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Taxometric analyses have proven helpful for distinguishing categorical and dimensional data. Many
taxometric procedures require at least 3 variables for analysis. What if a construct is defined by only 2
conceptually nonredundant characteristics or a data set contains only 2 empirically nonredundant
variables? In Study 1, we performed extensive simulations to determine whether informative results can
be obtained when only 2 variables are available for taxometric analysis. The mean above minus below
a cut (MAMBAC) and maximum slope (MAXSLOPE) procedures, used with parallel analyses of
comparison data, successfully differentiated categorical and dimensional structure. With just 2 variables,
it seems especially important that indicators vary across as many distinct values as possible and that
investigators obtain as large a sample as possible. Additional findings address questions about the most
effective way to implement taxometric analyses. In Study 2, the potential utility of 2-variable taxometric
analysis is illustrated using data on proactive and reactive childhood aggression, where the results
provided strong support for dimensional structure. As long as high-quality data are available, it appears
that one can have confidence in the results of taxometric analyses performed with only 2 variables.
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Many data-analytic techniques are available to help determine
whether a categorical (latent class, qualitative, taxonic) or dimen-
sional (latent factor, quantitative, continuous) model better fits a
set of data. Ascertaining the structure of psychological constructs
has important implications for assessment, classification, diagno-
sis, research design, statistical analysis, and theory (MacCallum,
Zhang, Preacher, & Rucker, 2002; Meehl, 1992; Ruscio, Haslam,
& Ruscio, 2006). For example, one might focus on classification
accuracy when validating a measure that assesses a categorical
construct, whereas one might focus on correlations with other
variables when validating a measure that assesses a dimensional
construct. Likewise, the process of construct validation should
involve a consideration of whether the scores on a measure match
the latent structure of the construct. Whereas accurate cutting
scores are essential for assessing categorical constructs, measures
of dimensional constructs should not yield dichotomous scores.

Data-analytic methods to differentiate categorical and dimen-
sional data include cluster analysis (Everitt, Landau, & Leese,
2001), mixture modeling (McLachlan & Peel, 2001), latent class or
latent profile analysis (McCutcheon, 1987), and Meehl’s (1995)
taxometric method. As Ruscio, Walters, Marcus, and Kaczetow

(2010) have discussed, the latter has become popular in research
on psychological assessment; their Table 1 (p. 7) summarizes 19
studies published in three leading journals in this area (Assessment,
Journal of Personality Assessment, and Psychological Assess-
ment). In some studies, multiple measures have been used to
examine the structure of a construct (e.g., depression, psychopathy,
symptom overreporting), whereas in other studies the focal point
has been the structure of the construct underlying responses to a
particular instrument (e.g., Beck Depression Inventory, Beck,
Ward, Mendelson, Mock, & Erbaugh, 1961; Psychopathy Check-
list—Revised, Hare, 2003). That taxometric research is being
published at an accelerating pace attests to the importance of
empirically evaluating latent structure for psychological assess-
ment.

Prior studies of taxometric methodology have not considered
cases in which only two variables are available for analysis be-
cause many taxometric procedures, and especially those that are
most popular, require at least three variables. Under certain cir-
cumstances, however, an investigator may not have three variables
to work with. Because the taxometric method requires that each
variable be conceptually and empirically nonredundant (Ruscio et
al., 2006), there are at least three reasons why one might have only
two variables available for a taxometric analysis. First, a construct
might be defined by only two conceptually distinct features (e.g.,
a clinical diagnosis of delusional disorder, which is composed of
just two criteria: nonbizarre delusion and absence of severe im-
pairment). Second, even if a construct is defined by more than two
distinct features, it may not be possible to measure some of these
in ways that are empirically nonredundant, which can prompt the
combination or removal of one or more empirically redundant
variables (e.g., whereas one might wish to use items on the Beck
Depression Inventory to construct variables representing several
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features of syndromal depression, empirically these items seem to
load onto two factors: affective/cognitive and somatic). Third,
even if it is possible to define and measure a construct via more
than two distinct features, an available data set might contain only
two variables suitable for analysis (e.g., rather than item-level data
from Hare’s (2003) Psychopathy Checklist, one might have access
only to scores on Factors 1 and 2). Though it is possible to perform
a taxometric analysis using only two variables, virtually no data
are available to suggest whether this is advisable and, if so, under
what conditions. The primary purpose of the present study is to
address this issue.

Proactive and reactive childhood aggression is an example of a
construct composed of two conceptually distinct features—
namely, proactive and reactive aggression. Measuring proactive
and reactive childhood aggression normally begins with Dodge
and Coie’s (1987) Teacher Checklist (TC) rating procedure, the
most frequently used measure in this research literature. Each of
the two TC scales (proactive, reactive) is made up of three items,
and the pool of six items lends itself conceptually and practically
to just two variables for analysis. Other rating procedures have
been developed to assess proactive and reactive aggression in
children (e.g., Brown, Atkins, Osborne, & Milnamow, 1996; Kem-
pes, Matthys, Maassen, van Gooze, & van Engeland, 2006), but
because these measures are largely redundant with the TC (Hub-
bard, McAuliffe, Morrow, & Romano, 2010), they are unlikely to
provide additional variables suitable for analysis. Another way to
expand the set of variables would be to construct proactive and
reactive scales from a self-report measure like Buss and Perry’s
(1992) 29-item Aggression Questionnaire (AQ) and pair them with
the two TC scales. Walters, Ronen, and Rosenbaum (2010) sought
to do just this but discovered that the AQ and TC variables
correlated too weakly with one another to permit taxometric anal-
ysis. This leaves investigators interested in the structure of proac-
tive and reactive aggression in children with little choice but to
perform analyses with only two variables.

The availability of just two variables constrains the implemen-
tation of Meehl’s (1995) taxometric method. Nearly every pub-
lished taxometric study illustrates one of its invaluable features:
The results from multiple data-analytic procedures are examined to
determine whether they consistently support a categorical or a
dimensional model. Within Meehl’s (2004) approach, there are
three possible outcomes: consistent evidence in favor of a cate-
gorical model (which he referred to as taxonic), consistent evi-
dence in favor of a dimensional model (which he referred to as
nontaxonic), or ambiguous evidence from which no conclusion
should be drawn. Most taxometric procedures also afford consis-
tency checks by analyzing the available data in different configu-
rations. For example, the mean above minus below a cut
(MAMBAC; Meehl & Yonce, 1994) procedure produces a plot of
mean differences on one variable (the output indicator) for each of
a large number of cutting scores on another variable (the input
indicator). By assigning each of k variables to the input and output
roles in all possible ways, one obtains k(k – 1) MAMBAC curves.
One can examine the shapes of these curves to judge whether they
support a categorical or dimensional model. The prototypical
MAMBAC curve for categorical data contains a peak near the
cutting score that best differentiates members of two groups,
whereas the prototypical MAMBAC curve for dimensional data

does not contain a peak; instead, it tends to be concave (see Figure
1, Panel A).

When data characteristics deviate from idealized values (e.g.,
when variables are skewed), this can affect taxometric curve
shapes (Ruscio, Ruscio, & Keane, 2004). For this reason, it has
become customary in taxometric analyses to perform parallel anal-
yses of categorical and dimensional comparison data that repro-
duce important characteristics of the empirical data (e.g., sample
size, number of variables, marginal distributions, correlation ma-
trix) using known structural models. The comparison curve fit
index (CCFI) quantifies the relative fit of these two models to the
data at hand, and many studies have shown that the CCFI distin-
guishes data generated using these models well (e.g., Ruscio, 2007;
Ruscio & Kaczetow, 2009; Ruscio & Marcus, 2007; Ruscio, Ruscio,
& Meron, 2007; Ruscio, Walters, Marcus, & Kaczetow, 2010; Wal-
ters, McGrath, & Knight, 2010; Walters & Ruscio, 2009, 2010).
CCFI values range from 0 (strongest possible support for dimen-
sional structure) to 1 (strongest possible support for categorical
structure), with .50 an ambiguous value that signals equivalent
support for both structures. Panel B in Figure 1 shows the
MAMBAC results for a dimensional data set with positively
skewed variables. Whereas the empirical data yield a curve that
might be interpreted as peaked at the right end, plotting these
results along with those for categorical and dimensional compar-
ison data shows that they are much more similar to those for the
latter. The CCFI value of .284 provides an objective measure that,
because it is well below .50, supports this conclusion.

The number of MAMBAC curves is reduced when fewer vari-
ables are available for analysis, but in the limiting case of two
variables, most of the other widely used taxometric procedures
cannot be performed at all. Maximum covariance (MAXCOV;
Meehl & Yonce, 1996), maximum eigenvalue (MAXEIG; Waller
& Meehl, 1998), and latent mode (L-Mode; Waller & Meehl,
1998) require at least three variables. The only other taxometric
procedure that has been introduced for use with two variables is
maximum slope (MAXSLOPE; Grove, 2004; Grove & Meehl,
1993). Using this procedure, one applies a locally weighted scat-
terplot smoother (LOWESS; Cleveland, 1979) to calculate the
slope of a nonlinear regression of one variable on the other. One
can plot these slopes by values of the variable placed on the x-axis
in the original scatterplot to generate a MAXSLOPE curve. A
second curve is obtained by reversing the variables’ roles as x and
y variables, which produces a second scatterplot and series of
slopes. Standardizing the variables prior to analysis allows the
resulting curves to be averaged for presentation and interpretation
(see Ruscio et al., 2006, for a discussion of averaging taxometric
curves and the value of standardizing variables for doing so). By
presenting MAXSLOPE results as plots of slopes, users can inter-
pret the results as they would the more familiar MAXCOV or
MAXEIG curves that are staples in the taxometric literature. The
prototypical MAXSLOPE curve for categorical data contains a
peak, whereas the prototypical MAXSLOPE curve for dimensional
data does not (see Figure 1, Panel C). Because data characteristics
such as skew can influence MAXSLOPE curves, we adapted the
CCFI for use with MAXSLOPE. The usual method of calculating
the CCFI (see Ruscio & Kaczetow, 2009) was applied to the
conditional slopes of the MAXSLOPE plots. Panel D of Figure 1
shows the MAXSLOPE results for the same dimensional data set
analyzed earlier using MAMBAC. Despite what might be inter-
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A:  Prototypical MAMBAC Curves for Categorical (Left) and Dimensional (Right) Data 
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B:  MAMBAC Analysis of Dimensional Data with Positively Skewed Variables 
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C:  Prototypical MAXSLOPE Curves for Categorical (Left) and Dimensional (Right) Data 
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D:  MAXSLOPE Analysis of Dimensional Data with Positively Skewed Variables 
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Figure 1. Results in Panels A and C are for empirical data only. Results in Panels B and D are plotted with
data points and dark lines for empirical data, light lines for the range of values typical of comparison data.
MAMBAC � mean above minus below a cut; MAXSLOPE � maximum slope.
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preted as a peak to the left of the center of the curve, it is apparent
that results are more similar to those for dimensional than for
categorical comparison data. The CCFI value of .310, which is
well below .50, is also supportive of dimensional structure.

In a recent study of taxometric consistency testing, Ruscio et al.
(2010) found that combining the CCFI values from MAMBAC,
MAXCOV, and L-Mode analyses effectively distinguished cate-
gorical and dimensional data. As noted above, however, neither
MAXCOV nor L-Mode procedures can be performed when only
two variables are available for taxometric analysis. How well
would the combination of MAMBAC and MAXSLOPE analyses
work in this case? MAMBAC has been studied fairly extensively
(e.g., Ruscio, 2007; Ruscio et al., 2010), but never with only two
variables. MAXSLOPE has not been studied using a compara-
tively rigorous design. In Study 1, we tested how well MAMBAC,
MAXSLOPE, and their joint use differentiated between categori-
cal and dimensional samples spanning a wide range of data con-
ditions. The primary goal of this study was to determine whether
taxometric analyses with only two variables are advisable, and if
so what data conditions moderate the confidence one can place in
the results. Two additional goals involved previously unstudied
aspects of taxometric methodology.

The second goal addressed the issue of handling tied scores in
taxometric analyses. For example, when one is sorting cases along
the x-axis to locate cutting scores for a MAMBAC analysis, there
may be cases with tied scores on one but not both variables. Their
sorting along the x-axis will be arbitrary, and, in the event that this
changes which cases are located on either side of a cutting score,
this will affect the mean difference that is calculated and plotted in
the MAMBAC curve. Ruscio et al. (2006) introduced a technique
referred to as internal replications to minimize the obfuscating
influence of tied scores by randomly resorting cases with tied
scores, rerunning the analysis, and averaging the results across all
such replications. In prior studies that included ordered categorical
data and that therefore contained many tied scores, averaging over
10 internal replications has been the norm (e.g., Walters & Ruscio,
2009). Informal evaluations readily demonstrate the improvement
in curve stability and smoothness that is obtained using 10 internal
replications, but this issue has never been studied carefully. In
Study 1, we examined the performance of the MAMBAC proce-
dure with increasing numbers of internal replications.

The third goal addressed the question of whether to generate one
population or more than one population of categorical comparison
data when multiple taxometric procedures are performed. Ruscio
et al. (2007) stressed the importance of generating categorical
comparison data carefully and discussed several options for doing
so. For example, one can provide a classification of cases into
putative groups on the basis of prior research or theory, one can
provide a base rate of taxon members on the basis of prior research
or theory, or one can use an analysis of the empirical data at hand
to estimate the base rate of taxon members or to classify cases into
putative groups. When one provides only a taxon base rate, cases
are then assigned to putative groups on the basis of their total
scores on all available variables (Ruscio, 2009). Ruscio et al.
(2007) argued that using an empirically estimated taxon base rate
to assign cases to groups provides a conservative test of how well
the taxometric analysis identifies categorical data and that re-
searchers will often have a more valid classification to use and
thereby be in a better position to identify categorical data. This

conservative practice has been standard in simulation studies of
taxometric analysis so that the utility of the method is not over-
stated. However, there remains an important choice for how to
implement this approach. One could use a single taxon base rate
estimate to generate a single population of categorical comparison
data and draw samples from this population for analysis using each
taxometric procedure. In Study 1, we did this by obtaining taxon
base rate estimates using MAMBAC and MAXSLOPE, and pro-
viding their averaged value as a single base rate estimate to
generate one population of categorical comparison data. Alterna-
tively, one could generate separate populations of comparison data
using each taxometric procedure’s taxon base rate estimate. We
did this as well in Study 1, affording a test of which method works
best.

In sum, Study 1 was designed to determine (a) whether to
perform taxometric analyses with only two variables and how
results vary across data conditions, (b) how much improvement is
observed with increasing numbers of internal replications in
MAMBAC analyses, and (c) whether to generate a single popula-
tion of categorical comparison data for analysis using multiple
taxometric procedures. A large-scale Monte Carlo study was con-
ducted to address these issues. Study 2 applies the empirically
based guidelines from Study 1 to an analysis of data on proactive
and reactive aggression in children using Dodge and Coie’s (1987)
TC rating scale. It was hypothesized that, consistent with conven-
tional wisdom (Hubbard et al., 2010), the latent structure of pro-
active and reactive aggression in children would be dimensional in
nature.

Study 1

In this simulation study, MAMBAC and MAXSLOPE were
performed across a wide range of data conditions to determine how
effectively they could differentiate categorical and dimensional
data.

Method

Design and data generation. A total of 25,000 categorical
and dimensional data sets (12,500 for each structure) were gener-
ated using a Monte Carlo design in which data parameters were
independently randomly sampled from specified ranges. These
data conditions were similar to those used in previous simulation
studies of taxometric analysis (e.g., Ruscio & Kaczetow, 2009;
Ruscio & Walters, 2009; Walters & Ruscio, 2010). For categorical
data, which consisted of two latent classes referred to as the taxon
(higher scoring group) and its complement (lower scoring group),
random values were drawn for the following parameters of each
target data set: sample size (N � 300–1,000), number of ordered
categories (C � 4, 5, 6, 7, 10, or 20), taxon base rate (p �
.10–.50), indicator validity (standardized mean difference between
classes of d � 1.25–2.00), within-group correlation (r � .00– .30),
asymmetry (g � .00–.30), tail weight (h � .00–.15), and variance
ratio (VR � .25–4.00; this is the ratio of variance in the taxon
relative to variance in the complement).

Values of N, C, P, d, r, g, and h were drawn from uniform
distributions (continuous for all but C, which was discrete) span-
ning the ranges listed above. The value of VR was determined by
drawing a random value X from a uniform, continuous distribution
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ranging from 1 to 4; with probability .50, VR � X, and with
probability .50, VR � 1/X. The values of g and h were used to
generate data from a g-and-h distribution (Hoaglin, 1985, p. 486).
The magnitude of g controls the asymmetry relative to a normal
distribution (in which g � 0), and the magnitude of h controls the
tail weight relative to a normal distribution (in which h � 0).
Because only positive values of g and h were used, conditions of
positive skew and heavy tail weight (leptokurtosis) were studied.
For the g-and-h populations used in this study, the smallest skew
(�1) and kurtosis (�2) values were �1 � 0, �2 � 0 for g � 0 and
h � 0, respectively (a normal distribution), and the largest values
were �1 � 2.60, �2 � 38.89 for g � .30 and h � .15, respectively;
other pairings of g and h correspond to �1 and �2 values within this
range. This covers a wide range of symmetric and asymmetric
distributions that should span those encountered in most empirical
data (Micceri, 1989) and pose a substantial challenge to the correct
identification of latent structure.

To generate a categorical data set, the iterative technique of
Ruscio and Kaczetow (2008) was used to sample N cases from a
g-and-h distribution with � � 0, � � 1 in which the two variables
correlated r with one another. Next, a proportion P of cases was
randomly selected and identified as taxon members, with the
remainder identified as members of the complement class. The
variance ratio was achieved by multiplying scores in the taxon by
X (when VR � 1) or 1/X (when VR � 1). Separation between
classes was achieved by adding a constant to scores for taxon
members such that the standardized mean difference equaled d.
Finally, each variable’s distribution was cut into C-ordered cate-
gories using equally spaced thresholds spanning the range of
observed values. To eliminate the possibility that outliers would
result in categories with very low, or even 0, frequencies at or near
the extremes, the original continuous g-and-h distributions were
created using uniform quantiles spanning the range from .005 to
.995.

For dimensional data, values of N through VR were drawn in the
same way. However, because P, d, and r do not correspond to
parameters of the dimensional (common factor) model, they were
combined to yield an expected correlation using the following
formula (Meehl & Yonce, 1994):

rxy �
P�1 � P�d2 � r

P�1 � P�d2 � 1

The iterative algorithm of Ruscio and Kaczetow (2008) was
used to sample N cases from a g-and-h distribution with � � 0,
� � 1 in which the two variables correlated rxy with one another,
and data were cut into C-ordered categories. Because VR does not
correspond to a parameter of the dimensional model, it was not
used in the generation of dimensional data. Extensive checking
showed that our data generation programs created categorical and
dimensional target data sets with the intended characteristics.

When generating each of the 25,000 samples of target data for
the present study, we initialized the random number seed to the
sample number; this allows for the exact reproduction of these data
for replication or further study; an R-file containing programs to
reproduce our data is available on request.1

Data analysis. For each sample, we performed MAMBAC
and MAXSLOPE analyses as described earlier. For MAMBAC, 50
evenly spaced cutting scores were located beginning and ending 25

cases from each extreme. A total of 25 internal replications were
performed, and CCFI values were calculated at 4 points in the
process—after 1, 5, 10, and 25 replications—to determine how
much improvement was observed with additional replications. For
MAXSLOPE, tied scores have no effect, and internal replications
were not used.

For each target data set, we generated a single population of
dimensional comparison data, along with either one or two popu-
lations of categorical comparison data. In the first case, a single
population was generated using the mean taxon base rate estimate
from the MAMBAC and MAXSLOPE analyses of the target data.
This single population was used to draw samples of categorical
comparison data for the MAMBAC and MAXSLOPE analyses. In
the second condition, we generated separate populations of cate-
gorical comparison data using the taxon base rate estimate from
each procedure. When performing MAMBAC, we drew samples
of categorical comparison data from the population generated
using this procedure’s base rate estimate; the same was then done
for MAXSLOPE.

To generate each population of categorical comparison data, we
used the base-rate classification technique to assign cases to
groups (Ruscio, 2009). Each base rate was used to classify cases
into groups by rank-ordering cases according to their indicator
total scores and applying a threshold corresponding to the propor-
tion of the sample to be assigned to the taxon. To prevent the
possibility that extreme base rate estimates would cause all or
nearly all cases to be assigned to the same group, base rate
estimates were constrained to the range of [.05, .95] for assigning
cases to groups.

Once all populations of comparison data were generated,
MAMBAC and MAXSLOPE analyses were performed for each of
B � 10 samples drawn randomly from each population. Analyses
were implemented in the same way as for the target data. Using the
results for the sample of target data and its corresponding samples
of comparison data, we calculated a CCFI value for each proce-
dure. First, the fit value between all data points on the curves for
the target data and categorical comparison data (Fitcat) was calcu-
lated as the root-mean-square of the series’ y values (i.e., mean
differences for MAMBAC, slopes for MAXSLOPE). Next, the
corresponding fit value was calculated between all data points on
the curves for the target data and dimensional comparison data
(Fitdim). Finally, the CCFI was calculated as CCFI � Fitdim/
(Fitdim 	 Fitcat). As noted earlier, this means that the CCFI can
range from 0 (strongest support for dimensional structure) to 1
(strongest support for categorical structure), with .50 an ambigu-
ous value that indicates equivalent support for both structures. In
addition to calculating the CCFI for each procedure, we calculated
the mean CCFI value across procedures.

Results and Discussion

We examined accuracy levels to address each of the study goals
outlined earlier. Table 1 summarizes the accuracy with which

1 The 25,000 data files themselves would be too cumbersome to upload
to a website or to transmit electronically as an e-mail attachment. Interested
parties can run the comparatively small R programs we will provide to
recreate some or all of these data files on demand.
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CCFI values distinguished between categorical and dimensional
structure across all 25,000 samples. Results are shown for MAMBAC
CCFIs, MAXSLOPE CCFIs, mean CCFIs, and consistent
CCFIs—where the criterion for consistency was that both proce-
dures’ CCFIs were in the same direction (i.e., both values � .50 or
both values � .50)—using both a single population of categorical
comparison data as well as two populations and across varying
numbers of internal replications. Accuracy was scored using two
criteria for the CCFI. First, the single threshold refers to a cutoff
at CCFI � .50. Scores below .50 are evidence of dimensional
structure, and scores above .50 are evidence of categorical struc-
ture. Second, the dual thresholds refer to cutoffs at CCFI � .45
(evidence of dimensional structure) and CCFI � .55 (evidence of
categorical structure), with scores in the intermediate range from
.45 to .55 set aside as ambiguous evidence.2 When some results are
set aside as ambiguous (i.e., when requiring consistency across
procedures or when using dual thresholds), it is important to
interpret an accuracy rate in the context of the rate of ambiguous
evidence. For example, a technique that achieves 85% accuracy for
80% of all target data (with the other 20% set aside as ambiguous)

is better than a technique that achieves 85% accuracy for only 75%
of all target data.

An inspection of the results shown in Table 1 reveals several
noteworthy trends. First, using a single population of categorical
comparison data attained greater accuracy than did using two
populations. The difference was substantial for MAXSLOPE
(78.8% accuracy for one population vs. 74.9% accuracy for two
populations), modest for the mean CCFI (82.1% accuracy for one
population vs. 81.2% accuracy for two populations), and negligible
for MAMBAC (81.9% for one populations vs. 81.8% for two
populations); accuracy was approximately the same for consistent

2 Ruscio et al. (2010) discussed the selection and application of rela-
tively narrow dual thresholds (those used here) versus relatively broad dual
thresholds (e.g., CCFI � .40 and CCFI � .60). We used only the relatively
narrow dual thresholds because it simplified the presentation of results, and
the choice of narrow versus broad dual thresholds did not make any
difference for our interpretations; all of our conclusions remain the same
for each.

Table 1
Percentage of Samples Correctly Classified, Study 1

Procedure and
number of

populations of
categorical

comparison data

Number of internal replications

1 5 10 25

Single threshold
MAXSLOPE CCFIa

One population 78.8 78.8 78.8 78.8
Two populations 74.9 74.9 74.9 74.9

MAMBAC CCFI
One population 78.7 81.2 81.7 81.9
Two populations 78.8 81.3 81.5 81.8

Mean CCFI
One population 81.1 81.9 82.1 82.1
Two populations 79.5 80.5 80.9 81.2

Consistent CCFIsb

One population 86.1 (79.6) 86.5 (82.2) 86.6 (82.7) 86.5 (83.1)
Two populations 85.9 (74.7) 86.8 (76.3) 86.9 (76.5) 87.0 (76.6)

Dual thresholds
MAXSLOPE CCFIa

One population 82.8 (85.7) 82.8 (85.7) 82.8 (85.7) 82.8 (85.7)
Two populations 79.0 (83.3) 79.0 (83.3) 79.0 (83.3) 79.0 (83.3)

MAMBAC CCFI
One population 84.9 (78.8) 86.0 (83.6) 86.2 (84.4) 86.3 (85.1)
Two populations 84.9 (77.6) 85.8 (83.2) 86.1 (83.9) 86.1 (84.5)

Mean CCFI
One population 86.2 (82.3) 86.4 (84.1) 86.5 (84.7) 86.5 (85.0)
Two populations 85.2 (79.2) 86.0 (81.4) 86.0 (82.1) 86.0 (82.4)

Consistent CCFIsb

One population 90.8 (62.0) 90.7 (66.8) 90.5 (67.8) 90.4 (68.4)
Two populations 90.9 (55.5) 90.7 (60.0) 90.8 (60.4) 90.7 (60.8)

Note. For the single threshold, the percentage correct was calculated for all 25,000 samples. For dual
thresholds, the percentage correct was calculated for all samples for which the comparison curve fit index (CCFI)
was outside the ambiguous range of .45 � CCFI � .55 (this percentage of nonambiguous CCFI values appears
in parentheses). MAXSLOPE � maximum slope; MAMBAC � mean above minus below a cut.
a Because tied scores have no influence on MAXSLOPE analyses, internal replications were not used. b The
criterion of “consistent” required that both procedures’ CCFI values were in the same direction (i.e., both � .50
or both � .50 for single threshold, both � .55 or both � .45 for dual thresholds).
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CCFIs with one population (86.5%) or two (87.0%), but results
were ambiguous less often with one population (16.9%) than with
two populations (23.4%). The figures cited above were observed
using a single threshold, and the same pattern emerged using dual
thresholds (see Table 1). Not only was accuracy higher for one
population than for two populations, but this was achieved with
fewer ambiguous results. In what follows, only results obtained
using one population of categorical comparison data are consid-
ered further.

Second, accuracy increased with the number of internal repli-
cations, but there were rapidly diminishing returns. For example,
MAMBAC accuracy increased from 78.7% to 81.2% with an
increase from 1 to 5 replications, but only from 81.7% to 81.9%
with an increase from 10 to 25 replications. The gains were more
modest for the mean CCFI values, perhaps in part because there
was no corresponding gain for MAXSLOPE, which is unaffected
by tied scores and therefore unassisted by replications. For con-
sistent CCFIs, accuracy increased little, but results were ambigu-
ous less often with increasing numbers of replications. Once again,
these figures were observed using a single threshold, and the same
pattern emerged using dual thresholds (see Table 1). In what
follows, only results obtained using 25 replications are considered
further.

Third, greater accuracy was achieved with MAMBAC than with
MAXSLOPE. Using a single threshold, MAMBAC was 81.9%
accurate, whereas MAXSLOPE was 78.8% accurate. Using dual
thresholds, MAMBAC was 86.3% accurate, and MAXSLOPE was
82.8% accurate. Even taking into account that MAMBAC yielded
ambiguous results slightly more often (14.9%) than MAXSLOPE
(14.3%), the difference in accuracy rates is not trivial.

Fourth, the mean CCFI value outperformed that for MAXSLOPE
but was comparable to that for MAMBAC. Table 1 shows the
pertinent results using both single and dual thresholds. To com-
pare accuracy across procedures independent of threshold, the
probability-based measure of effect size A was used (Ruscio,
2008). This is equivalent to the area under a receiver operating
characteristic curve, and in this context it can be interpreted as the
probability that a randomly chosen categorical sample would yield
a larger CCFI than would a randomly selected dimensional sample.
For MAMBAC, MAXSLOPE, and their mean CCFI values, A �
.894, .860, and .896, respectively. The 95% confidence intervals
for A overlap for MAMBAC CCFI (.890, .898) and mean CCFI
(.892, .900); neither of these intervals overlaps with that for
MAXSLOPE CCFI values (.855, .865).

Fifth, requiring consistent CCFI values achieved the greatest
accuracy of all, but at the cost of a substantial increase in the
frequency of ambiguous results. For example, using dual thresh-
olds, the mean CCFI value attained 86.5% accuracy for 85.0% of
all samples. Requiring consistent CCFI values increased accuracy
to 90.4%, but only 68.4% of all samples met this more stringent
criterion. This pattern of results is similar to what Ruscio et al.
(2010) observed when comparing the mean CCFIs to consistent
CCFIs for MAMBAC, MAXEIG, and L-Mode. Ultimately, the
choice of a criterion (mean CCFIs vs. consistent CCFIs) involves
a value judgment that a researcher must make: Is the gain in
accuracy worth the increased risk of ambiguous results? Given the
rather modest difference in accuracy, we used the mean CCFI
values in subsequent analyses.

At this point, the examination of results only partially addresses
the primary goal of this study. It does appear justifiable to perform
taxometric analyses with only two variables, but it is not yet clear
how data conditions affect the accuracy of results. Figure 2 pres-
ents the results for mean CCFI values across levels of each data
condition. Dual thresholds were used to identify correct, incorrect,
and ambiguous results. Within each graph, solid data points rep-
resent accuracy among results that were not set aside as ambigu-
ous, or the percentage correct divided by the sum of the percentage
correct and the percentage incorrect. As shown in Table 1, the
overall accuracy level was 86.5% after setting aside 15.0% of
samples yielding ambiguous results. Accuracy remained within the
range of 80%–90% for most data conditions. For categorical data,
accuracy was influenced most heavily by the degree of separation
between groups (indicator validity), within-group correlations, and
the number of ordered categories. In each case, the direction of the
effect is what one would expect: Accuracy was greater for more
valid variables, variables with lower correlations within groups,
and variables that ranged across larger numbers of ordered cate-
gories. For dimensional data, sample size and the number of
ordered categories were the most important factors, again in pre-
dictable ways.

In some instances, data conditions had different influences for
categorical and dimensional data. For example, whereas larger tail
weight decreased accuracy for dimensional data, the opposite was
true for categorical data. This underscores the importance of ex-
amining the influence of data conditions across all samples be-
cause in an actual taxometric study one would not know whether
the data are categorical or dimensional. Figure 3 presents the
results collapsed across structure for all data conditions that apply
to both structures: sample size, number of ordered categories, the
correlation between the two variables, asymmetry, and tail weight.
There were modest increases in accuracy with larger samples and
more substantial increases in accuracy with more ordered catego-
ries. The other three factors appear to make little difference. Figure
4 shows that accuracy increased to a modest extent with larger
samples at each number of ordered categories and that the accu-
racy increased substantially with more ordered categories across
all sample sizes. Thus, it appears that the number of ordered
categories is the most important factor that an investigator can
consider when planning a study or interpreting the results.

Study 2

Despite their conventional description as types or subtypes of
aggression, researchers in the field of developmental psychology
treat proactive and reactive childhood aggression as dimensional
rather than categorical. In summarizing several decades of research
on the topic, Hubbard et al. (2010) concluded that proactive and
reactive aggression “are most accurately conceptualized as contin-
uous dimensions that exist to varying degrees in each child, rather
than as categories into which children are exclusively placed” (p.
96). Although it is commonly assumed that proactive and reactive
aggression are dimensions, this assumption has never been for-
mally tested. In the present study, taxometric analyses were per-
formed using a sample of proactive and reactive scores from the
most commonly utilized measure of childhood proactive and re-
active aggression, that is, Dodge and Coie’s (1987) TC rating
scale.
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Method

Participants for this study were 1,005 Israeli primary school
(Grades 3–6) students previously rated by their teachers on the
Dodge and Coie (1987) TC. This was a mixed-gender (789 boys,
216 girls) and culturally diverse (500 Jews, 505 Arabs) sample of
Israeli schoolchildren originally selected for a national project on
aggression and later used in a taxometric study on childhood
aggression (Walters, Ronen, et al., 2010) that included more than
the TC variables examined here. Each child and at least one parent
gave their informed consent for the child to participate in the
project prior to the start of the original study.

The TC is a six-item rating scale completed by a child’s teacher
and designed to assess the level of proactive and reactive aggres-
sion engaged in by the child. Research on the TC has produced
encouraging results with respect to the measure’s reliability and
convergent validity but less than stellar results with respect to its
discriminant validity (Hubbard et al., 2010). The TC items are
normally rated on a 5-point scale, but in the current study a 3-point
scale was used. Hence, the proactive and reactive scores each
ranged from 3 to 9.

The two TC scales were subjected to MAMBAC and
MAXSLOPE analysis using Ruscio’s (2010) taxometric programs
for the R computing environment. Following the results of Study
1, a taxon base rate estimate was calculated using each procedure,
and these were averaged to create a single population of categor-
ical comparison data for both procedures. MAMBAC was calcu-
lated with 25 internal replications, and CCFI values were calcu-
lated for MAMBAC and MAXSLOPE.

Results and Discussion

To assess the appropriateness of the two TC indicators for
taxometric analysis, the sample was divided into putative taxon
and complement groups using a total TC cut score (11) that
produced a base rate (21.6%) that came closest to the average base
rate of serious aggression (18.7%) in a multisample study by
Broidy et al. (2003). Cases with scores of 11 or higher were
assigned to the putative taxon, and scores below 11 were assigned
to its complement class. The full sample interindicator correlation
(r � .58) exceeded Meehl’s (1995) recommended threshold for
sufficient indicator covariation (r � .30), and the within-group
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Figure 2. Accuracy of mean comparison curve fit index (CCFI) values across data conditions. Results for
variance ratios (VRs) are presented using the base-4 logarithm of the variance ratio to create a symmetric scale
ranging from –1 (corresponding to VR � 0.25), to 0 (corresponding to VR � 1.00), to 	1 (corresponding to
VR � 4.00).
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correlations (taxon r � –.06, complement r � .19) fell below
Meehl’s (1995) recommended threshold for tolerable nuisance
covariance (r � .30). The ability of the two indicators to distin-
guish between the putative taxon and complement groups ex-
ceeded Meehl’s (1995) recommended threshold for meaningful
group differences (Cohen’s d � 1.25): for proactive aggression,
d � 2.98; for reactive aggression, d � 2.26.

The MAMBAC and MAXSLOPE analyses performed with the
two TC indicators yielded taxon base rate estimates of .264 and
.447, respectively. The mean of these two values (.356) was used
to generate a single population of categorical comparison data for
use with the MAMBAC and MAXSLOPE procedures. Figure 5
presents the MAMBAC (top panel) and MAXSLOPE (bottom
panel) curves for the empirical data along with those for compar-
ison data. The MAXSLOPE curves are rather jagged owing to the
limited number of distinct scores on each variable, hence the small
number of slopes that can be calculated. Nonetheless, for both
procedures it is apparent that the curves for the empirical data were
more similar to those for the dimensional than categorical com-
parison data. The CCFI values (.280 for MAMBAC, .294 for
MAXSLOPE, mean CCFI � .287) corroborate the superior fit of

the dimensional model; these values are well outside of an inter-
mediate range of ambiguous CCFI values near .50.

The results of this study provide preliminary support for the
hypothesis that the construct underlying these indicators is dimen-
sional rather than categorical. As such, the domain of proactive
and reactive aggression in children appears to be organized quan-
titatively along one or more dimensions rather than qualitatively
into distinct proactive and reactive aggression categories, and
individual differences are a matter of degree rather than a differ-
ence in kind. The moderately high to high correlations between
proactive and reactive aggression reported in the literature (see
Hubbard et al., 2010) may have prompted researchers to assume
that the constructs are overlapping dimensions, but the present
results provide more direct empirical support for this structural
assumption. The ability to perform a taxometric analysis with only
two variables enabled this test of competing structural models.

General Discussion

The primary goal of this research was to determine whether
taxometric analyses can be recommended when only two variables
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Figure 3. Accuracy of mean comparison curve fit index (CCFI) values across data conditions, collapsing
across categorical and dimensional target data sets.
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are available and, if so, under what conditions. For all 25,000
samples in Study 1, the mean CCFI value for MAMBAC and
MAXSLOPE achieved an accuracy level of 82.1%. As was the
case in Ruscio et al.’s (2010) study of consistency testing,
MAMBAC yielded the greatest accuracy level of any single pro-
cedure studied—in the present Study 1, MAMBAC was 81.9%
accurate, and MAXSLOPE was 78.8% accurate—but the mean
CCFI was a bit more accurate still. If one were willing to set aside
as ambiguous the 15.0% of mean CCFI values in the intermediate
range from .45 to .55, accuracy would rise to 86.5%. Setting aside
an additional 15.6% of mean CCFI values in the intermediate
range from .40 to .60 would increase accuracy to 90.1%. Requiring
that CCFI values lie in the same direction boosts accuracy further
(to 86.5% for a single threshold, 90.4% for narrow dual thresholds
of .45 and .55, and 92.9% for broad dual thresholds of .40 and .60),
but at the cost of more ambiguous results (16.9%, 31.6%, and
46.3%, respectively). Accuracy rates differed substantially across
many data conditions. Of the factors that an investigator can
examine without knowledge of the target construct’s latent struc-
ture, sample size and the number of ordered categories were the
most influential. Accuracy rose with an increase in either of these
factors, but the effect was more dramatic for the number of ordered
categories. This suggests that when only two variables are avail-
able for analysis, it is critical to construct and select them such that
they will span many distinct values to approximate continuous
distributions as well as possible.

Given these results, we believe that taxometric analysis with
only two variables can be recommended, but it is more important
than ever to establish that one’s data are capable of yielding
informative results and to take proper precautions when imple-
menting the taxometric analyses. Ruscio et al. (2006) discussed a
number of issues to consider, and Meehl’s (1995) rules of thumb
for data acceptable for taxometric analysis (e.g., N � 300, d �
1.25, rwg � .30) received strong support in Ruscio et al.’s (2010)

study of consistency testing. The current study provides the first
empirical evaluation of two specific implementation decisions,
how to handle tied scores and how to generate populations of
comparison data. For taxometric procedures affected by the pres-
ence of tied scores (e.g., MAMBAC), using at least 10 internal
replications seems warranted, though there appears to be relatively
little gain beyond that point. This coincides with the default value
of 10 replications in Ruscio’s (2010) taxometric programs. With
advances in computing power, this default value may be raised in
the future. In the meantime, investigators might consider using 25
or more replications if they can complete their analyses in a timely
fashion given the unique processing demands of their research.
When generating comparison data for parallel analysis and the
calculation of the CCFI, it appears to be preferable to create a
single population of categorical comparison data for all taxometric
procedures rather than creating a new population using the results
of each procedure. If one wishes to use the base-rate classification
procedure to assign cases to putative groups, as was done in Study
1, a single taxon base rate estimate must be provided. An initial
series of analyses can be performed without using any comparison
data just to estimate the taxon base rate using each procedure. The
mean of these estimates can then be used to generate categorical
comparison data when each procedure is rerun to calculate a CCFI
value. If the same taxon base rate and random number seed is
provided for each procedure, Ruscio’s (2010) taxometric programs
will recreate the same populations of categorical (and dimensional)
comparison data. By default, the seed is set to 1 for each procedure
and therefore identical comparison data will be generated as long
as the supplied base rate is the same.

Even though one can obtain informative taxometric results with
only two variables, the conditions required to draw conclusions
with much confidence are more restrictive than when three or more
variables are available. Walters and Ruscio (2009) included
MAMBAC and MAXCOV analyses in a simulation study span-
ning data conditions very similar to those found in Study 1; as
noted earlier, MAXCOV uses at least three variables but is other-
wise very similar to MAXSLOPE. Under the subset of data con-
ditions that match those of the present Study 1—specifically, when
C � 4—the mean CCFI from MAMBAC and MAXCOV achieved
an accuracy of 81.5% with three variables, which is very close to
the 82.1% accuracy rate in the present Study 1. However, accuracy
increased to 93.0% with four variables, 94.7% with five variables,
and 97.0% with six to eight variables. Thus, when more than two
variables are available, it is not as important that one work with
large samples of data that span a large number of ordered catego-
ries. It would still be wise to do so, when possible, but informative
results can be obtained under a wider range of data conditions
when more variables are available.

We hasten to add, however, that increasing the number of
variables submitted to taxometric analysis must be done with care.
There remain other data requirements. One important consider-
ation is that each additional variable should be conceptually and
empirically nonredundant with those already included in an anal-
ysis (Meehl, 1995). That is one reason why simply analyzing all
six TC items assessing proactive and reactive aggression would be
unwarranted. There are three items assessing each of two concep-
tually distinct scales, and these item subsets should be aggregated
to form two scale scores prior to analysis. Another concern is that,
even if all available items were conceptually and empirically
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nonredundant, a larger number of items varied along a more
constrained response scale could yield less informative results than
could a smaller number of items varied along a broader response
scale. As the results of Study 1 show, the number of ordered
categories exerts a strong influence on the accuracy rate of taxo-
metric analyses. For example, the six TC items vary along 3-point
response scales. By summing item subsets, two variables that vary
along 7-point scales are created. Among the samples analyzed by
Walters and Ruscio (2009) with six variables that varied along
3-point scales, the accuracy of the mean CCFI for MAMBAC and
MAXCOV was 83.0%. In the present Study 1 with two variables
that varied along 7-point scales, the accuracy of the mean CCFI for
MAMBAC and MAXSLOPE was 84.2%. This is a relatively small
difference, but it demonstrates that the number of ordered catego-
ries can be as (or more) important a consideration as the number of
variables in a taxometric analysis.

In Study 2, we performed taxometric analyses on a large sample
of data collected using Dodge and Coie’s (1987) TC rating scale
for proactive and reactive aggression. These analyses illustrate the
possibility of obtaining informative taxometric results when only
two variables are available. The graphs for MAMBAC and
MAXSLOPE, when accompanied by those for parallel analyses of

comparison data, clearly favor dimensional latent structure over
categorical latent structure. This was confirmed by the very low
CCFI values, well outside an ambiguous range of intermediate
values. We have argued that, given the nature of this target
construct and the measures available to study it, only two variables
will be available for analysis. Is this a fairly unique situation, in
which case the present research addresses a question that will
seldom arise in practice?

We believe that there are more than a few situations in which
only two variables will be available due to the nature of the target
construct and/or the measures that can be used to assess it. For
example, to determine whether introversion–extraversion (I–E)
forms a categorical system, as suggested by Jung (1921/1971) and
consistent with the common practice of interpreting responses to
the Myers–Briggs Type Indicator in a categorical fashion, or forms
a dimensional model as espoused by Eysenck (1971), one could
perform a taxometric analysis of two variables (I and E scores)
from the same measure. There are a number of different measures
of I–E, but still only two conceptually distinct variables, so mul-
tiple measures of I and E should be aggregated into two variables
for analysis. Another example involves the study of the structure of
psychopathy, specifically research using the Psychopathy Check-

0 200 400 600 800 1000

0.
02

0.
04

0.
06

0.
08

Categorical Comparison Data

Input Indicator (Cases)

M
ea

n 
D

iff
er

en
ce

0 200 400 600 800 1000

0.
02

0.
04

0.
06

0.
08

Dimensional Comparison Data

Input Indicator (Cases)

M
ea

n 
D

iff
er

en
ce

-1 0 1 2 3

0.
4

0.
6

0.
8

1.
0

Categorical Comparison Data

Indicator Score

LO
W

E
SS

 S
lo

pe

-1 0 1 2 3

0.
4

0.
6

0.
8

1.
0

Dimensional Comparison Data

Indicator Score

LO
W

E
SS

 S
lo

pe

MAMBAC 

MAXSLOPE 

Figure 5. Taxometric curves for analyses of proactive and reactive aggression data. MAMBAC � mean above
minus below a cut; MAXSLOPE � maximum slope.

297TAXOMETRIC ANALYSIS WITH TWO VARIABLES



list—Revised (e.g., Edens, Marcus, Lilienfeld, & Poythress, 2006)
or the Psychopathy Checklist: Screening Version (e.g., Walters et
al., 2007). Though standard practice has been to use four facet
scores as variables in taxometric analyses, one might choose
instead to analyze the two-factor scores (Selfish, Callous, and
Remorseless Use of Others vs. Chronically Unstable and Antiso-
cial Lifestyle) because of their greater reliability (more items per
factor than per facet) and because of the unresolved controversy
surrounding the relative merits of three- versus four-factor models
of psychopathy as assessed by these measures (Hare & Neumann,
2010; Skeem & Cooke, 2010).

A final class of examples is considerably more extensive: The
Diagnostic and Statistical Manual of Mental Disorders (DSM–IV–
TR; 4th ed., text rev.; American Psychiatric Association, 2000)
provides multiple criteria for many disorders, but only two criteria
for others. The criteria for body dysmorphic disorder are (a)
preoccupation with an imagined defect in personal appearance and
(b) significant clinical distress and/or impaired functioning as a
result of this preoccupation. The criteria for delusional disorder are
(a) nonbizarre delusion and (b) absence of severe impairment as in
schizophrenia. The criteria for several sexual dysfunction disorders
pair (a) a specific behavior (decreased sexual desire or aversion to
genital sexual contact) with (b) distress or interpersonal difficul-
ties. The criteria for sleep disorders are similar to those for the
sexual dysfunction disorders mentioned above. Specifically, sev-
eral of these disorders (e.g., nightmare sleep disorder, circadian
rhythm sleep disorder, primary insomnia) have two primary crite-
ria: (a) a specific sleep-related behavior paired with (b) distress/
impairment. This is by no means a comprehensive list of psycho-
logical constructs for which only two variables might be available
for analysis, but it demonstrates that this is a situation that will be
encountered in many important areas of research. The present
findings provide the first empirical guidance for implementing the
taxometric method in this situation.
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