
perform a total of k MAXEIG analyses by assigning each variable
to the role of input variable once.

The L-Mode (latent mode; Waller & Meehl, 1998) procedure
begins with a principal axis factor analysis of all available vari-
ables. Scores on a single factor are calculated using Bartlett’s
(1937) method. An L-Mode graph is the factor score density plot.
For categorical data, the prototypical L-Mode graph is bimodal,
with each mode corresponding to the typical factor score for one
group. For dimensional data, the prototypical L-Mode graph is
unimodal. With k � 3 variables, one can perform a single L-Mode
analysis that includes all variables.

Calculating the CCFI

To calculate the CCFI, populations of artificial categorical and
dimensional comparison data were generated and random samples
were drawn from each for parallel analysis. For each taxometric
procedure, the averaged curve across all samples of comparison
data was used to calculate the RMSRc and RMSRd values, and
from these a CCFI value was calculated.

To generate categorical comparison data, cases were assigned to
groups using the base-rate classification method (Ruscio, 2009).
This requires preliminary taxometric analysis to estimate the taxon
base rate, and that was done using the MAMBAC and MAXEIG
procedures. The mean base-rate estimate from those procedures
was then used to determine what proportion of the highest-scoring
cases (sorted by total scores across all variables) are assigned to
the putative taxon, with the remainder assigned to the putative
complement group. The base-rate classification method was used
because it can be automated, it can be used with categorical and
dimensional samples, and it provides a conservative estimate of
CCFI accuracy.

Study 1a: Averaging Curves Versus Averaging
CCFI Values

This study was designed to determine whether to average curves
and calculate a single CCFI, or compute CCFIs for all curves in a
panel of taxometric graphs and average these values.

Method

A total of 10,000 samples of data (5,000 categorical and 5,000
dimensional) were generated. For each sample, the MAMBAC and
MAXEIG procedures were performed because each of them yields
panels of curves (whereas L-Mode yields only a single curve). In

addition to performing MAMBAC and MAXEIG as described
above, additional methods of assigning variables to the input and
output roles were used to generate panels containing differing
numbers of curves. Specifically, MAMBAC was performed first
by assigning variables to input-output roles in all possible pairings
(which yields k(k – 1) curves for k variables), and then using the
composite input variable method by which one variable serves as
the output and all remaining variables are summed to form a
composite input (which yields k curves). MAXEIG was performed
first by assigning one variable to be the input with all others
serving as outputs (which yields k curves), second using the
composite input method (with two serving as outputs and the
remainder summed to form the input, which yields k(k – 1)/2
curves), and third using variables in all input-output-output triplets
(which yields k(k – 1)(k – 2) /2 curves).

For each sample and each procedural implementation, the CCFI
was calculated as usual from an averaged curve. Next, the CCFI
was calculated separately for each curve in the panel and then
these values were averaged. Accuracy was scored by determining
the percentage of samples classified correctly as categorical or
dimensional using a single CCFI threshold of .50.

Results and Discussion

For each procedural implementation, averaging curves yielded
results that were as or more accurate than those for averaging
CCFIs (see the top of Table 1). The largest difference emerged
when performing MAMBAC using variables in all possible pair-
ings: Averaging curves classified 94.4% of the samples correctly,
and averaging CCFIs classified 83.0% correctly. The only time
that averaging curves and averaging CCFIs performed equally well
was when performing MAXEIG using each variable as input
(91.0% accuracy).

We examined the possibility that results might differ with more
(or fewer) curves in each panel. After checking accuracy levels

Table 1
Percent of Samples Correctly Classified, Studies 1a and 1b

Procedure and implementation
Averaging

curves
Averaging

CCFIs

Study 1a
MAMBAC, all input-output pairings 94.4 83.0
MAMBAC, composite input variable 93.8 93.6
MAXEIG, all input-output-output triplets 91.0 87.5
MAXEIG, single input variable 91.0 91.0
MAXEIG, composite input variable 84.5 83.5

Study 1b

Variable
All

samples
Categorical

samples
Dimensional

samples

5,000 samples with one less-valid variable

All variables 94.8 96.2 93.4
All but 1 less valid variable 94.7 98.3 91.2

5,000 samples with two less-valid variables

All variables 93.8 94.9 92.7
All but 2 less valid variables 92.8 98.5 87.0

Note. CCFI � comparison curve fit index; MAMBAC � mean above
minus below a cut; MAXEIG � MAXimum EIGenvalue.
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across varying numbers of curves, there was never an advantage to
averaging CFFIs rather than averaging curves. A final series of
analyses found that using trimmed means to average CCFIs—
which would reduce the influence of any outliers due to anomalous
curves—affected accuracy rates very little. No trimming propor-
tion from .00 (the mean) to .50 (the median) yielded results
superior to the averaged-curve CCFI.

In sum, these findings provide no reason to justify a change
from the current practice of averaging curves to calculate a single
CCFI. Regardless of how MAMBAC or MAXEIG was imple-
mented, and regardless of whether means or trimmed means were
used to aggregate CCFI values, calculating the CCFI after aver-
aging curves in a panel always performed as well or better than
calculating CCFI values for each curve and then averaging these
values.

Study 1b: Identifying Insufficiently Valid Variables

Study 1a revealed that averaging curves yields equal or better
results than averaging CFFIs. Study 1b was designed to determine
whether calculating CCFIs for all curves can help to identify
potentially problematic variables. Meehl’s (1995) rule of thumb,
supported by the findings of Ruscio et al. (2010), is that variables
should possess a between-groups validity of d � 1.25 for taxo-
metric analyses. If a researcher fails to estimate each variable’s
validity, or does so in a way that overestimates some values,
calculating CCFIs for individual curves in a panel might be helpful
to identify insufficiently valid variables that could weaken the
analysis.

Method

To test this proposition, 10,000 samples of data (5,000 dimen-
sional and 5,000 categorical) were generated as in Study 1a, with
two exceptions. First, validity was substantially reduced either for
one variable (for 5,000 samples) or two variables (for 5,000
samples). For categorical samples, the less-valid variables had
their value of d cut in half. Because the original variables ranged
from d � 1.25 to d � 2.00, less-valid variables’ validities (d � .62
to 1.00) fell well below Meehl’s (1995) threshold for taxometric
analysis. For dimensional samples, the less-valid variables had
their value of rxy cut in half. Second, because MAXEIG requires at
least three variables, the minimum number of variables in a sample
was increased from three to four when one was less valid, and to
five when two were less valid. To isolate the influence of individ-
ual variables on CCFI values, MAMBAC was implemented using
variables in all possible pairings and MAXEIG was implemented
using variables in all possible triplets.

Results and Discussion

In the first series of analyses, CCFI values were calculated by
averaging curves. Surprisingly, dropping the less-valid variables
actually reduced the accuracy with which categorical and dimen-
sional data were distinguished (see the bottom of Table 1). Among
categorical samples, removing the less-valid variables increased
accuracy. With two less-valid variables, accuracy increased from
94.9% with all variables to 98.5% after removing the two less-
valid variables. Among dimensional samples, on the other hand,

accuracy decreased when the less-valid variables were removed.
With two less-valid variables, accuracy dropped from 92.7% with
all variables to 87.0% after removing the two less-valid variables.
Overall, though, gains in accuracy for categorical samples were
more than offset by reductions in accuracy for dimensional sam-
ples. Because taxometric analysis is performed to infer structure,
arguably this total accuracy rate is most important.

The preceding results involved removing variables known to be
less valid. In practice, one would need a procedure for identifying
less-valid variables. No such procedure would itself function flaw-
lessly. Thus, our findings represent an upper limit to how effec-
tively CCFI values for individual curves might serve in the iden-
tification and removal of less-valid variables. In short, we found no
evidence that would support the calculation of CCFI values for all
curves in a panel to help check the validity of each variable. Please
note that these findings do not justify the inclusion of variables that
researchers can in fact identify as insufficiently valid for taxomet-
ric analysis. We only created less-valid variables to determine
whether CCFI values could be used to identify them for removal.
A negative answer to this question in no way implies that other
steps should not be taken to identify and remove insufficiently
valid variables. In particular, we strongly recommend assigning
cases to putative groups to check each variable’s validity prior to
performing any taxometric analyses.

Study 2: Estimating the SE of the CCFI

This study was designed to examine the sampling error in the
CCFI and to determine whether an estimate of the standard error of
the CCFI would be useful to define an ambiguous range of CCFI
values following a procedure analogous to constructing a confi-
dence interval.

Method

A total of 1,000 samples of data (500 categorical and 500
dimensional) were generated. To estimate standard errorss, we
treated each sample as a population and bootstrapped 25 samples
in order to calculate the CCFI for each of these bootstrapped
samples. Efron and Tibshirani (1993) suggest a minimum of 25
bootstrap samples for statistical applications, and this seemed
sufficient because taxometric research requires large samples of
data that should yield relatively small standard errors. The standard
error of the CCFI was estimated for each target data set as the
standard deviation of the distribution of CCFIs across the 25
bootstrap samples.

Results and Discussion

The estimated standard error was generally low, but it varied
modestly across the MAMBAC (M � .064, SD � .030), MAXEIG
(M � .061, SD � .018), and L-Mode (M � .052, SD � .020)
procedures. The estimated SE of the mean CCFI across these three
procedures was fairly low for most samples (M � .044, SD �
.014). It was also a bit smaller for categorical samples (M � .037,
SD � .012) than for dimensional samples (M � .050, SD � .012).
As might be expected from the large-sample nature of taxometric
research, the CCFI exhibits relatively small amounts of sampling
error, particularly the mean CCFI for multiple taxometric proce-
dures.
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Although having some sense for how much sampling error
typically accompanies a CCFI value, the chief aim of this study
was to determine whether it would be useful to construct an
ambiguous region for the CCFI using multiples of the estimated
standard error rather than as fixed-width intervals. To test this,
ambiguous regions were constructed using fixed-width intervals
ranging from .50 � 0.00 to .50 � 0.10 as well as intervals ranging
from .50 � SE � 0.00 to .50 � SE � 2.00. For each region, the
percentage of ambiguous results was recorded and then accuracy
was calculated as the percentage of samples correctly classified
after setting aside the ambiguous ones. Figure 1 (top) shows that
the accuracy-ambiguity trade-off was no more favorable when
constructing the ambiguous region using multiples of the estimated
SE than when using fixed-width intervals. For a given amount of
ambiguity, accuracy was comparable or better using fixed-width
intervals.

Because we were concerned that a ceiling effect on accuracy
might have masked a difference between these two methods, we
generated an additional 10,000 samples of data (5,000 categorical
and 5,000 dimensional) using considerably more challenging data
conditions. Parameters for categorical samples in these more chal-
lenging data were randomly drawn from the following: sample size
(N � 100 to 800), number of variables (k � 3 to 6), taxon base rate
(p � .05 to .25), between-groups validity (d � 1.00 to 1.75),
within-group correlation (r � .10 to .30), asymmetry (g � .10 to
.30), tail weight (h � .05 to .15), and variance ratio (VR � 2 to 4).
Many of these samples should be extremely challenging for taxo-
metric analysis because one or more data parameters will be near
or below the recommended thresholds. Figure 1 (bottom) shows
that for a given amount of ambiguity, accuracy was superior when
the ambiguous region was defined by fixed-width intervals rather
than multiples of the estimated SE.

Given these findings, we do not recommend that researchers
follow the computing-intensive process required to estimate the SE
of the CCFI. We found no benefit when using this value to
construct an ambiguous region of CCFI values in a manner anal-
ogous to the construction of a confidence interval. This places the
practice of using fixed-width intervals to define an ambiguous
region of CCFI values on a foundation of empirical support.

Study 3: Constructing CCFI Profiles

This study was designed to determine whether a CCFI profile,
constructed by calculating a series of CCFI values for populations
of categorical comparison data with systematically varying taxon
base rates, could improve base rate estimates or help to differen-
tiate categorical and dimensional data.

Method

A total of 100,000 samples (50,000 categorical and 50,000
dimensional) were generated; these were identical to the samples
created by Ruscio et al. (2010). Each was analyzed using the
MAMBAC, MAXEIG, and L-Mode procedures. CCFI profiles
were constructed by obtaining separate CCFI values for popula-
tions of categorical comparison data with taxon base rates span-
ning the range of .025 to .975 in increments of .025, for a total of
39 CCFI values. Each procedure yielded a CCFI profile, and
taking the mean CCFI at each of the 39 base rates yielded an
additional profile.

Base rate estimates were calculated using formulas provided for
MAMBAC (Meehl & Yonce, 1994), MAXEIG (Ruscio et al.,
2006, adapted from the technique for the MAXCOV procedure in
Meehl & Yonce, 1996), and L-Mode (Waller & Meehl, 1998). The
base rate was also estimated using each CCFI profile. First, the
profile was smoothed. Trial and error revealed that a sixth degree
polynomial worked well. Then, the location of the peak in this
smoothed curve served as an estimate of the base rate. See Figure
2 for an illustration of using CCFI profiles to estimate the base
rate.

In addition to using CCFI profiles to estimate base rates, we
tested five methods for using CCFI profiles to differentiate cate-
gorical and dimensional data. The first method was to choose one
data point—one CCFI value—at random from the profile. This
serves as a baseline against which to judge the accuracy of other

Figure 1. Accuracy-ambiguity trade-off, Study 2. The top graph shows
results for the first 1,000 samples, and the bottom graph shows results for
the 10,000 additional samples that were much more challenging. SE �
standard error.
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methods. The second method was to choose the most extreme
CCFI value, meaning the value most distant from .50. The expec-
tation would be that the most extreme data point on a CCFI profile
would be well above .50 for categorical data and well below .50
for dimensional data. The third method was to calculate the mean
of all CCFI values on the profile, which would reduce the influ-
ence of sampling error. The final two methods also incorporate all
CCFI values in the profile, but they attempt to give greater weight
to those that might be more useful. The fourth method calculates
weights as the (vertical) distance from each data point to .50,
which reduces the weight assigned to ambiguous CCFI values. The
fifth method calculates weights as a function of the (horizontal)
distance from each data point to the estimated base rate. Specifi-
cally, the weights were calculated as x/P’ for data points with x
values at or below the estimated base rate P’ and (1 
 x)/(1 
 P’)
for data points with x values above the estimated base rate. This
yields a triangular pattern of weights (see Figure 3 for an example).
For each of these five methods, accuracy was calculated as the
percentage of samples correctly classified as categorical or dimen-
sional using a single CCFI threshold at .50.

Results

We assessed the accuracy of base rate estimates using residuals
(estimated—actual value) as a measure of bias and absolute resid-
uals as a measure of precision. The results for the 50,000 samples
of categorical data are shown in Figure 4. The formula for MAM-
BAC yielded substantial overestimates of the base rate, as shown
in the very poor results for bias and precision. Using a CCFI
profile for MAMBAC performed considerably better in terms of
bias and precision. The formulas for MAXEIG and L-Mode
yielded much less biased and more precise estimates than did the
formula for MAMBAC. Using CCFI profiles performed a bit
worse than the formula for MAXEIG and a bit better than the
formula for L-Mode.

Taking a mean of the estimates from formulas for all three
procedures fared poorly because of the inclusion of the MAMBAC
results. In sharp contrast, using the mean CCFI profile provided
estimates with the least bias (Mdn � .011, IQR � 
.002 to .026)
and greatest precision (Mdn � .017, IQR � .008 to .031) of any
method in this study.

Next, the accuracy with which categorical and dimensional data
were differentiated using CCFI profiles was examined. The results
for all five methods are shown in Table 2. Perhaps the most
surprising finding is how accurate the randomly chosen CCFI
values were, particularly for the MAMBAC and mean CCFI pro-
files. This suggests a remarkable robustness in the CCFI to the
misspecification of the base rate when creating populations of
categorical comparison data. An accuracy rate of 97.0% was
attained by randomly selecting a base rate anywhere from .025 to
.975 and calculating the mean of the CCFI values for MAMBAC,
MAXEIG, and L-Mode using this single, completely arbitrary
population of categorical comparison data. This is certainly not a
practice we recommend, but it does set a high bar for improving
the results by using the information contained in a CCFI profile
more effectively.

Despite this strong start, the other methods did perform better.
Using the most extreme CCFI value was a substantial improve-
ment for MAMBAC, MAXEIG, and L-Mode CCFI profiles. The
best results for MAMBAC CCFI profiles were obtained using
the mean of all CCFI values or the weighted mean based on the
vertical distance of each data point to .50. The best results for
MAXEIG and L-Mode CCFI profiles were obtained using the
weighted mean based on the horizontal distance of each data point
to the base rate estimate. This method yielded the best results in
this study—98.2% accuracy—when applied to the mean CCFI
profiles. This compares favorably with all of the methods tested by
Ruscio et al. (2010) using the same 100,000 samples.

In Ruscio et al.’s (2010) study of consistency testing, the
bottom-line recommendation was to calculate the mean CCFI and
interpret it using dual thresholds that treat .45 � CCFI � .55 as
ambiguous. Doing so yielded ambiguous results for 5.2% of the
samples and attained an accuracy of 99.4% for the remaining
samples. Based on results from the present study, it appears that
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Figure 3. Example of horizontal weights assigned to each data point on
a comparison curve fit index (CCFI) profile if the taxon base rate estimate
is .25.

Figure 2. Comparison curve fit index (CCFI) values plotted for analyses
using 39 populations of categorical comparison data that varied across
taxon base rates of p � .025 to .975 in increments of .025. CCFI profiles
are labeled as M for MAMBAC (mean above minus below a cut), X for
MAXEIG (MAXimum EIGenvalue), and L for L-Mode (latent mode).
Solid data points represent the mean CCFI profile. A vertical line is plotted
from the peak of each smoothed curve to the corresponding base rate
estimate on the x-axis. The actual base rate is plotted as a solid vertical line.
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aggregate CCFIs using the weighted mean based on the horizontal
distance to the base rate estimate can be interpreted similarly.
Applying the same dual thresholds yielded ambiguous results for
5.7% of the samples and attained an accuracy of 99.5% for the
remaining samples.

Discussion

Constructing a CCFI profile is a computing-intensive process,
requiring the generation of many populations of comparison data
and the parallel analysis of a very large number of samples drawn
from all of these populations. This may be worth the trouble,
however, when one wishes to estimate the taxon base rate for data
believed to be categorical. Using the mean CCFI profile provided
estimates that were considerably less biased and more precise than
those obtained using the conventional formula for any procedure
or the average of the results across procedures. Using the mean
CCFI profile also attained a high level of accuracy in differenti-
ating categorical and dimensional data. When selecting a single
data point at random, accuracy was 97.0%, and when all data
points were weighted based on their distance to the base rate

estimate, accuracy was 98.2%. Likewise, interpreting these CCFIs
using dual thresholds that treat the intermediate values as ambig-
uous can improve validity further after setting aside a modest
proportion of findings as ambiguous.

General Discussion

One of the fundamental issues in psychological assessment is
whether the goal is to assign individuals to groups or to locate their
positions along a continuum. Theory, research, and practice in
assessment depends critically on the relative fit of categorical and
dimensional models obtained in empirical studies (Meehl, 1992;
Ruscio & Ruscio, 2002). Meehl’s (1995) taxometric method is one
empirically supported tool for studying the latent structure of
psychological constructs, and the present research helps to mini-
mize the subjectivity of performing taxometric investigations and
interpreting their findings.

The use of the CCFI in taxometric analysis has become main-
stream, with 37 taxometric studies published from 2011 to 2016 all
using CCFI values to distinguish between categorical and dimen-
sional data. The current trio of studies answered several lingering

Formula Profile Formula Profile Formula Profile Formula Profile
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Figure 4. Accuracy of base-rate estimates using formulas and comparison curve fit index (CCFI) profiles,
Study 3. MAMBAC � mean above minus below a cut; MAXEIG � MAXimum EIGenvalue; L-Mode � latent
mode.
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questions about the methods used to calculate CCFI values, the
extent and usefulness of its SE, and the use of CCFI profiles to
estimate base rates and differentiate categorical and dimensional
data. Results of the first two simulation studies largely support
extant guidelines and methods for calculating and interpreting
CCFI values, thereby providing empirical support for previously
untested practices. The results from Study 3, on the other hand,
demonstrate the utility of a new, computing-intensive procedure
for constructing CCFI profiles.

Studies 1a and 1b provided no support for either of two justi-
fications for calculating CCFIs for all curves in a full panel. Even
if there are one or two less-valid variables in the analysis—so
much so that they fall well below the acceptable threshold for
taxometric analysis—it appears that researchers should still use the
conventional method of averaging curves to calculate the CCFI
using all available data. Though there is surely some level of
validity below which weak variables would jeopardize taxometric
results, it does not appear that calculating CCFI values for indi-
vidual curves is a useful way to identify them. Any variable whose
validity is that low should be identifiable in the usual manner, by
estimating d across cases assigned to putative groups prior to
performing any taxometric analyses.

Study 2 provided no evidence to support the calculation and use
of the SE of the CCFI in defining ambiguous regions of CCFI. This
confirms the effectiveness of setting ambiguous regions using
fixed-width intervals. Although setting intervals using the SE of the
CCFI does not seem to improve the favorability of the accuracy-
ambiguity trade-off, researchers must still decide whether and how far
to extend an ambiguous region of CCFI values. Study 2 also revealed
that the SE of the CCFI was fairly small for all three taxometric
procedures, and even smaller when using a mean CCFI value calcu-
lated using multiple procedures.

Study 3, on the other hand, broke new ground by demonstrating
two reasons that can warrant the computing-intensive process
required to construct a CCFI profile. The first reason is that
estimating base rates using CCFI profiles outperformed the con-
ventional base rate estimation formulas, both in terms of lower bias
and greater precision. In particular, a smoothed profile of mean
CCFI values seems to work well. When the results of taxometric
analysis suggest that individuals should be classified into groups,
determining their relative sizes is an extremely important first step
for doing so as accurately as possible. Whether using Bayes’s
theorem, the base-rate classification method (Ruscio, 2009), or
another technique, the taxon base rate is a crucial piece of infor-

mation. Using a CCFI profile is a promising way to estimate this
as well as possible from taxometric results.

The second reason to consider constructing a CCFI profile is
that using a weighted mean of all CCFI points along a profile
(based on the horizontal distance of each point to the estimated
base rate) differentiated between categorical and dimensional data
with slightly greater accuracy than any alternative techniques
applied to the same samples in prior research. Interestingly, even
choosing a value at random from a CCFI profile achieved an
accuracy rate of 97%. Though not a method to recommend, the
surprisingly high accuracy of this arbitrary method demonstrates
that CCFI values are quite robust to misspecifications of the taxon
base rate when generating populations of categorical comparison
data. Whether as a supplement to or a replacement for other
methods, using a CCFI profile can help to determine the relative fit
of categorical and dimensional models in a taxometric study. The
present findings support the use of an aggregate CCFI that can be
interpreted using a single threshold at .50 or dual thresholds that
set aside ambiguous results (e.g., .45 � CCFI � .55) to boost
validity for nonambiguous values.

CCFI profiles might be especially useful when prior theory and
research provide no clear method for assigning cases to putative
groups that can be used to generate a population of categorical
comparison data. Constructing a CCFI profile requires no such
information. At the same time, if prior theory and research do
provide a method for assigning cases to putative groups, this
method should be used rather than the base-rate classification
technique. For example, to test the structure of a construct identi-
fied using a set of diagnostic criteria, these criteria should be used
to assign cases to putative groups rather than using a series of
taxon base rate estimates to construct a CCFI profile. The latter
approach would be needlessly computing intensive and none of the
populations of categorical comparison data might adequately rep-
resent the construct identified by the diagnostic criteria.

In recent years, most researchers performing taxometric analysis
have been using free R code developed and updated by Ruscio
(2016). In part because this suite of programs did not allow the
construction of CCFI profiles, it has been replaced by an R
package for taxometric analysis that is now available at https://
cran.r-project.org/package � RTaxometrics (Wang & Ruscio,
2017). The modular functions in the RTaxometrics package follow
contemporary R style for programming and documentation and run
more efficiently than the programs they replace. Similarly, the new
functions are grounded firmly in the empirical literature on the
implementation of taxometric analysis. Both the default and the
optional ways to perform taxometric procedures were established
with regard for the findings of research on taxometric methodol-
ogy. The new functions also are designed to be as user-friendly as
possible when entering commands and working with the output.
We anticipate that researchers will find the RTaxometrics package
useful to perform taxometric analysis in ways consistent with the
empirical literature on best practices, including but not limited to
the present set of simulation studies. The most significant contri-
bution of the present research to this endeavor is that it motivated
the development of a new function to construct CCFI profiles. Just
as the CCFI itself fairly quickly became standard practice in
taxometric research, we expect the use of CCFI profiles to become
an attractive analytic tool for researchers studying the latent struc-

Table 2
Percentage of Samples Correctly Classified, Study 3

CCFI profile

Method MAMBAC MAXEIG L-Mode M

Random CCFI 92.5 74.2 75.4 97.0
Extreme CCFI 95.3 91.8 90.9 97.2
Mean CCFI 97.4 89.9 92.2 97.3
Weighted mean (vertical) 97.2 91.4 91.9 97.3
Weighted mean (horizontal) 95.8 92.4 94.6 98.2

Note. CCFI � comparison curve fit index; MAMBAC � mean above
minus below a cut; MAXEIG � MAXimum EIGenvalue; L-Mode � latent
mode.
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ture of constructs relevant to the assessment of personality and
psychopathology.
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