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Abstract

There are several important decisions that must be made when implementing taxometric procedures such as mean above
minus below a cut (MAMBAC), maximum covariance (MAXCOV),and maximum eigenvalue (MAXEIG). A Monte Carlo study
was performed with 10,000 (5,000 categorical, 5,000 dimensional) samples to examine 5 ways to locate the first and last
MAMBAC cuts and 24 ways to perform MAXCOV and MAXEIG. For MAMBAC, there was little difference across conditions,
with slightly more accurate results obtained when a small, fixed number of cases (n = 10 or 25) was located beyond the
most extreme cuts. For MAXCOV and MAXEIG, the results were more palpable: MAXCOV slightly outperformed MAXEIG,
windows achieved significantly better results than intervals,and a larger number of cases per subsample were associated with
more accurate results. Alcohol misuse data obtained from a group of male prisoners were used to illustrate relationships

observed in the Monte Carlo study.
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The taxometric method pioneered by Meehl (1995) and
colleagues (e.g., Waller & Meehl, 1998) is designed to
assess whether the latent structure of a construct is more
appropriately modeled as categorical (two latent classes)
or dimensional (one or more latent factors). The primary
output of taxometric procedures is graphical, with differ-
ent curve shapes expected for categorical and dimensional
data, and the hallmark of this data-analytic approach is
the examination of consistency across results from nonre-
dundant analyses (Meehl, 1995). When judging the shapes
of curves or assessing numerical results, the investiga-
tor’s task is to determine whether the results are sufficiently
consistent to support a structural conclusion or the results
are ambiguous and judgment should be withheld (Meehl,
2004). Historically, taxometric results have been inter-
preted fairly subjectively, though recent developments
such as the parallel analysis of categorical and dimen-
sional comparison data and the calculation of a quantitative
index of curve fit (the comparison curve fit index, or
CCFI; Ruscio & Kaczetow, 2009; Ruscio, Ruscio, &
Meron, 2007), which indicates the degree to which the
empirical data curve fits the categorical and dimensional
comparison data curves, have made the taxometric
method more objective. Nonetheless, applying taxomet-
ric procedures to one’s data is far from an automatic
process.

A number of implementation decisions must be made to
perform a taxometric analysis. Several of the more impor-
tant implementation decisions include assigning the available
variables to the required roles of input and output indica-
tors, placing cuts along the input indicator or dividing cases
into a series of ordered subsamples along the input indica-
tor, and graphing the results (Ruscio, Haslam, & Ruscio,
2006). Walters and Ruscio (2009) recently examined the
first of these decision points (i.e., arranging the variables
into input and output indicators). Traditionally, a single
indicator variable was placed along the x-axis to serve as
the input indicator in a mean above minus below a cut
(MAMBAC; Meehl & Yonce, 1994), maximum covariance
(MAXCOV; Meehl & Yonce, 1996), or maximum eigen-
value (MAXEIG; Waller & Meehl, 1998) analysis. Beginning
with Gangestad and Snyder (1985), many investigators have
set aside the required output indicator(s) for analysis and
summed the remaining variables to form a composite input
indicator. Using both a large-scale Monte Carlo analysis
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and actual data from a structured diagnostic interview,
Walters and Ruscio (2009) determined that summing vari-
ables to form a composite input indicator improved the
accuracy of the MAMBAC procedure only slightly and
actually had a significant detrimental effect on the accuracy
of the MAXCOV and MAXEIG procedures. In the same
study, indicators composed of four or more ordered catego-
ries achieved MAMBAC, MAXCOV, and MAXEIG results
on par with continuous indicators.

The MAMBAC procedure sorts cases along an input
indicator that forms the x-axis of a graph, with cuts placed
at a series of evenly spaced locations to plot mean differ-
ences on the output indicator along the y-axis (Meehl &
Yonce, 1994). Each mean difference is calculated as the
mean for cases above the cut minus the mean for cases
below the cut. Categorical data are expected to yield a
peaked MAMBAC curve, whereas dimensional data are
expected to yield a concave curve that often rises sharply at
one or both ends (Meehl & Yonce, 1994). To implement
MAMBAC, one must choose the number of cutting scores
and the location of the most extreme cuts. The default
values for Ruscio’s (2009) taxometric program to perform
MAMBAC analyses are to use 50 cuts and to reserve n = 25
cases at each extreme for the first and last cuts. Ruscio et al.
(2006) contend that going beyond 50 cuts will impose a
computational burden that is unlikely to be reciprocated by
a noticeable increase in accuracy, although this is an empiri-
cal question that we do not address in the current study. The
MAMBAC implementation decision investigated in this
study is how many cases should be reserved at the extremes
to produce the most informative results.

The MAXCOV procedure divides cases into a series of
ordered subsamples along the input indicator, which forms
the x-axis of a graph. Within each subsample, the covari-
ance between two output indicators is calculated, and these
values are plotted such that covariance forms the y-axis of
the graph (Meehl & Yonce, 1996). The MAXEIG procedure
is a multivariate generalization of the MAXCOV procedure
(Waller & Meehl, 1998). Rather than calculating the covari-
ance of two output indicators within each subsample, one
calculates the first (largest) eigenvalue of the covariance
matrix of two or more output indicators, where the covari-
ance matrix is the usual variance—covariance matrix with the
variances replaced by zeros. For both procedures, categorical
data are expected to yield a peaked curve, whereas dimen-
sional data normally fail to show evidence of a discernable
peak (Meehl & Yonce, 1996; Waller & Mechl, 1998).

To implement these procedures, several decisions must
be made. First, should one calculate covariances among
pairs of output indicators (and thereby perform MAXCOV)
or calculate eigenvalues among two or more output indi-
cators (and thereby perform MAXEIG)? When there are
more than three variables available to serve as indicators,

MAXEIG will include more variables in each analysis than
MAXCOV, with the potential benefit of yielding more pow-
erful results. However, eigenvalues calculated from more
than two indicators are subject to greater sampling error than
covariances calculated from two indicators, all else being
equal. We performed both MAXCOV and MAXEIG analy-
ses of the same target data sets to determine whether there
is a net benefit to using either procedure.

Second, should one divide cases into subsamples along
the input indicator using nonoverlapping intervals or over-
lapping windows? For example, consider a sample with
N = 1,000 cases divided into 10 intervals of n = 100. These
would contain cases 1 to 100, 101 to 200, 201 to 300, .. .,
901 to 1,000. Dividing this same sample into windows with
n = 100 that overlap 90% with their neighbors affords 91
windows (see Waller & Meehl, 1998, for formulas relating
sample size, number of windows, amount of overlap, and
subsample size). These would contain cases 1 to 100, 11 to
110, 21 to 120, . . ., 901 to 1,000. This series of windows
includes the original 10 decile intervals, along with 9 addi-
tional windows between each, for a total of 91 windows
(Ruscio et al., 2006). We expect that using windows will be
preferable to using intervals because one can obtain more
data points and better flesh out the shape of a MAXCOV or
MAXEIG curve with no increase in the amount of sampling
error within each subsample.

Third, should one choose the number of subsamples
(intervals or windows), which then determines the number
of cases within each one, or choose the number of cases
within each subsample, which then determines the number
of subsamples? In other words, as a general rule, is it wiser
to set a fixed number of subsamples or a fixed number of
cases per subsample? For example, one might choose to use
25 intervals, in which case a sample of N = 1,000 cases
would provide n = 40 cases within each interval. Alterna-
tively, one might choose to use intervals with » = 50 cases,
in which case this would provide 20 intervals. The same
type of relationship holds for windows: One might choose
to use 50 windows with n = 169, or one might choose to use
n = 50 and thereby obtain 191 windows. We expect choos-
ing the number of subsamples to be a better approach,
provided that one chooses a sufficient but not excessive
number of data points to establish the shape of a curve.

Finally, how many subsamples (or cases) should be
implemented when doing MAXCOV or MAXEIG? Cur-
rently, the number of subsamples (or cases) ina MAXCOV
or MAXEIG analysis is a matter of personal preference.
The default values in Ruscio’s (2009) taxometric program
that performs MAXCOV and MAXEIG analyses are
15 intervals and 50 windows, but these are based on edu-
cated guesses rather than data.

In an effort to establish empirically based default values
that can guide taxometric investigations, we studied the
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implementation decisions outlined above in MAMBAC,
MAXCOV, and MAXEIG analyses of large numbers of cat-
egorical and dimensional target data sets. Specifically, this
study was designed to investigate the effect of adjusting the
location of the most extreme cuts in MAMBAC analyses
and the type and number of subsamples in MAXCOV and
MAXEIG analyses. Parallel analyses of comparison data
were performed so that the CCFI could be calculated for
each variant of each procedure. We compared implementa-
tion methods by examining their accuracies using several
criteria, including receiver operating characteristic (ROC)
curves and accuracy scores based on the application of
single or dual thresholds for CCFI values. Applying a single
threshold allows an evaluation of the percentage of samples
whose structure was identified correctly, and applying dual
thresholds allows intermediate CCFI values to be scored as
ambiguous (partial credit) rather than correct (full credit) or
incorrect (no credit). Hence, the ROC analyses were used to
assess the overlap between CCF1 scores for categorical and
dimensional samples and the single- and dual-threshold cri-
teria were used to assess the practical utility of the CCFI in
reaching conclusions using prespecified thresholds.

Study |
Method

Design and data generation. Using an iterative technique
developed by Ruscio and Kaczetow (2008), we created
10,000 target data sets for a Monte Carlo study by cross-
ing several important data parameters. Latent structure
(categorical or dimensional) was the only parameter that
was systematically varied across samples, with 5,000
samples for each structure. All other data parameters
were sampled randomly and independently from uniform
distributions.

To construct categorical data, the following data param-
eters (and ranges of values) were varied: sample size (N =300
to 1,000), number of indicators (3 to 8), taxon' base rate
(P =.101t0.50), indicator validity (d = 1.25 to 2.00), within-
group correlations (» = .00 to .30), asymmetry (g =.00 to .30),
tail weight (k= .00 to .15), and taxon:complement variance
ratio (VR =1 to 4). Categorical data sets were generated
with Ruscio and Kaczetow’s (2008) iterative technique,
with N cases sampled from a g-and-# distribution (Hoaglin,
1985) with =0 and o =1 and a correlation matrix in which
all indicators correlated » with one another in the taxon and
complement groups. A proportion (P) of cases were then
randomly selected and classified as taxon members, with
the remaining cases serving as the complement. Finally,
scores in the taxon group were multiplied by the V'R and the
classes separated by adding a constant to the taxon group
that achieved the desired group separation d.
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Because several of the parameters used to create categor-
ical data do not correspond to parameters in the dimensional
model (i.e., P, d, r, and VR), these parameters were replaced
by indicator correlations sampled from a uniform distribu-
tion (r, ) that ranged from .15 to .65. The iterative algorithm
of Ruscio and Kaczetow (2008) was used to sample N cases
from a g-and-4 distribution with p =0 and o = 1, and a cor-
relation matrix in which all of the indicators correlated r,,
with one another. Subsequent analysis and review revealed
that the Ruscio and Kaczetow (2008) algorithm generated
categorical and dimensional data sets with the intended indi-
cator correlations, distributions, and variance ratios.

Taxometric analyses. MAMBAC, MAXCOV, and MAXEIG
were each performed as described earlier, with one variable
serving as the input indicator and either one (MAMBAC),
two (MAXCOV), or the remaining (MAXEIG) indicator
variables serving as the output indicator(s). For MAMBAC
analyses, 50 cuts were located, with the number of cases
reserved beyond the most extreme cuts varied across five
conditions. The number of cases was either independent of
N and fixed at n = 10, 25, or 50 cases or calculated as 5% or
10% of N. For each target data set, MAMBAC was per-
formed five times, and for each of these analyses the full
panel of curves was averaged and accompanied by results
for parallel analyses of categorical and dimensional com-
parison data (Ruscio et al., 2007; Ruscio & Kaczetow,
2009). This enabled the calculation of the CCFI, which
quantified the relative fit of categorical and dimensional
structural models. CCFI values >.50 are indicative of cate-
gorical structure whereas CCFI values <.50 are indicative
of dimensional structure. Previous Monte Carlo research
strongly supports the utility of the CCFI in correctly identi-
fying the structure of data generated using either of these
models (Ruscio et al., 2007; Ruscio & Kaczetow, 2009;
Ruscio & Marcus, 2007; Ruscio, Walters, Marcus, &
Kaczetow, in press; Walters & Ruscio, 2009). In the present
study, five CCFI values were obtained for MAMBAC anal-
yses of each target data set.

For MAXCOV and MAXEIG analyses, four factors
were varied across a total of 24 conditions: (a) calculating
covariances between pairs of output indicators (MAXCOV)
versus calculating eigenvalues between all available output
indicators (MAXEIG), (b) dividing cases into subsamples
using intervals versus windows, (c) fixing the number of
subsamples versus fixing the number of cases per subsam-
ple, and (d) using a small, medium, or large number of
subsamples or cases. Specifically, the following combina-
tions of factors (b) through (d) were studied for MAXCOV
and MAXEIG analyses: 10, 25, or 40 intervals; intervals
with n = 10, 25, or 50; 25, 50, or 100 windows; windows
with n = 10, 25, or 50. As in the MAMBAC analyses, the
full panel of curves for each MAXCOV and MAXEIG
analysis was averaged, parallel analyses of comparison data
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were performed, and the CCF1 was calculated. This resulted
in 24 CCF1 values for each target data set, 12 for MAXCOV
analyses and 12 for MAXEIG analyses.

Outcome measures. The ability of the CCFI score to dif-
ferentiate between categorical and dimensional target data
sets was evaluated using ROC analyses in which area under
the curve (AUC) values were calculated. This provides a
measure of accuracy that is independent of threshold. In
addition, accuracy scores were calculated by applying
a single threshold or dual thresholds to CCFI values. When a
single threshold was applied, CCFI < .50 indicated dimen-
sional structure, CCFI > .50 indicated categorical structure,
and accuracy was scored as 1 for correct and 0 for incorrect
structural identification. When dual thresholds were applied,
intermediate CCFI values were scored as ambiguous (.5);
this was done using narrow dual thresholds (CCFIs of .45
and .55) and broad dual thresholds (CCFls of .40 and .60).
Scores on each threshold-dependent accuracy measure
were entered into a repeated measures analysis of variance
(ANOVA) to test whether results differed across conditions
for each taxometric procedure. For MAMBAC, there was a
single within-subjects factor (location of the most extreme
cuts), and for MAXCOV and MAXEIG there were four
within-subjects factors (MAXCOV vs. MAXEIG, intervals
vs. windows, fixed number of subsamples vs. fixed number
of cases, and small, medium, or large number of cases per
subsample). Because the use of our dichotomous (single
threshold) and trichotomous (dual thresholds) outcome
measures violated the normality assumption and our large
sample size could have resulted in significant effects of
trivial magnitude, we focused on the estimated effect size
(using partial n?, calculated using SPSS) for each main
effect or interaction rather than its statistical significance.
The usual parametric assumptions are not required to calcu-
late and evaluate this measure of effect size.

Results

MAMBAC. The AUC and classification results for the 5
MAMBAC, 12 MAXCOYV, and 12 MAXEIG conditions
examined in this study are listed in Table . For MAMBAC,
accuracy was very high for all conditions (each AUC = .997).
For both single-threshold and dual-thresholds percentage
correct (Table 1) and accuracy scores (Figure 1, top graph),
there was a slight advantage for a small, fixed number of
cases (n = 10) reserved beyond the extreme cuts. For this
condition, MAMBAC identified structure correctly 96.5%
of the time using a single threshold, 98.5% of the time using
narrow dual thresholds (after setting aside 5.7% of the
results as ambiguous), and 99.5% of the time using broad
dual thresholds (after setting aside 13.1% of the results as
ambiguous). A willingness to reserve judgment for ambigu-
ous results would be rewarded with an increase in accuracy
among those that remain.
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Repeated measures ANOVAs were performed for
MAMBAC, once for each of the three accuracy scores
(single threshold, narrow dual thresholds, and broad dual
thresholds). Consistent with the results presented above, the
five MAMBAC conditions differed only slightly from one
another, with trivial effects for all three accuracy scores
(each partial n? < .01; see Table 2). As a follow-up, mean
accuracy scores were plotted for the 5,000 categorical data
sets broken down by four levels of taxon base rates (.10 to
.20, .20 to .30, .30 to .40, and .40 to .50); these results are
shown in the bottom three graphs of Figure 1. Accuracy
tended to be higher for lower base rates, and the results con-
tinued to differ very little across conditions. Taken as a
whole, these results provide little reason to prefer any par-
ticular location of the most extreme cuts in MAMBAC
analyses. By a very small margin, overall accuracy was
highest when n = 10 cases were reserved beyond the first
and last cuts.

MAXCOV and MAXEIG. For MAXCOV and MAXEIG,
accuracy was a bit lower than for MAMBAC but still quite
high (each AUC 2. 975; see Table 1). Results diverged most
sharply when dual thresholds were applied (see Figure 2,
graphs on the left). Regardless of threshold(s), however,
accuracy was greatest using MAXEIG analyses with 25
windows; MAXCOV analyses with 25 windows yielded
nearly identical results. For this condition, MAXEIG identi-
fied structure correctly 95.2% of the time using a single
threshold, 97.3% of the time using narrow dual thresholds
(after setting aside 5.8% of the results as ambiguous), and
98.3% of the time using broad dual thresholds (after setting
aside 12.3% of the results as ambiguous). Here, too, reserv-
ing judgment for ambiguous results increased accuracy
among the remainder of the data.

All four within-subjects factors were included in the
repeated measures ANOVAs for MAXCOV/MAXEIG.
Using the single-threshold accuracy score, all main effects
and interactions were trivial in magnitude (each partial
n? < .01; see Table 2). However, analyses using the dual-
thresholds accuracy scores revealed nontrivial main effects
for each of the four factors, such that accuracy was better
for MAXCOYV than for MAXEIG, for windows rather than
for intervals, for a specified number of subsamples than for
a specified number of cases per subsample, and for larger
rather than for smaller numbers of cases per subsample.
We included all possible interaction effects in the ANOVAS.
Approximately half of these were trivial in magnitude
(partial n? < .01), and even among those that were not
(.01 < partial n? < .35), all effects were monotonic in that
they did not qualify the direction of any main effects. As
noted above, an inspection of results suggests that the most
accurate results were obtained using 25 windows, with
very little difference between MAXCOV and MAXEIG
under that condition. Perhaps surprisingly, these findings
were not qualified by an interaction with taxon base rates,
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Table 1. CCFl Accuracy Results for ROC and Classification Analyses Across Implementation Conditions

Procedure and Implementation AUC Single Threshold Narrow Dual Thresholds Broad Dual Thresholds
MAMBAC-10 .998 (.998-.999) 96.5 98.5 (5.7) 99.5 (13.1)
MAMBAC-25 .998 (.998-.999) 96.2 98.1 (6.1) 99.3 (13.5)
MAMBAC-50 .997 (.997-.998) 95.6 97.7 (6.3) 98.8 (13.2)
MAMBAC-5P .998 (.998-.999) 96.0 98.3 (6.6) 99.2 (13.8)
MAMBAC-10P 997 (.996-.998) 95.1 97.5 (6.6) 98.9 (14.4)
MAXCOV-10i .984 (.982-.986) 94.0 96.6 (7.8) 98.1 (17.7)
MAXCOV-25i .979 (.977-.982) 93.1 97.3 (14.7) 99.0 (34.5)
MAXCOV-40i .980 (.978-.982) 93.0 98.3 (22.6) 99.7 (51.9)
MAXCOV-(n10)i 978 (.976-.981) 93.0 98.8 (33.0) 99.8 (72.9)
MAXCOV-(n25)i .979 (.977-.982) 93.4 97.1 (13.2) 98.9 (32.9)
MAXCOV-(n50)i .984 (.982-.986) 93.8 96.6 (8.5) 98.3 (19.2)
MAXEIG-10i 982 (.980-.984) 93.9 96.6 (8.6) 98.0 (18.7)
MAXEIG-25i 979 (.977-.981) 92.9 97.6 (17.3) 99.3 (39.1)
MAXEIG-40i 977 (.975-.980) 92.3 98.6 (28.9) 99.8 (58.5)
MAXEIG-(n10)i 975 (.972-.977) 9l.6 98.9 (44.8) 99.9 (79.3)
MAXEIG-(n25)i 979 (.977-.982) 93.0 97.5 (16.3) 99.1 (38.1)
MAXEIG-(n50)i .982 (.980-.985) 93.7 96.6 (9.1) 98.4 (20.7)
MAXCOV-25w .988 (.987-.990) 95.0 97.1 (5.6) 98.2 (12.4)
MAXCOV-50w .986 (.984-.988) 94.3 96.8 (7.1) 98.3 (16.3)
MAXCOV-100w .984 (.982-.986) 94.0 96.9 (9.2) 98.8 (22.9)
MAXCOV-(n10)w .984 (.982-.986) 93.8 99.4 (36.4) 99.9 (77.1)
MAXCOV-(n25)w .983 (.981-.985) 94.0 97.8 (14.8) 99.4 (39.0)
MAXCOV-(n50)w .984 (.983-.986) 94.2 97.0 (9.4) 98.8 (23.5)
MAXEIG-25w .989 (.988-.991) 95.2 97.3 (5.8) 98.3 (12.3)
MAXEIG-50w .986 (.984-.988) 94.2 96.8 (7.2) 98.4 (16.3)
MAXEIG-100w .984 (.982-.986) 93.9 97.1 (10.4) 98.8 (24.1)
MAXEIG-(n10)w .980 (.978-.982) 92.1 99.6 (49.4) 99.9 (82.5)
MAXEIG-(n25)w .982 (.980-.984) 93.6 98.2 (18.4) 99.5 (44.0)
MAXEIG-(n50)w .984 (.982-.986) 93.9 97.0 (10.1) 99.0 (24.7)

Note: ROC = receiver operating characteristic; MAMBAC = mean above minus below a cut (10 to 50 cases in extreme cuts or 5% to 10% of cases in
extreme cuts); MAXCOV = maximum covariance; MAXEIG = maximum eigenvalue; i = intervals; w = windows; n10 = 10 cases per subsample;

n25 = 25 cases per subsample; n50 = 50 cases per subsample; AUC = area under the ROC curve (calculated using distribution-free geometric formula)
with asymptotic 95% confidence intervals in parentheses; number in single and dual thresholds columns is percentage of correctly classified cases;in
dual threshold columns, percentage of indeterminate cases is indicated in parentheses; single threshold was placed at comparison curve fit index
(CCFl) = .50, narrow dual thresholds were placed at CCFIs of .45 and .55, and broad dual thresholds were placed at CCFls of .40 and .60.

although none of the base rates examined in this study were
below .10. The right side of Figure 2 presents MAXCOV
results for analyses of the 5,000 categorical data sets across
four levels of base rates. For each accuracy score and
within each range of base rates, using 25 windows yielded
the most accurate results.

Discussion

From the results of this Monte Carlo analysis we conclude
that MAMBAC performs as well with a small, fixed number
of cases placed at the extremes as when a large, fixed
number of cases or a portion of cases are placed at the
extremes; on the other hand, a MAXCOV analysis yields
slightly more accurate results than a MAXEIG analysis,
overlapping windows are more useful than nonoverlapping
intervals, and the best results are obtained when the number
of subgroups is low and the number of cases per subgroup

is high. However, because the indicators included in this
Monte Carlo analysis were continuous we do not know how
well the results generalize to analyses using indicators com-
posed of a small number of ordered categories. To illustrate
the findings and examine their application with ordered cat-
egorical data, a study was performed using real data from a
previously published taxometric study of alcohol misuse
disorders (Walters, 2008). We emphasize that these real
data analyses are provided for illustrative purposes rather
than for confirmation or generalization of the Monte Carlo
results from Study 1.

Study 2
Method

Participants. The sample for this study comprised 1,193
male federal prison inmates who were administered a
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Figure . AUC results by number and percentage of cases
beyond extreme cuts in MAMBAC

Note:AUC = area under receiver operating characteristic curve.Top
graph shows results for all 10,000 samples of target data and bottom
three graphs show results for all 5,000 samples of categorical target
data broken down by the base rate of the smaller group.The single
threshold was placed at comparison curve fit index (CCFl) = .50, narrow
dual thresholds were placed at CCFls of .45 and .55, and broad dual
thresholds were placed at CCFIs of .40 and .60. For the single threshold,
scoring was correct = | and incorrect = 0; for narrow or broad dual
thresholds, scoring was correct = |, ambiguous = .5, incorrect = 0.

structured interview designed to determine their eligibility
for a comprehensive drug treatment program. Participants
averaged 35.35 years of age (SD = 9.68), had 11.85 years
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of education (SD = 1.97), and three quarters of the sample
(66.2%) satisfied Diagnostic and Statistical Manual of
Mental Disorders, Fourth Edition (DSM-IV; American
Psychiatric Association, 1994) criteria for alcohol depen-
dence. The ethnic breakdown was 40.2% Caucasian American,
38.5% African-American, 16.2% Hispanic, 3.7% Asian,
and 1.5% Native American, and the marital breakdown
was 57.8% single, 28.8% married, 12.7% divorced/
separated, and 0.7% widowed.

Measure. Indicators were derived from a structured inter-
view composed of 15 dichotomous items that assess the
seven DSM-IV criteria for alcohol dependence and four
DSM-IV criteria for alcohol abuse. This structured interview
was developed by psychologists in the Federal Bureau of
Prisons to determine inmate eligibility for a comprehensive
drug treatment program. There was both a theoretical (con-
tent analysis) and empirical (factor analysis) rationale for
organizing the 15 items into three indicators spanning 5 to 7
ordered categories each (see Walters, 2008). Indicator 1 com-
prised four dichotomous items measuring two DSM-IV
criteria for alcohol dependence (tolerance; withdrawal) used
to form a 5-point scale (range = 0-4, M = 1.78, SD = 1.54)
with adequate internal consistency (oo = .82). Indicator 2
comprised dichotomous items measuring three DSM-IV
alcohol-dependence criteria (larger amounts and periods of
use; unsuccessful attempts to cut down; time spent obtaining,
using, and recovering from effects) and one DSM-IV alcohol-
abuse criterion (legal problems) used to form a 7-point scale
(range = 0-6, M =3.13, SD =2.34) with good internal consis-
tency (oo =.87). Indicator 3 comprised dichotomous items
measuring two DSM-IV alcohol-dependence criteria (reduc-
tion in social, occupational, or recreational activities;
continued use despite physical or psychological problems)
and three DSM-IV alcohol-abuse criteria (failure to meet role
obligations, physically hazardous activities, social/interper-
sonal problems) used to form a 6-point scale (range = 0-5,
M =291, SD = 2.08) with good internal consistency (o =
.90). Inter-rater reliability was found to be adequate for 40
randomly selected cases independently interviewed by a
second interviewer 2 to 8 weeks after the original interview
(Intraclass Correlation Coefficient (ICC) = .60, p < .001).

Procedure. Taxometric analyses were performed using
Ruscio’s (2009) taxometric programs. MAMBAC was per-
formed using 50 cuts with n = 10, 25, 50, 60 (5% of the
total N) or 119 (10% of the total N) cases reserved beyond
the first and last cuts. MAXCOV was performed rather
than MAXEIG because it achieved slightly more accurate
results in an earlier Monte Carlo study (Ruscio ct al., in
press) as well as in Study 1 of the current investigation.
MAXCOV was performed with 25, 50, and 100 windows
at 90% overlap and then with 10, 25, and 40 nonoverlap-
ping intervals. For all analyses, 10 internal replications were
performed to minimize the obfuscating effect of tied scores
(Ruscio et al., 2006).
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Table 2. Effect Size (Partial %) for ANOVAs Across Design Factors

Single Threshold Narrow Dual Thresholds Broad Dual Thresholds Pattern of Results
MAMBAC .00} .002 .001
MAXCOV and MAXEIG
A .003 075 .074 MAXCOV > MAXEIG
B 005 234 .503 subsamples > cases
C .006 .032 134 windows > intervals
D .009 278 .550 large n > small n
AxB .002 036 010
AxC .000 .003 012
AxD .002 .048 015
BxC .003 A1 .349
BxD .001 166 274
CxD .000 .006 .069
AxBxC .000 .008 .008
AxBxD .001 .020 .00l
AxCxD .000 .001 .00!
BxCxD .000 .028 077
AxBxCxD .000 .002 .001

Note: ANOVA = analysis of variance; MAMBAC = mean above minus below a cut; MAXCOV = maximum covariance; MAXEIG = maximum eigenvalue.
Three series of repeated measures ANOVAs were run using different dependent variables.The single threshold was placed at comparison curve fit
index (CCFl) = .50, narrow dual thresholds were placed at CCFls of .45 and .55, and broad dual thresholds were placed at CCFls of .40 and .60. For the
single threshold, scoring was correct = | and incorrect = 0; for narrow or broad dual thresholds, scoring was correct = |, ambiguous = .5, incorrect =

0. Factors included in the MAXCOV and MAXEIG ANOVAs are coded as follows: A = MAXCOV versus MAXEIG; B = specified number of subsamples
versus specified number of cases per subsample; C = windows versus intervals; D = large, medium, or small number of cases per subsample. Main effects
are briefly described, and all interactions were monotonic (none qualified the main effects).

Results

To estimate data parameters, cases were classified accord-
ing to whether or not they met DSM-IV criteria for alcohol
dependence. Across the 12 conditions, estimated indicator
validity was comparatively strong (d=2.37 to 3.38, M=3.02)
and estimated within-group indicator correlations were sub-
stantial (for taxon, mean » = .28 and for complement, mean
7 = .35) but considerably smaller than full-sample correla-
tions (mean r =.75). For MAMBAC, the CCFI results were
all very high (.872 to .912), providing strong support for an
inference of categorical structure regardless of how many
cases were reserved beyond the first and last cuts. Figure 3
shows the graphical results, in the context of those for cat-
egorical and dimensional comparison data. The most striking
feature of these graphs is the similarity of the results. Reserv-
ing different numbers of cases beyond the first and last cuts
has very little effect on most of the 50 data points that count
equally in the calculation of the CCFI, which demonstrates
why this implementation decision was shown not to be very
important in Study 1.

For MAXCOQYV, on the other hand, CCFIs spanned a
wider range (.665 to .871), underscoring the importance of
implementing the procedure most effectively. As shown in
Figure 4, CCFIs were larger for windows (graphs in left
column) than for intervals (graphs in right column) and for
fewer subsamples (graphs in top row) than for more sub-
samples (graphs in bottom row). By far, the strongest results

were obtained using the smallest number of windows (25)
and the weakest results were obtained using the largest
number of intervals (40). We performed MAXCOV using
even smaller windows and intervals (allowing » to drop to
25 and then to 10), and CCFI values continued to decline.
Here, as with the MAMBAC analyses, results parallel those
obtained in the Monte Carlo analyses reported in Study 1
and suggest that these findings may extend to ordered cat-
egorical data.

Discussion

If the latent structure of alcohol use disorders, is, in fact,
categorical—and there is both an adequate rationale
(Lenzenweger, 2004) and empirical support in six out of the
seven taxometric studies on alcohol-use disorders (Dana,
1990; Green, Ahmed, Marcus, & Walters, 2009; Walters,
2008, 2009; Walters, Diamond, & Magaletta, in press;
Walters, Henning, Negola, & Fricke, 2009; see Slade, Grove,
& Teeson, 2009 for an exception) for this assumption—then
the current results support the relationships witnessed in
Study 1 whereby there is little difference across MAMBAC
implementations but substantial differences across MAXCOV
implementations. For the latter, windows produced stronger
results than intervals and a smaller number of subgroups
(with a comparatively large r in each) yielded stronger
results than a larger number of subgroups (with a compara-
tively small # in each).
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Figure 2. AUC results by type and number of subsamples in MAXCOV and MAXEIG

Note: AUC = area under receiver operating characteristic curve. Three graphs at left show results for all 10,000 samples of target data, three graphs at
right show results for all 5,000 samples of categorical target data broken down by the base rate of the smaller group. The single threshold was placed
at Comparison Curve Fit Index (CCFl) = .50, narrow dual thresholds were placed at CCFls of .45 and .55, and broad dual thresholds were placed at
CCFls of .40 and .60. For the single threshold, scoring was correct = | and incorrect = 0; for narrow or broad dual thresholds, scoring was correct = |,

ambiguous =.5, incorrect = 0.

General Discussion

The results of the Monte Carlo study (Study 1) indicate that
it matters only slightly how many cases one reserves for the
extreme cuts of a MAMBAC analysis but that the number
and type of subsamples one employs in a MAXCOV or
MAXEIG analysis are more consequential. The impact of
number and type of subsamples in MAXCOV was illustrated

in a study using actual data from participants administered
a structured interview based on DSM-IV alcohol depen-
dence and abuse criteria (Study 2). MAMBAC seems to
achieve slightly more accurate results when a small, fixed
number of cases are placed at the extremes rather than when
a large, fixed number of cases or a portion of cases are
placed at the extremes. Restricting analyses to categorical
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Figure 3. Results for MAMBAC analyses in Study 2, with differing numbers of cases reserved beyond the first and last cuts

Note: CCFl = comparison curve fit index.

data sorted into subsets according to taxon base rates did
nothing to alter this conclusion.

In repeated measures ANOVAs examining differences in
accuracy across implementations, several of the effect
sizes for MAXCOV/MAXEIG were much larger than those
obtained with MAMBAC. Although there was a slight
advantage for MAXCOV over MAXEIG, there was a much
larger advantage for windows over intervals and even stron-
ger effects for fewer number of subgroups and larger
numbers of cases per subgroup. Considering these findings
as a whole, they suggest that dividing cases into a relatively
small number of windows can play an important role in
promoting the accuracy of MAXCOV or MAXEIG. This
conclusion, too, held across taxon base rates in follow-up
analyses of categorical data sets.

The present findings parallel those observed in Walters
and Ruscio’s (2009) study: MAMBAC appears to be less

sensitive to variations in its implementation than MAXCOV/
MAXEIG. This may be a consequence of how results for
each procedure are calculated. Each cut in a MAMBAC
analysis includes the entire sample but each subsample in a
MAXCOV/MAXEIG analysis includes only a portion of
the overall sample. Thus, there is greater opportunity for
procedural variants to influence the results in MAXCOV/
MAXEIG analyses than in MAMBAC analyses. Moreover,
there are more implementation decisions to be made in
MAXCOV/MAXEIG analyses than in MAMBAC analyses,
hence more opportunities for choices to matter.

It should be noted that despite substantial effect sizes in
the repeated measures ANOVAs for MAXCOV/MAXEIG,
accuracy did not differ much between conditions. Because
we used partial n? as the measure of effect size and the
design included only repeated measures factors, nontriv-
ial effect size estimates do not necessarily correspond to
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MAXCOV, 25 windows (n = 351), CCFl = .871
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Figure 4. Results for MAXCOV analyses in Study 2, with varying numbers of windows (left) and intervals (right)

Note: CCFl = comparison curve fit index.

practically significant differences in the differentiation of
categorical and dimensional data. AUC values ranged from
.975 (for MAXEIG with intervals containing n = 10 cases
each) to .989 (for MAXEIG with 25 windows), so discrimi-
nation was quite high for all 24 implementations of MAXCOV
and MAXEIG. Because the 95% confidence intervals for
AUC values never spanned a range wider than .005 units,
even fairly small differences between conditions may appear
to be statistically or practically significant.

The primary differences across conditions involve the
percentage of CCFI values falling in the ambiguous range
between the dual thresholds. When subsamples were smaller—
either by selecting a smaller n per subsample or selecting a
larger number of subsamples—the percentage of ambigu-
ous results increased substantially. This increase in ambiguity,
which would require withholding judgment more often,

was offset by an increase in accuracy among the remaining
data. However, our reading of these results suggests that the
increase in accuracy was seldom large enough to represent
an acceptable trade-off for the increase in ambiguity. For
example, MAXEIG analyses with 25 windows achieved
98.3% accuracy at the cost of setting aside 12.3% of results
as ambiguous when broad dual thresholds were applied.
Applying the same thresholds to MAXFEIG analyses with
100 windows increased accuracy by 0.5% (from 98.3% to
98.8%), but it nearly doubled the percentage of ambiguous
results (from 12.3% to 24.1%). Investigators can choose the
balance between accuracy and ambiguity with which they
feel most comfortable, but we see little or no justification
for using large numbers of subsamples or small-n subsam-
ples. Of course, it could be argued that it really does not
matter that small-n subsamples produce a relatively large
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number of indeterminate results as long as they fall on the
correct side of .50. The problem with this argument is that
because CCFI results in the ambiguous range are signifi-
cantly less accurate than CCFI results outside the ambiguous
range,? an indeterminate category is required to avoid accept-
ing results close to .50 as legitimate.

The present findings, especially the fact that using a
small number of windows worked best even for the lowest
taxon base rates in this study, has implications for the inch-
worm consistency test (Waller & Meehl, 1998). This test
involves increasing the number of windows across a series
of analyses to determine whether a cusp toward the right
end of a MAXCOV or MAXFEIG curve represents a small
taxon or is an artifact of positively skewed indicators (Ruscio,
Ruscio, & Keane, 2004). For categorical data with a low
taxon base rate, a cusp may be transformed into a fully
defined peak. For dimensional data, a cusp that stems from
the influence of positive skew should remain even as the
number of windows increases. The present results suggest
that the CCFI can distinguish these structural possibilities at
least as effectively with a small number of windows as with a
large number of windows. This is consistent with the results
of Ruscio and Marcus (2007), who found that the CCFL
easily identified the categorical structure of data sets with
base rates as low as P = .05 when reanalyzed using 50 win-
dows. Given that these data sets had been created with N =
4,000, one might have expected that using just 50 win-
dows, with n = 678, would be insufficient to identify
categorical structure with as few as n = 4,000 x.05 = 200
taxon members in the sample. Nonetheless, CCFI results
unambiguously identified categorical structure in each
instance without recourse to the inchworm consistency test.
Whereas the subjective, visual inspection of curves may be
facilitated by attempts to determine whether or not a cusp
becomes a better defined peak as the number of windows
increases, the CCFI does not require that a peak emerge to
identify categorical structure. In fact, a cusp may not be
ambiguous when considered in light of results for compari-
son data. Thus, the CCFI can be effective even with a few
windows and a small taxon. Future research should exam-
ine the incremental validity of performing a series of analyses
with an increasing number of windows relative to a single
analysis with comparatively few windows.

In extending the CCFI to low base rate constructs, it
should be noted that in the current Monte Carlo investiga-
tion (Study 1) P never fell below .10. One limitation of this
study, in fact, is that challenging or unfavorable parameters
(e.g., N< 300, d < 1.25, within-group »> .30, P < .10) were
not systematically evaluated. When Ruscio et al. (in press)
examined challenging and unfavorable parameters in a
large-scale Monte Carlo analysis, the CCFI displayed a
sharp decline in accuracy for taxonic samples with below-
threshold indicator validity (¢ < 1.25) or above-threshold

nuisance covariance (r > .30), whereas the accuracy of the
CCFI in taxonic samples with below-threshold base rates
(.05 < P <.10) declined modestly and taxonic and dimen-
sional samples with below-threshold sample sizes (100 <
N < 300) displayed slight and sharp decrements in accu-
racy, respectively. Accuracy tends to decline even more
when several parameters fall below threshold, although the
CCFI is reasonably robust in the face of multiple parame-
ters slightly above threshold (Ruscio & Walters, 2009).
The goal of the present research was to examine the effect
of certain implementation decisions on the accuracy level
of the CCFI rather than evaluate the absolute accuracy of
taxometric analysis under various data conditions. Addi-
tional research will be required to determine the extent to
which CCFI accuracy is affected by a very low base rate
(P < .05), in which case it might prove helpful to increasc
the number of cuts in MAMBAC beyond 50 and the number
of windows in MAXCOV/MAXEIG beyond 25, or an
increase in the number of outliers in excess of what occurs
by normal sampling error (and which was therefore incor-
porated in our Monte Carlo study).

Within the range of data conditions for which taxometric
procedures are expected to provide informative results
(Meehl, 1995), the present findings suggest the most effec-
tive default values for implementing the MAMBAC,
MAXCOV, and MAXEIG taxometric procedures. It is pos-
sible that alternative implementations might be more effective
for other data conditions, but we chose not to investigate
performance beyond the limits for which taxometric analy-
sis is recommended (e.g., very small group separation)—or
for which it may not be necessary (e.g., very large group
separation). There is at least one additional data parameter
that merits further study, however: the analysis of ordered
categorical data. Our simulation study (Study 1) included
truly continuous variables, but researchers often have avail-
able only ordered-categorical variables (e.g., binary items,
Likert-type scales, or composite scores formed from these
ordered-categorical item types). We examined indicators
composed of a modest number of ordered categories (5 to 7)
in Study 2 and obtained results that paralleled findings from
our Monte Carlo study. Of course, these results are merely
suggestive given that they were based on a single sample.
Walters and Ruscio (2009) found that with ordered catego-
ries, the performance of taxometric analyses declined
sharply with fewer than four categories per variable and
fewer than five variables. Their MAMBAC analyses were
performed with n = 25 cases reserved beyond the first and
last of 50 cuts, and their MAXCOYV and MAXEIG analyses
were performed with 50 windows. It would be interesting to
extend those results across other implementations of each
procedure.? In the meantime, reserving n = 10 cases beyond
the first and last cuts in MAMBAC analyses and perform-
ing MAXCOV or MAXEIG analyses with 25 windows
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appears to provide the most accurate results. This consti-
tutes the first set of empirically derived guidelines for
implementing these procedures, and the scope of the evi-
dence on which they are based suggests that they can serve
as a preliminary framework for making certain taxomet-
ric implementation decisions until new data refine or
refute them.
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Notes

1. In the literature on taxometrics, the higher scoring ot two
groups is usually referred to as the “taxon,” and the other group
the “complement.”

2. The error (miss) rate for the three most accurate procedures
(MAMBAC-10, MAXCOV-25W, MAXEIG-25W) was 16
times higher for the comparison curve fit index (CCFI) val-
ues falling within the narrow dual threshold range (36.3% to
40.2%, M = 38.1%) than for CCFI values falling outside the
narrow dual threshold range (1.5% to 2.9%, M = 2.4%). The
error rate for these same three procedures was 22 times higher
for CCFI values falling within the broad dual threshold range
(23.2% 10 27.9%, M = 26.0%) than for CCFI values falling out-
side the broad dual threshold range (0.5% to 1.8%, M= 1.2%).

3. We were unable to do so in the present study because of com-
putational demands. For each of our 10,000 target data sets,
a total of 29 taxometric analyses was performed, each con-
sisting of a panel of results to calculate and each with its
own parallel analyses of categorical and dimensional com-
parison data. This took a considerable amount of time to run.
Had we studied ordered categorical data instead, this would
have necessitated the use of internal replications (Ruscio
et al., 2006) to reduce the influence of tied scores. Previous
research has used 10 internal replications, and this would
have increased our run time by approximately a factor of 10,
rendering the study infeasible given our present computa-
tional resources.
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