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latent structure poses an empirical question with important implications for basic and
applied science. In this article, we present a nontechnical introduction to the
taxometric method for assessing latent structure. We outline unique features of the
general approach and then describe and illustrate specific taxometric procedures, em-
phasizing the conceptual logic of each analytic technique, factors that can influence
results and their interpretation, and decisions that must be made to implement each
procedure most appropriately and powerfully. We present a number of refinements
and extensions to taxometric methodology including a useful interpretive aid based
on the parallel analysis of simulated taxonic and dimensional comparison data. We
focus on practical suggestions for taxometric research, concluding with a checklist of
5 general questions that we believe should be thoughtfully considered and explicitly
addressed when reporting or evaluating any taxometric investigation.

taxometric method, latent structure, coherent cut kinetics, taxon,
classification, consistency tests, MAMBAC, MAXCOV, MAXEIG,
L-Mode

Requests for reprints should be sent to John Ruscio, Department of Psychology, Elizabethtown Col-
3e, Elizabethtown, PA 17022. E-mail: rusciojp @etown.edu



152  RUSCIO AND RUSCIO

Social and behavioral scientists have long preferred to conceptualize most con-
structs as continuous—rather than discrete-—in nature. There appears, however, to
be a growing recognition that the fundamental structure of some constructs may be
categorical rather than continuous and that there is a need to empirically evaluate
the structure of each construct of interest (Haslam & Kim, 2002). For example, in
setting an agenda for the next century of research on psychopathology, Widiger and
Clark (2000) noted that “the challenge facing the developers of [the Diagnostic and
Statistical Manual of Mental Disorders} DSM-V may not be to differentiate more
clearly between normal and pathologic expressions of behavior; rather, it may be to
determine whether or not a qualitative distinction can in fact be made [italics
added]” (p. 950). Making this determination poses a significant analytic challenge.
Fortunately, developments pioneered by Meehl and his colleagues (e.g., Golden &
Meehl, 1979; Grove & Meehl, 1993; Meehl, 1995a, 1999; Meehl & Golden, 1982;
Meehl & Yonce, 1994, 1996; Waller & Meehl, 1998) resulted in a statistical ap-
proach called the taxometric method that allows investigators to powerfully test the
latent structure of constructs. The utility of this method paired with increasing em-
phasis on the importance of empirically evaluating (rather than presuming) struc-
ture has resulted in a marked increase in taxometric investigations in recent years
(Haslam & Kim, 2002).

Although the taxometric method has the potential to serve as a powerful tool for
basic and applied science, many researchers remain unfamiliar with the approach.
This state of affairs may be at least partly attributed to the highly technical nature
of most descriptions of taxometrics. Although the mathematical underpinnings of
taxometrics are important, the absence of a more accessible introduction to the
method continues to prevent many researchers from attaining a working knowl-
edge of its procedures. Those unfamiliar with its technical aspects may find it diffi-
cult to critically evaluate taxometric investigations conducted in their areas of
research. Currently available treatments of the taxometric method are also limited
to relatively few procedures and tend to offer little or no practical guidance to those
who wish to implement the method or evaluate its results. Finally, a number of
questionable conventions have appeared in the applied taxometric literature but
have not been directly addressed in existing sources.

It is with the interested nonspecialist in mind that we offer this nontechnical in-
troduction to the taxometric method. After contrasting the general approach and
basic principles of the taxometric method with those of alternative statistical tech-
niques, we describe and illustrate a variety of taxometric procedures within the
method. Because our primary aim is to facilitate conceptual understanding of
taxometrics among the producers and consumers of this research, we articulate the
key decision points in taxometric analysis and provide readers with the tools to
make and evaluate these decisions in a reasoned manner. We emphasize practical

guidelines, focusing on the logic by which the procedures operate and their effec-
tive implementation. We also introduce a number of methodological advances and
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refinements including techniques based on the paralle] analysis of simulated com-
parison data to test the suitability of data for a planned analysis and to facilitate in-
terpretation. To promote informative applications of taxometric methodology and
critical evaluations of taxometric research, we conclude with a brief checklist of
general issues that we believe should be carefully considered and explicitly ad-
dressed in any taxometric study.

STRUCTURAL TERMINOLOGY
AND THE TAXOMETRIC PROBLEM

Before delving into taxometric methodology, a handful of relevant terms must be
defined to help clarify the nature of the problem that the taxometric method was de-
signed to address. We begin with an overview of two important distinctions: that
between manifest and latent structure and that between taxa and dimensions.

Latent structure refers to the fundamental nature of a construct, the underlying
structure that exists regardless of how one might choose to conceptualize or mea-
sure it. Manifest structure, in contrast, refers to characteristics of observable mea-
sures of a construct, the surface structure that depends—among other things—on
how the construct is conceptualized and assessed. Thus, the manifest and latent
structures of a given construct may differ. A mixture of latent types can easily ap-
pear continuous at the manifest level, and latent continua may give rise to manifest
types through threshold effects, sampling error (particularly when samples are
small), selective sampling from the extremes of a continuum, observer bias, and a
variety of other causes (Grayson, 1987; Haslam, 1999; Murphy, 1964).

The terminology most often used in reference to latent structure, particularly in
the taxometric literature, involves the distinction between dimensional and taxonic
latent structures. The term dimensional is used to refer to constructs along which
individuals differ quantitatively from one another (i.e., along continua, scales, or
factors) such that any groups that might be formed are arbitrary. Clear examples of
dimensional constructs include barometric pressure and temperature, which can be
scaled along the continua of millimeters of mercury and degrees centigrade. “High
pressure” weather and “hot” objects are not naturally occurring types but are in-
stead distinctions superimposed on dimensions for pragmatic purposes (J. Ruscio
& Ruscio, 2002, in press).

By contrast, the term taxonic is used to refer to constructs in which individuals
are separated into nonarbitrary groups (i.e., types, classes, categories) at the latent
level. That is, one or more boundaries “carve nature at its joints,” with individuals
either belonging or not belonging to these groups regardless of an observer’s be-
liefs or preferences. Two latent groups, or taxa, are traditionally referred to as the
taxon (by convention, the higher scoring group on the indicator variables) and its
complement (the lower scoring group on these variables). J. Ruscio and Ruscio (in
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press) discussed more complex latent structures such as multiple latent taxonic
boundaries superimposed on one or more latent dimensions.

Distinguishing latent taxa from latent dimensions poses an important empirical
challenge. One of the most fundamental goals of science is to organize understand-
ing of the world not only according to laws of cause and effect but also according to
underlying structures. Indeed, fruitful systems have been developed to organize and
classify aspects of the universe from its smallest to its largest detectable features. Al-
though the development and refinement of a valid classification scheme can be ex-
tremely challenging in any science, in social and behavioral science this task must
contend with anumber of particularly thorny problems. Our measures are inevitably
fallible, possessing some degree of measurement error that makes underlying struc-
tures difficult to detect. Even when taxa exist, they are likely to be difficult to distin-
guish using available variables and to contain considerable within-group variation.
The fundamental challenge of structural research in social and behavioral science
canbe observed even in the deceptively simple task of distinguishing two latent taxa
from a single latent dimension. Both of these relatively simple latent structures can
give rise to similar distributional and correlational patterns in a data set, making it
difficult to draw accurate structural inferences from the data.

The mathematical model that forms the basis for taxometric analysis illustrates
the difficulties of inferring latent structure from such distributional or correlational
patterns. The general covariance mixture theorem (GCMT) represents the ex-
pected covariance between two variables that each validly distinguish two latent

taxa (Waller & Meehl, 1998):
cov(xy) = Pcovi (xy)+ Q cova (xy)+ PQ(Fi — %2)(31 — ¥2), M

where cov(xy) is the covariance between indicators x and y in the total (mixed) sam-
ple; cov,(xy) and cov,(xy) are the covariances within the taxon and complement, re-
spectively; P is the base rate of thetaxon; Q=1-P; and X and X, are the means c->f
the two latent classes on indicator x. Given that variance is the covariance of a vari-
able with itself, the expected variance of two variables that validly distinguish two

latent taxa is
o2 = Po? +Qo% +PQ(x - X2)?, @)

where o is the variance of indicator x in the total (mixed) sample and 67 and o3
are the variances within the taxon and complement, respectively.

Thus, a latent class model that allows for intraclass variance and covariance (as
well as manifest overlap between classes) can explain the variances and covariances
amonga et of indicators. In fact, any variance-covariance matrix canbe fitor repro-
duced equally well by either a latent class model like this one or by a latent dimen-
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sional model such as one that models observed variances and covariances through
loadings of all indicators onto a single underlying factor. More formally, data gener-
ated using a dimensional model with i latent dimensions can be perfectly fit using a
taxonic model with i + 1 latent classes (Bartholomew, 1987). The classification
problem—determining whether and how individuals are separated by taxonic
boundaries as opposed to dimensional variation—clearly poses significant statisti-
cal challenges. To the extent that indicators are fallible (i.e., possess measuremeit
error with respect to the construct under investigation), the differentiation of taxonic
and dimensional models will be even more difficult for any statistical method.

However, the payoff from empirical evaluations of latent structure makes the ef-
fort worthwhile. Indeed, progress in many basic and applied scientific domains can
be facilitated by research that tests the latent structure of relevant constructs (J.
Ruscio & Ruscio, 2002, in press). There are strong theoretical reasons to conduct
suchresearch such as establishing more empirically defensible typologies and factor
models, narrowing the list of potential etiological factors, and guiding future re-
search agendas (see Haslam, 1997; Meehl, 1992;J. Ruscio & Ruscio, in press). Inad-
dition, there are practical payoffs such as improved research economy, more
powerful research designs, better identification of appropriate populations for re-
search and treatment, increased statistical power, and greater reliability and validity
of measurement (see Fraley & Waller, 1998; A. M. Ruscio & Ruscio, 2002; J. Ruscio
& Ruscio, 2002). Because all of these basic and applied benefits depend on the cor-
rect identification of latent structure, we turn now to a discussion of statistical ap-
proaches that can be used to make this crucial determination. Throughout, we restrict
our attention to the most fundamental problem in structural research: distinguishing
two latent taxa from a single latent dimension. Suggested approaches to the study of
more complex structures are described by J. Ruscio and Ruscio (in press).

CONVENTIONAL APPROACHES TO TESTING
LATENT STRUCTURE

Three broad families of analytic techniques have traditionally been used to test for
taxonic boundaries: cluster analysis, finite mixture modeling, and latent class anal-
ysis. We briefly discuss each of these families before describing the role that the
taxometric method may play in this structural arena.

Cluster Analysis

Cluster analysis represents a wide array of statistical procedures that are used to de-
termine how many relatively homogeneous groups of cases can be distinguished in
a given sample of data. Because a comprehensive review of cluster analysis is be-
yond the scope of this article (see Arabie, Hubert, & DeSoete, 1996; Everitt, 1993;
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Lorr, 1994; McLachlan & Peel, 2001), we provide only a brief overview of ap-
proaches that have been used frequently in social and behavioral research. Several
of the most popular clustering techniques involve a process analogous to generat-
ing a multidimensional scatterplot and testing whether cases are distributed hap-
hazardly or clump together within this space. Fora relatively large number of cases
and indicator variables, one cannot feasibly test all distinct clustering solutions.
Thus, the many available clustering algorithms serve as heuristic search tools.

Most of the widely used clustering techniques are hierarchical in nature and in-
volve a two-step process. First, a measure of similarity or distance is selected to
quantify the pairwise relations between all observations. Second, a mathematical
rule is applied to parse the matrix of similarity or distance values into clusters.
Agglomerative techniques, which begin by treating each case as a cluster and then
fusing similar clusters until all cases have been joined into one cluster, represent
the most popular approach (Everitt, 1993; Lorr, 1994).

The most significant problem with using such cluster analyses to empirically as-
sess latent structure is the difficulty inherent in determining the appropriate number
of clusters in the data. Because a hierarchical cluster analysis yields a one-cluster so-
lution, a two-cluster solution, and so forth up to an N-cluster solution in which each
case s treated as a cluster, the researcher must choose a solution corresponding to the
mostappropriate number of clusters. When the number of clustersisitself the central
research question, this task requires an empirical index or stopping rule that can be
shown to determine the correct number of clusters. Unfortunately, cluster analyses
often yield spurious taxa because the stopping rules that have been developed are
highly fallible (Grove, 1991; Milligan & Cooper, 1985). Stoppingrules perform par-
ticularly poorly when distinguishing between the presence or absence of a single
taxonic boundary (Lorr, 1994). Researchers (e.g., Lorr, 1994; Milligan, 1996) have
noted that identifying the true number of clusters remains one of the most challeng-
ing problemsin cluster analysis, leading Everitt (1993) torecommend that hierarchi-
cal cluster analysis be used as a descriptive tool to summarize data or to pose
structural hypotheses. These concerns suggest that cluster analysis may have signif-
jcant limitations as a test between taxonic and dimensional latent structure.

Finite Mixture Modeling

Finite mixture models are designed to determine the parameters of hypothetical
subgroup distributions, or components, that reproduce the observed distributions of
manifest variables (e.g., Everitt & Hand, 1981; McLachlan & Basford, 1988;
McLachlan & Peel, 2001). By systematically varying the number of components
and their parameters (e.g., base rate, mean, standard deviation, skew, kurtosis), one
can identify a best-fitting mixture model. When this technique is used to assess la-
tent structure, the number of components in the best-fitting model is interpreted as
the number of latent taxa. For example, if a two-group model better accounts for the
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distribution of manifest scores than a one-group model, this suggests that two taxa
underlie the scores.

Finite mixture modeling also has potential limitations as a tool for investigating
taxonic boundaries. Univariate mixture models do not allow researchers to test for
taxonic boundaries that can only be represented by multiple indicators, although
this problem may be solved through the use of multivariate mixture models. More
important, as with cluster analysis, it may not be possible to determine the correct
number of components in a mixture with sufficient validity. McLachlan and
Basford (1988) described and critiqued several quantitative fit indexes that have
been proposed for this purpose and noted that this remains a “very difficult prob-
lem which has not been completely resolved” (p. 21), a conclusion echoed by Bock
(1996) and repeated by McLachlan and Peel (2001, p. 175). McLachlan and Peel
demonstrated that many fit indexes tend to overestimate the correct number of
components and noted that although normal mixture models can adequately model
skewed indicators, the best-fitting model will often include spurious components
to accommodate the skew. Given that nonnormal distributions are ubiquitous in
psychological research (Micceri, 1989), the tendency of finite mixture models to
uncover too many components in the presence of skewed data seems to be an im-
portant limitation of these procedures.

Latent Class Analysis

Latent class analysis (e.g., Green, 1951; Lazarsfeld & Henry, 1968; Muthén, 2001;
Uebersax, 1999) proceeds much like finite mixture modeling in that responses to a
set of indicators (usually categorical in nature, although latent profile analysis ex-
tends the approach to accommodate continuous indicators; Muthén, 2001) are
modeled using a latent class variable. Competing models consisting of one or more
latent classes are tested against one another using any of a number of fit indexes to
determine the number of latent classes that best represents the target construct.

Latent class analysis is complicated by a number of factors (Uebersax, 1999).
Its assumption of conditional independence, which requires all indicators to be sta-
tistically independent within each latent class, may be unrealistic and can affect the
fit of many latent class analysis models. Moreover, when calculating model fit us-
ing a maximum likelihood algorithm based on a particular set of initial parameter
values, or seeds, to represent the putative latent classes, the emergence of local
maxima presents a computational challenge in that different seeds may result in
widely varying solutions. However, the most fundamental limitation is that like fi-
nite mixture modeling, latent class analysis has a tendency to overidentify the
number of latent classes (Uebersax, 1999). Whereas latent class analysis can be
useful for assigning cases to classes once latent structure has been assessed using
more suitable statistical procedures, it has not proven itself sufficiently valid for
the initial determination of the number of latent classes.
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A final difficulty arises when using any statistical technique—cluster analy-
sis, mixture modeling, latent class analysis, or otherwise—that searches for
more than two latent taxa simultaneously using a single set of manifest indica-
tors. For example, a researcher might wish to evaluate the latent structure of ma-
jor depressive disorder (MDD) by submitting a large number of affective,
cognitive, and somatic depressive indicators—including those relevant to a puta-
tive MDD taxon and its hypothesized subtypes—to one analysis. T his approach
appears quite efficient in that it searches for all taxa (e.g., depressive types and
subtypes) in a single analysis. However, such simplicity may also pose a con-
ceptual and empirical problem. A single set of indicators is unlikely to be
" equally valid for detecting multiple, heterogeneous taxa. Taxa best represented
by a subset of the indicators may not be detected when irrelevant indicators are
included in the analysis or when indicators unique to that taxon are excluded
from the analysis. For example, the search for a putative melancholic subtype of
depression may yield false negative results if only indicators that distinguish de-
pressed from nondepressed individuals are included or if indicators that do dis-
tinguish the hypothesized subtype are diluted by the inclusion of indicators that
do not. In short, it may be unrealistic to expect any statistical procedure to val-
idly differentiate more than two latent taxa within a single analysis.

TAXOMETRIC METHOD

Although the term taxometrics broadly refers to the entire domain of empirical clas-
sification (Meehl & Golden, 1982), it is most commonly associated with the coher-
ent cut kinetics taxometric method pioneered by Meehl. The name of this method
reflects the process by which many of its procedures work: A summary statistic is
calculated repeatedly to determine whether predictable results are obtained (hence
coherent) as a cutoff point is moved through a distribution of scores (hence cut Ki-
netics). The coherent cut kinetics framework is because the GCMT (Equation 1)
describes the relations between valid indicators of two latent taxa not only in a full
- sample of data but also in any subsample. Our use of the terms taxometric method
and taxometrics refer solely to Meehl’s (1995) coherent cut kinetics approach that
searches for predictable relations among indicators across ordered subsamples of
cases.
The taxometric method is a hypothesis-testing (rather than exploratory) tech-
" nique with several noteworthy features. First, taxometric procedures explore the re-
lations among indicators rather than the distributions of individual variables to infer
the latent structure of the construct under investigation. Second, each procedure
yields estimates of important latent parameters as well as graphical results that can
be visually inspected with high reliability. Third, nonredundant lines of evidence are
contributed by procedures that operate in mathematically different ways. Fourth, re-
sults are inspected for converging evidence within tolerable margins of error rather
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than submitted to tests of statistical significance. Fifth, the final determination of la-
tent structure is based in part on the degree of consistency among all obtained results.
We discuss each of these general features before turning to a more specific descrip-
tion of the individual procedures that comprise the method.

Relations Among Indicators

Taxometric analysis presents a “bootstraps” problem (Cronbach & Meehl, 1955) in
that it uses fallible, manifest variables to evaluate the latent structure of a construct
in the absence of a “gold standard” criterion. Whether observable variables (or indi-
cators) of a construct are themselves distributed categorically or continuously, the
relationships between these indicators can provide valuable clues about the under-
lying structure of the construct. Taxometric procedures capitalize on predictable
differences in the way that indicators interrelate in the presence of taxa versus di-
mensions, as derived from the GCMT.

One important benefit of their use of multiple indicators is that taxometric
procedures can be used to test the structure of constructs for which no single
variable is a necessary and sufficient defining characteristic. For example,
schizophrenia is not synonymous with visual or auditory hallucinations—there
are a number of cognitive, affective, and behavioral features involved in this dis-
order (American Psychiatric Association, 1994). Thus, whereas statistical proce-
dures that examine the distribution of one indicator at a time (e.g., finite mixture
models with a single variable; McLachlan & Peel, 2001) may be useful for test-
ing the structure of those individual signs or symptoms, taxometric procedures
are akin to techniques (e.g., multivariate normal mixture models, cluster analy-
sis, latent class analysis) that incorporate multiple indicators in each analysis to
test the structure of a more complexly defined construct. Because we suspect
that relatively few substantive constructs can be adequately represented by a sin-
gle indicator, we recommend that multiple relevant indicators be submitted to
procedures such as taxometric analyses to evaluate the latent structure of the
construct that they polythetically define.

Graphical Results and Numerical Estimates
of Latent Parameters

Taxometric procedures yield graphs that provide clues to latent structure along
with numerical estimates of important latent parameters (e.g., the proportions of
cases belonging to the taxon and complement). As we show, when taxometric
procedures are provided with suitable data for analysis, they produce different
curve shapes for taxonic and dimensional data. Taxometric graphs can be visu-
ally inspected with a high level of interrater agreement (see Meehl & Yonce,
1994). Moreover, graphical results allow investigators to examine the influence
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of potentially problematic factors (e.g., skewed indicators) that might otherwise
be obscured in purely quantitative results. Finally, considerable Monte Carlo ev-
idence suggests that estimates of latent parameters yielded by taxometric analy-
ses are quite accurate (e.g., Meehl & Yonce, 1994, 1996; Waller & Meehl,

1998).
Nonredundant Lines of Evidence

The taxometric method includes a set of diverse analytic procedures that assess la-
tent structure in different ways. Each procedure is based on the same for-
mal-numerical definition of taxonic latent structure captured in the GCMT, yet
each uses a unique approach to corroborate or refute this model. Because
taxometric procedures differ in their theoretical rationales and mathematical opera-
tions, they contribute complementary pieces of evidence. A bedrock principle of
the taxometric method is that multiple analytic procedures must be employed to
provide independent lines of evidence for a given structural solution, thereby re-
ducing the likelihood of an incorrect conclusion. This aspect of taxometric method-
ology can be contrasted with statistical techniques for which there are no complle-
mentary analytic procedures to contribute nonredundant evidence or for which
there is little expectation that the available procedures will suggest the same under-
lying structure.

Converging Evidence Within a Tolerable Margin of Error

The results obtained through taxometric analyses—both graphical and paramet-
ric—are evaluated in terms of their consistency with taxonic or dimensional latent
structure, not in terms of their statistical significance. There are two reasons why the
method does not employ significance tests. First, any conjectured model of latent
structure may only imperfectly capture the true state of the constructas itexists in na-
ture. Furthermore, because the mathematical derivations of all statistical tests include
simplifying approximations, tests that measure departures from perfect fit are con-
founded by what is already known: that the approximations are not perfect‘ly accu-
rate. Rather than seeking the unattainable goal of perfect model fit, taxometric proce-
dures seek to reliably and validly distinguish taxonic from dimensional structure.
For example, taxometric procedures are derived using the simplifying appI‘O)‘(i-
mation of negligible nuisance covariance among indicators within taxa. That is,
one presumes that if groups exist, indicators will be uncorrelated within them (@s
is similar to the assumption of local independence required by latent class analysis;
Uebersax, 1999). In taxometrics, it is acknowledged that this approximation will
never literally be true. However, studies have revealed that within-group correla-
tions as high as .30 ordinarily have little impact on the results of taxometric proce-
dures (Beauchaine & Beauchaine, 2002; Meehl, 1995a). Thus, given its robustness
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to deviations from this idealization, the taxometric method is useful even in situa-
tions in which fit indexes might otherwise discard useful models.

A second reason that taxometric procedures do not rely on tests of statistical
significance concerns the methodological paradox by which researchers can be pe-
nalized for working with large samples (Meehl, 1967). Fit indexes will almost al-
ways reveal statistically significant departures from perfect fit in large samples,
and large samples are required for informative taxometric investigations. Given
that no model of latent structure will perfectly specify all latent parameters, the
penalty for working with appropriately large samples virtually guarantees the re-
jection of even highly exemplary models. Although this drawback of fit indexes is
lessened when multiple competing models are compared, the informational value
of these statistics remains confounded with the degree to which simplifying as-
sumptions are met. That is, these assumptions may be better satisfied by some
models than by others, and it may be impossible to disentangle the extent to which
models traly fit the data from the extent to which important assumptions of those
models are satisfied.

Consistency Checks

In place of null hypothesis significance tests, the taxometric method relies on the
convergence of evidence from as many nonredundant sources as possible, with in-
creasing coherence leading to increasing confidence in the structural solution. Be-
cause the method consists of several independently derived analytic procedures,
each affording a judgment about latent structure independent of the others, the use
of multiple taxometric procedures enables these techniques to serve as consistency
tests for one another. This system of consistency checks, unique to the taxometric
method, guards against the potential misinterpretation of isolated results that may
be anomalous and inaccurate.

In addition to the taxometric procedures themselves, estimates of latent param-
eters (e.g., the base rate of taxon membership, the distribution of taxon and com-
plement members’ scores on each indicator, intraclass indicator correlations)
yielded by these procedures provide a valuable opportunity to check for consis-
tency. Estimates of the taxon base rate (i.e., the proportion of cases belonging to
the taxon) are most commonly used for this purpose. Multiple base-rate estimates
can be compared within and across taxometric procedures; close agreement
among these estimates often suggests that analyses are converging on a group of
cases belonging to a genuine latent taxon. In contrast, clear divergence among
base-rate estimates across procedures and analyses suggests the absence of a latent
taxon, providing support for a latent dimension.

There are a number of additional ways to check the consistency of taxometric
results. For example, each taxometric procedure may be conducted multiple times
using all available indicators in a variety of configurations. Likewise, multiple sets
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of indicators can be analyzed, each constructed using a somewhat different ap-
proach (i.e., differentially stressing empirical vs. theoretical considerations). The
comparison of graphical results and base-rate estimates across analyses perf.o?med
with multiple sets and configurations of indicators provides many opportunities to
assess coherence among structural solutions. In a well-conducted taxometric in-
vestigation, each analysis adds to the rigor with which latent structure is tested.
Whereas any single result may be ambiguous or misleading, confidence in a struc-
tural solution is bolstered when evidence from multiple sources converges.

Relative to the alternative approaches described earlier, these features of the
taxometric method make it arguably the most appropriate statistical technique for
validly inferring the presence or absence of a taxonic boundary. In the following,
we review the requirements for performing taxometric analyses and discuss ways
in which the challenges posed in meeting these requirements reflect some impor-
tant limitations of the method.

SUITABILITY OF DATA FOR TAXOMETRIC ANALYSIS

As with any statistical tool, taxometric analysis must be performed with suitable
data to yield interpretable and meaningful results. Meehl (1995a) emphasized the
need for large samples (e.g., at least 300 cases) containing valid indicators (e.g., at
least a 1.25 SD separation between putative groups) for a taxometric analysis to be
informative. Based on the findings of Monte Carlo studies as well as our own expe-
rience in conducting and reviewing taxometric research, we offer several add‘itionr'ﬂ
suggestions for determining whether data are suitable for taxometric ana1y51s.. Itis
not our intention to establish specific or inflexible criteria for suitability but to iden-
tify relevant factors that should be explicitly considered and reported in a
taxometric investigation. We advocate an approach to testing data suitability that
focuses on the unique characteristics of a given data set rather than relying soleliy on
general rules of thumb derived from Monte Carlo studies or conventional practices.
In this section, we discuss issues of sampling and indicator selection and describe a
data simulation technique that can be used to empirically evaluate the suitability of

a given data set for taxometric analysis.
Sampling

There are two significant issues to consider when assessing the appropriateness of a
sample for taxometric analysis. First, the sample must contain enough members of
the putative taxon to allow the taxon to be detected. Second, because samples se-
lected according to specific criteria can yield pseudo-taxa (i.e., false taxareflecting
methodological artifacts rather than true latent structure), it is preferable to perform
taxometric analyses on unselected samples. We discuss each of these issues in turn.
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Monte Carlo research suggests that a taxon base rate of at least .10 is needed for
the successful detection of a small group (e.g., Meehl & Yonce, 1994, 1996). How-
ever, there are several reasons to treat this generalization with caution. First, it is pos-
sible that taxa with base rates less than .10 can be detected, especially in very large
samples; studies have not yet systematically tested the sensitivity and specificity of
taxometric procedures with smaller taxon base rates (Beauchaine & Beauchaine,
2002, provided the only exception, although they evaluated only sensitivity—and
not specificity—for just one taxometric procedure, MAXimum CQVariance
[MAXCOV;Meehl & Yonce, 1996]). Second, other characteristics of the data (e.g.,
indicator validity, nuisance covariance within taxa, indicator skew) may make it
more or less difficult for taxometric procedures to detect small taxa, making a single,
absolute minimum less appropriate than a standard that takes other data parameters
into consideration. Third, it may be true that the absolute number of taxon members
is asimportant as the base rate of taxon membership. J. Ruscio and Ruscio (in press)
demonstrated that once a sufficient number of taxon members was present in a sam-
ple, the addition of large numbers of complement members did not obscure this
taxon, even when its base rate dropped well below . 10. This argues against removing
putative complement members from a data set to increase the taxon base rate, as this
practice may provide only an illusory gain.

Another important sampling consideration is to avoid selecting or constructing
a sample in a manner that may yield spuriously taxonic results. Ideally, an unse-
lected sample from the target population of interest should be used. If the putative
taxon represents an exceedingly rare class of individuals (e.g., when studying a
rare disorder or talent in a community sample), a very large sample may be needed.
Although it may be tempting to reduce the number of participants by constructing
a sample consisting of more balanced numbers of suspected taxon and comple-
ment members, this approach can lead to subsequent interpretive problems. For
example, pooling data from 250 disordered individuals and 250 normal individu--
als, as in case-control designs, can be problematic because individuals who meet
some—but not all—diagnostic criteria will be largely absent from this sample.
Thus, taxonic results may reflect the artificial nature of the sample (the fact that
moderate or borderline cases have been excluded) rather than the true latent struc-
ture of the disorder. Grove (1991) discussed more complex problems of “institu-
tional pseudo-taxa” that can result from nonrandom selection along one or more
variables relevant to the construct under investigation.

Multiple, Quasi-Continuous Indicators

All of the procedures in the taxometric method were developed for use with contin-
uous variables, and most procedures require the use of at least one indicator with
enough variation to allow cases to be reliably sorted or divided into many
subsamples. Although there is some evidence that at least one taxometric procedure
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(MAXCOV) can be modified to accommodate dichotomous indicators (J. Ruscio,
2000), dichotomous data result in diminished power and altered curve shapes that
make interpretation more difficult. The performance of other taxometric proce-~
dures with dichotomous indicators or even with indicators that have a small number
of values, has not been systematically studied. Thus, caution is warranted when in-
terpreting the results of any taxometric analysis performed with indif:ators that are
not distributed along enough values to reasonably approximate a continuous scale.‘

Fortunately, there are ways to avoid the problem of insufficient indicator vari-
ability. If candidate variables have too few values to permit their independent use,
itis often possible to form suitable composites by aggregating variables that repre-
sent a similar facet of the construct under study. This approach has the potential
added benefit of increasing the reliability and validity of the composite indicator
relative to its constituent variables. When forming composite indicators, however,
care must be taken to minimize nuisance covariance (correlations within either pu-
tative group). One way to do so is to ensure that correlations between vgriables
within a composite are much lower than correlations between variables in different
composites. For example, all variables that validly measure one symptom clus.ter
of a mental disorder can be combined to form a composite indicator representing
that cluster. We recommend against randomly or haphazardly constructing com-
posites from a pool of variables, as this greatly increases the likelihood of unac-
ceptably high nuisance covariance (J. Ruscio, Ruscio, & Meron, 2004). ‘

Because taxometric procedures work by exploring the relationships among 1n-
dicators, multiple variables are required to conduct taxometric analyses. As an ab-
solute minimum, two indicators are necessary, although it is far preferable to have
at least three or four. However, whereas a large number of indicators is desirable, a
point is reached where additional indicators may be highly redundant with those
already selected and hence increase nuisance covariance. Likewise, there are o.nly
so many variables available in a given data set, and as more and more composites
are formed, each will include fewer items and vary along a smaller range of values.
Therefore, it is important to recognize these competing goals in indicator selection
and to strike a reasonable balance between them.

Indicators Adequately and Uniquely Represent
the Construct of Interest

The indicator selection process may be the most critical step in ensuring that a
taxometric investigation will yield meaningful results. As noted earlier, th.e
taxometric method is designed to test competing structural hypotheses for a speci-
fied target construct, not to search for potential latent taxa in an ath.eoretlc:.al, Purely
exploratory manner. This construct is represented by one’s choice c:>f 1nd1c.:a'tors
(Meehl, 1986). In discussing the importance of proper indicator selection, Widiger
(2001) stressed that the interpretation of taxometric results will depend on the ex-

INTRODUCTION TO TAXOMETRICS 165

tent to which indicators comprehensively assess relevant features of the putative
taxon, noting that poor choice of indicators can produce misleading results. For ex-
ample, a taxometric analysis of a mental disorder should incorporate indicators rep-
resenting all relevant features of the disorder; the absence of one or more symptom
domains would mean that the structure of some other, related construct was being
tested. By the same token, analyses may be seriously confounded if a significant
number of indicators inadvertently triangulated on another construct.

Thus, to effectively test the latent structure of the target construct, one mist
grapple with the breadth and specificity of a set of indicators in much the same
manner as a researcher who engages in scale development. The content coverage
of a scale is an important indicator of the validity with which it assesses the desired
construct. If important aspects of a construct are not tapped by the items of the
scale or if a significant proportion of the items tap a different or related construct,
the construct validity of measurements yielded by the scale will be called into
question. In the same way, the interpretation of taxometric results depends on the
use of indicators that adequately and uniquely represent the target construct.

Valid and Nonredundant Indicators

Taxometric procedures yield informative results only when they are performed
with indicators that are capable of distinguishing the putative taxon and comple-
ment. This requires indicators to be sufficiently valid and to possess negligible nui-
sance covariance. (In the taxometric literature, the term validity refers to the separa-
tion between groups or the efficiency of classification.) When indicators with
questionable validity or nuisance covariance are analyzed, they may produce unin-
terpretable (or worse, misleading) results. Thus, special care should be taken to en-
sure that the available indicators are empirically suitable before proceeding with
any taxometric analyses.

There are several things that investigators can do to enhance the validity and
minimize the nuisance covariance of their indicators. Relevant theory as well as
previous research may suggest variables that are most valid for the construct at
hand. Likewise, examination of the content of items, scales, and other measures
may suggest which potential indicators are likely to covary within putative taxa.
Indicators may be selected by first choosing the variables that are hypothesized to
be the most valid then combining or discarding those variables that appear to be re-
dundant and are likely to be associated within groups.

This reasoned evaluation of the available data may be supplemented by analy-
ses to estimate the likely validity and nuisance covariance of the indicators. It is of-
ten useful to begin by examining the corrected item-total correlations of all
candidate variables. If these variables are indicative of the target construct, their
total score should itself be a highly valid measure of that construct. Thus, those
variables that are most highly correlated with the total score are likely to be among
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the most valid indicators of the construct. Rather than simply choosing the var%—
ables with the highest corrected item-total correlations (which may inﬂgte nui-
sance covariance if some of the most valid variables are redundant with one
another), variables can be selected with an eye toward minimizing overlap 'in their
content. For example, if the construct of interest is a mental disorder, one might se-
lect the most valid indicator from each of its major symptom clusters rather than
selecting multiple variables from just one symptom cluster because these happen
to be the most valid items overall. Alternatively, multiple valid variables measur-
ing each symptom cluster can be combined to form composite indicators.

In addition to careful consideration of content overlap, nuisance covariance can .

also be empirically estimated by calculating interindicator (':orr.elat.ions within
subsamples of cases in the outer regions of the total score dlstnbutpn (M.eehl,
1995b). For example, the upper and lower quartiles are likely to c.:ontam relatively
pure subsamples of taxon and complement members, respectively (Golc.ien &
Meehl, 1979), although smaller subsamples could be used if either group is sus-
pected to be particularly small. If indicators are correlated only weakly (e.g., 1e§s
than .30) within these high- and low-scoring subsamples, this suggests that nui-
sance covariance is likely to be tolerably low (Meehl, 1995a). .
Given an estimate of the taxon base rate P (which can be drawn from previous
research, indicator frequency distributions, a fallible external criterion, an edu-
cated guess, or a combination of these approaches), the average manifest cgrrela-
tion between indicators in the total sample (r), and the average degree o'f nuisance
covariance (within-group correlation ry), validity (d, in standardized units) can be
estimated using a simple variant of the GCMT presented in Meehl and Yonce

(1996, p. 1146):
=, f’—"— 3)
d PO1~-r) ’

where ( is the putative complement base rate (1 - P). This formula presumes equal
indicator variances and covariances within and between groups, but even such a
rough estimate of indicator validity can be valuable for determining whether to pro-
ceed with a taxometric analysis—and later for interpreting the results. For examl?le,
if investigators fail to establish that their indicators are actual!y caI‘)able.of detecting
putative taxa, they may be unable to draw confident conclusions if their results ap-

pear dimensional.
Simulating Comparison Data

One approach that may prove particularly helpful in evaluating the suitability of
data for taxometric analysis is to simulate taxonic and dimensional comparison
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data sets and subject them to the taxometric analyses planned for the research data.
These data sets can be simulated to very closely match the distributional and
correlational properties of the research data while having different, known latent
structures. By subjecting simulated data sets to parallel series of taxometric analy-
ses, one can determine whether the planned analyses will be capable of distinguish-
ing taxonic from dimensional latent structure given the unique characteristics of the
research data (J. Ruscio et al., 2004). Thus, the suitability of the data and the analy-
sis plan are evaluated simultaneously. If discernibly different results are obtained in
analyses of the simulated taxonic versus dimensional data sets, this suggests that a
taxometric analysis of the research data will afford a genuine test of latent structure.
If results for simulated taxonic and dimensional data sets cannot be distinguished,
then either the data or the analysis plan should be revised and retested until results
can be distinguished. Used this way, simulated comparison data may afford the
most powerful test of the empirical suitability of data for analysis. This technique is
illustrated in all of the taxometric analyses we perform later in this article.

PROCEDURES IN THE TAXOMETRIC METHOD

When taxometric analysis is conducted with a sufficiently large sample of data con-
taining multiple, quasi-continuous indicators that adequately and uniquely represent
the target construct, distinguish the putative taxon and complement with sufficient
validity, and evidence negligible nuisance covariance, the analysis should yield con-
sistent results that clearly point toward either a taxonic or a dimensional structural so-
lution. We now introduce the major taxometric procedures that can be used to per-
form these analyses and provide guidelines for their successful implementation. We
begin by explaining the unique logic of each procedure then illustrate and describe
the results of each procedure using a taxonic data set containing four indicators. This
data set was simulated so that its actual latent structure would be known.

Rather than using a generic label such as “sample data” to describe our data set,
we sought to enhance the clarity of our illustrations by patterning the data after a
psychological construct that has been studied extensively using the taxometric
method. Schizotypy has been theorized to represent a genetic liability for schizo-
phrenia (Meehl, 1962, 1990), and taxometric studies have supported the existence
of a latent schizotypy taxon (Golden & Meehl, 1979; Korfine & Lenzenweger,
1995; Lenzenweger, 1999; Lenzenweger & Korfine, 1992). Our taxonic data set
consisted of four indicators of schizotypy named in accordance with Meehl’s
(1990) theory: cognitive slippage, social aversiveness, anhedonia, and ambiva-
lence. The simulated schizotypy data set contained 600 cases. To illustrate what
taxometric results look like with groups of unequal size, the base rate of
schizotypy was set at .25 in our sample. The taxon (schizotype) and complement
(nonschizotype) groups were separated by 2 SDs; the indicators were therefore
highly valid, although not unrealistically so (see, e.g., A. M. Ruscio, Ruscio, &
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Keane, 2002; J. Ruscio & Ruscio, 2000). In addition, a number of “messy” charac-
teristics typical of research data were incorporated into this data set: Indi.c‘ators
were correlated within the taxon and the complement, moderately positively
skewed, and distributed along 10-point scales. Thus, these data possessed some at-
tributes favorable for taxometric analysis (e.g., a sufficiently large taxon that was
validly separated from the complement) as well as some attributes inhospitab}e t‘o
taxometrics (e.g., moderate nuisance covariance and discontinuous, skewed indi-
cators). Table 1 displays the interindicator correlation matrix in the full samplg, th'e
taxon, and the complement. Figure 1 displays the distribution of scores onan indi-
cator in the full sample, the taxon, and the complement (the distributions of the
other three indicators were highly similar, differing only due to sampling error).

TABLE 1
Correlations Among the Four Indicators in the Schizotypy Data Set
Full Sample* Taxon® Complement®
1 2 3 1 2 3 1 2 3
2 .60 2 28 2 19
3 .59 61 3 26 22 3 .14 23
4 .61 57 .62 4 32 .14 35 4 .19 21 21

Note. Correlations for taxonic and dimensjonal comparison data were compared to the 'target val.ues
in the schizotypy data to ensure that relationships among indicators were reproduc.ed with sufficient
precision. Within each sample or subsample, the largest absolute residual correlation was recorded:
dimensional comparison data, full sample = .01; taxonic comparison data, full sample = .01; taxon=.02;
complement = .04.
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Schizotypy Indicator 1--Cognitive Slippage

FIGURE1 Frequency distribution for cognitive slippage, the first indicator in the schizotypy
data. Note that there is no hint of bimodality in the full sample.
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In what follows, we explain the rationale underlying each taxometric procedure,
note the key decisions that must be made to implement this procedure, and demon-
strate how itis performed through analysis of the schizotypy data set as well as paral-
lel analyses of taxonic and dimensional comparison data sets simulated to match the
distributional and correlational properties of the schizotypy data. Readers interested
in more technical discussions of these procedures are directed to the references pro-
vided for each. All analyses were performed using our suite of taxometric programs
written in the R language (also available in an S+ version); the program code and a
detailed documentation file can be downloaded, see J. Ruscio (2003).

Mean Above Minus Below A Cut (MAMBAC):
Searching for an Optimal Cutting Score

The MAMBAC (Meehl & Yonce, 1994) procedure takes advantage of the fact that if
two groups exist, there must be an optimal cutting score for distinguishing between
them. That is, if an indicator validly separates two latent taxa as depicted in the
GCMT, there must be a particular score on this indicator that will minimize the num-
ber of false positive and false negative classifications of cases into these groups. In
the absence of latent taxa, such an optimal cutting score does not exist. MAMBAC
requires two validindicators, one of whichis treated as the input and placed along the
x-axis of a graph. Cases are sorted according to their scores on this input indicator.
Then, the mean score on the other (output) indicator for all cases falling below the in-
put cut is subtracted from the mean score of all cases falling above the input cut. This
subtractionis repeated for anumber of cutting scores along the x-axis, and each mean
difference is plotted as the corresponding y value. Thus, MAMBAC involves plot-
ting mean differences on the output indicator above, minus below, cutting scores on
the input indicator. The shape of the resulting curve allows one to make an inference
about latent structure: Taxonic constructs yield peaked curves, whereas dimen-
sional constructs yield concave curves that tend to bow upward at one or both ends.

In addition to inspecting the shapes of these MAMBAC curves, one can calcu-
late an estimate of the taxon base rate from each curve (see Meehl & Yonce, 1994).
For taxonic data, the location of a peak suggests the relative size of the two groups.
Equal-sized groups produce a peak toward the center of the curve because the opti-
mal cutting score lies near the middle of the input indicator range. For a small
taxon, the optimal cutting score is higher, and thus, the peak is deflected toward the
right. Similarly, for a large taxon, the optimal cutting score is lower, and the peak is
deflected toward the left.

Implementation decisions. Three decisions must be made to implement the
MAMBAC procedure, each of which can have a significant influence on results. The
first decision concerns how to assign variables to the roles of input and output indica-
tors. One can use variables in all possible input—output pairs generating k(k — 1)
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MAMBAC curves for kindicators. Alternatively, one can remove a single variable at
a time to serve as the output indicator and combine all remaining variables (e.g.,
through summing) to form a composite input indicator, yielding k curves. Finally,
one can combine a subset of the available variables to form the output and combine
the remaining subset to form the input, yielding an intermediate number of curves.
An important benefit of combining variables, particularly in the role of input, is that
the resulting indicator contains a larger range of values that provides a more reliable
rank ordering of cases (and hence a more stable MAMBAC curve). Combining vari-
ables to form composite input or output indicators also allows all data to be included
in each analysis, which increases the statistical power of the analysis.

Having determined how to assign variables to input—output indicator roles, one
must decide where to place cuts along the input indicator. Here, too, there are
many options. Cuts may be made between each successive case, yielding the maxi-
mal number of points on the curve for interpretation. However, a smaller number
of points often suffices for interpretational clarity and may dramatically reduce the
computational demands of the analysis. Methods of selecting a more limited num-
ber of cut points include cutting at intact scale values, at fixed standard deviation
intervals, or at every nth case along the input. The latter method may be the sim-
plest in that one need only determine the desired number of points to appear on the
MAMBAC curve and place evenly spaced cuts to achieve this outcome.

If one or more cuts happens to fall between equal-scoring cases on the input, it can
be useful to perform internal replications by reshuffling the equal-scoring cases, re-
calculating MAMBAC values, and plotting the average values across all replica-
tions to produce a curve for a given input—output configuration. With increasing
numbers of replications, the obfuscating effect of cutting between equal-scoring
cases will be reduced. Also, regardless of the method that is used to locate cutting
scores, it is important to place the first and last cuts far from the ends of the input
range to stabilize the endpoints of the curve. For example, many researchers have
used a minimal n of 25 cases beyond which no further cuts are made.

The third and final decision concerns how the MAMBAC results should be
plotted. The interpretation of MAMBAC curves is usually facilitated by using the
narrowest range of y values that includes all MAMBAC values. This will draw out
the shape of the curve, be it peaked or concave, most clearly. Although a smooth-
ing procedure is seldom necessary to help discern the shape of a MAMBAC curve,
particularly when a large number of points have been plotted, smoothing may im-
prove the accuracy of base-rate estimation. This is because the taxon base rate is

estimated from only the two endpoints of the MAMBAC curve, and these are the

points that are most influenced by sampling error.

Empirical illustration. 'We now turn to a demonstration of MAMBAC using
the schizotypy data set. First, MAMBAC was conducted in the traditional manner
by using the four indicators in all possible input—output pairs to generate a total of
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12 curves (see Figure 2, left column; to conserve space, only the averaged curves
are presented). Second, to boost statistical power, we reran MAMBAC with the in-
put constructed via the summed input indicator method, yielding a total of four
curves (see Figure 2, right column).

To provide a more detailed account of how MAMBAC is performed, we focus
for the moment on the summed indicator analyses. We generated these four
MAMBAC curves by using each indicator once in the output role, with input
scores for each curve obtained by summing the three remaining variables. To cre-
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FIGU.HE 2 Mean above minus below a cut (MAMBAC) plots for the schizotypy data plus the
taxonic and dimensional comparison data. Averaged curves in the left-hand column were gener-
ated using the four indicators in all possible input-output configurations (n = 12 curves)
whereas those in the right-hand column were generated using one indicator as the output and thé
sum of the remaining three indicators as the input (n = 4 curves). Cuts were made at 50 equally
spaced points between cases sorted along the input beginning 25 cases from each end. To help
stabilize curves, five internal replications were performed and averaged for each anal.ysis.
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ate each MAMBAC curve, we sorted all cases according to their .scores on the in-

put (from lowest to highest); this input indicator formed the x-axis for eaclll graph

and was labeled according to case numbers (there were 600 cases in the schizotypy

data set). Then we located our first cutting score 25 cases from tl_le lpwest value on

this summed input indicator. We subtracted the average output .1nd.10f1tor score .for
all individuals falling below the cut from the average for all .1nd1v1dual.s falling

above the cut. Because this low cutting score did not distinguish the schizotypes

from the nonschizotypes (most schizotypes fall above the cut, but so d9 many
nonschizotypes), the mean difference was relativel)./ low. We plotted this value
along the y-axis, then moved the cutting score to the right, c‘alculated another mean
difference, and plotted it. This process was repeated until the last of 50 evenly
spaced cuts (which yielded easily interpretable curve .shapes) was n'lade 25 cases
from the highest value on the input indicator, comple‘tm‘g the analysis. As the c:ilt-
ting score approached the optimal value for differentiating the taxon and comple-
ment—a value relatively high on the input because there were considerably ‘fevs.'er
schizotypes than nonschizotypes in this data set—the mean difference steadily in-
creased. Our taxonic schizotypy data yielded MAMBAC 01.1rve.s that peaked at t.he
rightmost end of the graph. Notably, the MAMBAC analysis using the summed in-
put method (upper right panel of Figure 2) yielded a more clearly defined .taxomc
peak than the traditional MAMBAC analysis (upper left pam’al), suggestmg that
this indicator combination approach may improve MAMBAC’s statistical power.

TABLE 2
Estimates of the Taxon Base Rate for Each Taxometric Procedure in Each Data Set
Taxpmoc Dimensional
Schizotypy Comparison Comparison
Data® Data® Data
No. of
Taxometric Procedure Estimates M SD M SD M SD
. .03
MAMBAC, traditional 12 32 .02 32 gg ig o
MAMBAC, summed input 4 32 .01 32 . .16 .04
MAXCOV 12 A3 02 Al 02 . . :
MAXEIG 4 19 01 21 .02 22 0
L-Mode 3b 31 .05 .28 .04 .63 34
M and SD* of these
procedures’ Ms .25 .09 25 .09 .38 19
ance; MAXEIG

Note. MAMBAC =mean above minus below a cut; MAXCOV = maximum covarl
= maximum eigenvalue; L-Mode = latent mode. . . .
“The actual taxon base rate in the simulated schizotypy and taxonic comparison data was .25.

bEstimates were calculated from the location of both modes and from the empirical classification of

cases. “The consistency of taxon base-rate estimates across procedures may be inflated due to the

inclusion of redundant analyses in the table: The variants of MAMBAFZ do not provide two independent
estimates, nor do MAXCOV and MAXEIG provide independent estimates.
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Although the estimates of the taxon base rate derived from these curves were
slightly overestimated (Ms = .32 for both MAMBAC series; true base rate = .25),
they were highly consistent across curves (see Table 2).

The second row of Figure 2 shows the MAMBAC curves for the taxonic com-
parison data. Just as in the schizotypy data set, these data yielded peaked curves,
again more clearly when using the summed input indicator method. The third row
of Figure 2 shows the MAMBAC results for the dimensional comparison data. Be-
cause there were no groups to be distinguished in this data set, no optimal cutting
score existed. Hence, the dimensional latent structure produced concave curves
with no discernible peaks. The clear contrast between the graphical results yielded
by the taxonic and dimensional comparison data sets suggests that the schizotypy
data—whose parameters they closely matched—were suitable for these
MAMBAC analyses. The comparison data sets also provided a benchmark to aid
interpretation: The schizotypy results were clearly more consistent with the results
yielded by the taxonic than the dimensional comparison data.

Interpretive issues.  Although taxonic and dimensional data typically pro-
duce dramatically different MAMBAC curve shapes, a number of cautionary notes
are in order. First, as noted previously, taxonic data with a low base rate produce a
MAMBAC peak toward the far right end of the curve. However, because the concave
curves of dimensional data can also slope upward at one or both ends, it can some-
times be difficult to distinguish these curves from those yielded by a low base-rate
taxon. Second, highly skewed indicators can alter the shape of MAMBAC curves (A.
M. Ruscio & Ruscio, 2002; J. Ruscio, Ruscio, & Keane, 2003). Whether a construct
is taxonic or diménsional in nature, positively skewed indicators of that construct
produce curves that slope upward, whereas negatively skewed indicators produce
curves that slope downward. This can be seen throughout Figure 2; all of the curves
generally sloped upward, whether they were peaked or not. Although taxonic and di-
mensional data still produce different curve shapes under these conditions, the “tilt-
ing” effect of skew can complicate interpretation, particularly when a peak is sus-
pected near either end of the curve. It is noteworthy that even with a taxon baserate as
large as .25, the positive skew of the present indicators nearly obscured the taxonic
peak; only the increased power of the summed input indicator method enabled the
peak to emerge. Third, the taxon base-rate estimates were consistent (i.e., yielded
small standard deviations) across the MAMBAC curves for all three data sets, even
the dimensional comparison data (see Table 2). Indeed, converging MAMBAC
base-rate estimates may be only weakly supportive of taxonic latent structure; highly
discrepant estimates, however, would provide comparatively strong evidence against
taxonic structure. Fourth, the taxon base rate was overestimated slightly in the
schizotypy data as well as the taxonic comparison data. The tendency of MAMBAC
to overestimate base rates was documented by Meehl and Yonce (1994) and can be
exacerbated by nuisance covariance. Because the base rate is estimated using only
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the endpoints of the MAMBAC curve, anything that tends Fo increase both of thelse
values (e.g., nuisance covariance) will bias the base—ra?e estimate toward .50, result-
ing in a potentially substantial overestimation of the size qf sma11. taxa.

Fortunately, there are several ways to deal with these difficulties. First, whereas
an individual MAMBAC curve may appear ambiguous, the panel of curves ‘repre—
senting a series of MAMBAC analyses often exhibits aclearer pattern. Taxonic data
consistently produce peaks in similar positions across MAMBAC curves, whereas
dimensional data do not (see Meehl & Yonce, 1994). Second, interpretation may l;e
greatly facilitated by the use of appropriate comparison 'curves (J. Ruscio ;t ﬁl.,
2004). Although the MAMBAC curves yielded by the schlzotyPy data were hig y
consistent with one another, it was less clear whether they ev1f1enced a ngl}t-end
peak (suggesting latent taxa) or were merely concave (sugggstmg a latent d1melr)1—
sion). Parallel analyses of comparison data revealed th.e schlz‘otypy curves to be
more consistent with a taxonic than a dimensional solution. Th1fd, Fhe use of addi-
tional taxometric procedures often helps to resolve apparent ambiguity in the resu;tls1
of any one procedure. Because factors such as indicator sk‘ew do not mﬂuence1
taxometric analyses in the same way, cross-procedurc? cons1stenc¥ ch'eckS canc :;rC—
ify the process of interpretation. Likewise, the potential upward b1a§ in MAMB -
estimates of the taxon base rate is not present in other procedures, which may instea

tend to underestimate the base rate.

MAXCOV and MAXimum ElGenvalue (MA?(EIG):
Examining the Structural Sources of Covariance

These two highly related taxometric procedures examine ir'lter.indicator associa-
tions within ordered subsamples of cases to test whether the 1nd‘1cators covary dl{e
to a mixture of latent taxa or due to the indicators’ shared loadmgs‘ on a latent di-
mension. Taxonic latent structure produces differing associations across
subsamples in a manner consistent with the GCMT. Recall that the GCMT shows
that the observed covariance between two indicators can be represented as the sum
of two terms denoting the within-group covariances (the first two terms) ar}d a-thlrd
term denoting the product of the taxon and complement pase rates and the 1nd1cfator
validities. Within any subsample that contains a relatlvelyf pure group of elt‘her
taxon or complement members, there should be little.as.somatlo‘n between'mdlca—
tors. This is because negligible nuisance covariance lethm put'atlve groups is afptr;,—
requisite to conducting a taxometric analysis (keeping the first two terms _c;l e
GCMT low) and because either the taxon or the complfament base rate will ap-
proach zero in a homogeneous subsample (keeping the third term low) ..In cogtrast,
associations among indicators should be highin sul?samples that contain a nuxlt)ure
of groups because taxon members tend to score hlgh and complement mem ers
tend to score low on the indicators. In this case, the third term of the GCMT remains
high because the product of the taxon and complement base rates does not approach
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zero. The strength of the association should reach a maximum in the subsample
containing an equal mixture of taxon and complement members (i.e., when P=Q =
.5, which yields the maximal value of PQ). Thus, any measure of the association be-
tween indicators should vary in this predictable way across ordered subsamples of
cases when latent taxa exist.

By contrast, dimensional latent structure should produce a degree of associa-
tion between indicators that remains fairly constant across ordered subsamples.
This is because in the absence of latent taxa, there is no reason for the strength of
this association to systematically vary. For example, a scatterplot depicting the re-
lationship between two indicators of a latent dimension takes the form of an
oval-shaped cloud of points. Slicing this scatterplot with a series of vertical lines
would produce subsamples of cases across which newly calculated correlations
would roughly equal one another. Thus, when the latent structure is dimensional,
any measure of the association between indicators should remain fairly constant
across ordered subsamples.

The MAXCOV (Meehl & Yonce, 1996) procedure involves the simultaneous
use of three valid indicators. One is treated as the input indicator and is placed on
the x-axis, and the remaining two are treated as output indicators for the calcula-
tion of covariances. Cases are sorted by their scores on the input, which is then di-
vided to form a series of subsamples. Within each subsample, the covariance
between the output indicators is calculated and plotted as the corresponding y
value. The shape of the resulting curve provides information about latent structure:
Taxonic constructs yield peaked curves, whereas dimensional constructs yield
nonpeaked (but not necessarily flat) curves.

The location of the point of maximum covariance along a MAXCOV curve hints
atthe size of the taxon base rate in much the same way as does the location of a peak in
aMAMBAC curve. A peak toward the center of the MAXCOV curve indicates that
the two latent groups are of equal size. For a small taxon, the peak will be deflected
toward the right, whereas for a large taxon, it will be deflected toward the left (for de-
tails on base-rate estimation in MAXCOYV, see Meehl & Yonce, 1996).

MAXEIG (Waller & Meehl, 1998) is a powerful multivariate extension of
MAXCOV that works on the same fundamental principles. As in MAXCOV, one
variable is selected to be the input indicator; however, all the rest are used as output
indicators. Whereas MAXCOV is concerned with the covariance between two
output indicators, MAXEIG is instead concerned with eigenvalues, the
multivariate analog of covariances. MAXEIG measures the association between
indicators as the first eigenvalue of the indicator covariance matrix (with variances
along the diagonal replaced by zeros to leave only covariances). How is this

eigenvalue comparable to a covariance? If the indicators are strongly related to one
another, they will tend to load highly on the first principal factor, resulting in a
high eigenvalue. If the variables are relatively unrelated to one another, they will
not load highly on this factor, leading to a low eigenvalue.



176  RUSCIO AND RUSCIO

Other than the substitution of eigenvalues for coval.iances, MAXEIG proceefds
much like MAXCOV. Subsamples are formed according to the{r scores on an in-
put indicator, and the association between the full set of outqu indicators is com-
puted within each subsample. MAXEIG plots are interpreted in the same way ai
MAXCOV plots: Taxonic structure yields peaked curves, V\{hereas dlmen51t<))na
structure does not, and the location of a peak can be used to estimate the taxon base

rate and other latent parameters.

lementation decisions. There are three significant implementation de-
cisilchiJ :)rZonsider when performing MAXCOV or MAXEIG anglyses. The first
concerns how variables should be allocated to the required r'ole's of input and o:iltgut
indicators. There are a number of ways to do this, each similar to a {ne;ho' e]i
" scribed previously for MAMBAC. For example, one could use tl'le vanab' ets,lm at
possible input—output—output indicator triplets or remove a pair of varia ets c:
serve as outputs and combine the remainder to form the input. At least two 1oulpltl
indicators must be available for each curve. If there are only two, one can calcu ale
either covariances or eigenvalues; if there are more than two output indicators, only
i e calculated. .
elg’;?l‘éaigzzggnd:cision concerns how cases should be divi<.ied into sqbsamples
along the input indicator. This problem is similar to the location o.f cutting sc‘(:;;:s
ina MAMBAC analysis but with the additional concern that sampling error w; n
each subsample may obscure the shape of a MAXCOVMMEIG curve ;1:1 re-
duce the accuracy with which latent parameters are estimated. Thus, a zim§e
must be struck between the number of subsamples (more subsmples result in
better delineation of curve shape) and the amount of samplmg erro; (motrie
subsamples result in fewer cases per subsample .for covariance or eigenva tue gs (;
mation). Subsamples may be formed on the basis of intact scale values, s ';m ta:j
deviation units, or fixed numbers of cases. If fixed numb:crs c?f cases are se ecle s
subsamples can be constructed using either nonoverlapping {nFerva!s or over tz;p:
ping windows. For example, a sample of 600 cases may be d'1v1ded 1n.to six in fr
vals of n = 100 (Cases 1 to 100, 101 to 200, ... 501 to 600) or into 51 w1nd10(;¢vs2 cl) tn
= 100 that overlap 90% with adjacent windows (Cases 1 to 100, 11 to l. d, (o]
120, ... 501 to 600); one can also vary the degree of .over'lap between win A;)(“ésI.G
Traditionally, MAXCOV has been performed using 1nterva.lls, and M )
has been performed using windows. However, there is nthmg to prevgr;] re-
searchers from choosing between these approaches for_ e1thef MAXC; or
MAXEIG. Windows afford far more points on a curve with no increase in satllr:-
pling error within subsamples, providing a no—co-st- increase bu; ees
interpretability of curve shape. As in MAMBAC, if the dn’ndn'lg lines ; W <
subsamples fall between equal-scoring cases, internal replications can be pe trh
formed to further improve the interpretability of the curve and the accuracy wi
which latent parameters are estimated.
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One unique approach to dividing cases into subsamples is to repeat the analy-
sis for a given indicator configuration using increasing numbers of subsamples.
Waller and Meehl (1998) introduced this technique and dubbed it the “Inch-
worm Consistency Test.” This procedure is particularly helpful in dealing with
the challenge of distinguishing a small taxon from a latent dimension whose in-
dicators are positively skewed when it can be exceedingly difficult to determine
whether a right-end Cusp represents a taxonic peak or merely the increasing
curve associated with indicator skew (A. M. Ruscio & Ruscio, 2002; J. Ruscio,
Ruscio, & Keane, 2003). As the number of windows is increased in a MAXCOV
or MAXEIG analysis, taxonic structure should yield an increasingly
well-defined peak. This occurs for the following reason: Whereas the members
of a small taxon may be outnumbered by complement members in even the
highest scoring of large subsamples, an increase in the number of subsamples
leaves fewer cases in each, eventually allowing even a small taxon to outnumber
complement members in the uppermost subsamples. As taxon members come to
outnumber complement members in the highest scoring subsamples, the result-
ing downward slope of the curve will cause the taxonic peak to become more
clearly defined. MAXCOV or MAXEIG can therefore be especially informative
when they are performed with increasing numbers of subsamples and when
these results are compared across analyses to aid interpretation. At the same
time, it is important to note that sampling error resulting from too many (and
hence too small) subsamples will limit the size of a taxon that can be detected.
Internal replications can mitigate against this loss of sensitivity, but there none-
theless must be some lower limit to the size of a detectable taxon.

The third decision concerns how results should be plotted. Althou ghwe advocate
anarrow scaling of the y-axis for MAMBAC analyses to facilitate the distinction be-
tween concave and convex curves, this may be inappropriate for MAXCOV or
MAXEIG, asitcan exaggerate fluctuationsin covariances or ej genvalues due tonor-
mal sampling error and create the appearance of a peaked curve. On the other hand,
an overly broad range of y values may artificially flatten even a genuinely peaked
curve. Thus, care should be taken to select a reasonable y scale that does not distort
theresults. Todoso, researchers may need to override the default procedures of com-
puterized graphing programs, which often apply too narrow a range of y values.

A related presentational issue involves curve smoothing, which is controversial
because of its potentially marked impact on the graphs from which interpretations
are drawn. When a MAXCOV or MAXEIG analysis is carefully performed with
suitable data, using appropriate techniques to allocate variables to input—output -
roles and to divide cases into subsamples, interpretable curves can almost always
be obtained without smoothing. However, smoothed values may yield more accu-
Iate taxon base-rate estimates. If the choice is made 10 use a smoothing procedure,
care should be taken to use an appropriate method that evens out but does not dis-
tort the shape of the curve (e.g., Hartwig & Dearing, 1979; Tukey, 1977). In addi-
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tion, we suggest presenting both smoothed and unsmoothed curves so that readers

can evaluate both for themselves.

Empirical illustration.  To illustrate these procedures, Wwe performeil1
MAXCOV and MAXEIG analyses of the schizotypy data. MAXCOV was c.onduct'e
using the four indicators in all input—output—output triplets (n =.12 01'n'ves), w1t'h the(:l in-
put indicator divided into subsamples consisting of 10 eql.lal-smed mFervals (ie., dec-
iles). MAXEIG was conducted using one 'mdicator'at a tu'm as‘the. input ancil tl:ie re-
maining three indicators as outputs (n= 4 curves.), with the 1.nput indicator divided into
subsamples consisting of 50 windows overlapping 90% with one another.
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FIGURE 3 Maximum covariance (MAXCOV) and maximun? eigenvalue (MAXEIG) plots
for the schizotypy data plus the taxonic and dimensional comparison .data. MAXSOV wa)s ;olr:h
ducted using the four indicators in all possible input—output—-output' triplets l(n = 1 curv;ls ' o
the input subdivided into deciles. MAXEIG was conducted ﬁrst' using one mdlcatf)r.as ! e 1tnp50
and the remaining three indicators as outputs (n = 4 curves), w1fh the input s.ubQMde into

windows that averlapped 90%. To help stabilize curves, five internal replications were per-

formed and averaged for each analysis.
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Figure 3 shows the MAXCOV (left column) and MAXEIG (right column) re-
sults for the schizotypy data (top row), taxonic comparison data (middle row), and
dimensional comparison data (bottom row). Whereas all curves increased from
left to right due to positive indicator skew, results for the taxonic comparison data
were easily distinguished from the results for the dimensional comparison data. It
is noteworthy that the Inchworm Consistency Test was not needed in this case. Al-
though MAMBAC seemed strained to the limits of its resolving power by the pa-
rameters of these indicators (e.g., their positive skew), both MAXCOV and
MAXEIG easily differentiated taxonic from dimensional structure using the origi-
nal number of intervals or windows included in the analysis. Thus, the schizotypy
data were considered suitable for these analyses, and results of the schizotypy
analyses were judged to be taxonic.

The taxon base rate was underestimated for the schizotypy data set and estimates
were quite consistent within and between all three data sets (see Table 2). Thus,
whereas MAMBAC base-rate estimates exhibited an upward bias, MAXCOV and
MAXEIG’s base-rate estimates were biased downward in the presence of positive
skew, which deflects taxonic peaks to the right. As these analyses illustrate, an aver-
age base-rate estimate computed across MAMBAC and MAXCOV/MAXEIG pro-
cedures may be more accurate than the estimate yielded by any individual procedure
not only because random errors of estimation will tend to cancel out, but because
slight biases in the procedures may also tend to cancel out. Finally, it is noteworthy
that taxon base-rate estimates were once again highly consistent within and between
all data sets, including the dimensional comparison data. As with MAMBAC, con- -
sistency among MAXCOV or MAXEIG base-rate estimates may provide only weak
support for a taxonic conclusion, whereas consistency with other procedures may
provide stronger evidence for taxonicity (see the standard deviations in the bottom

row of Table 2 for an index of cross-procedure coherence).

Choosing a procedure. Because MAXCOV and MAXEIG are premised
on a similar rationale, the evidence that they contribute to a taxometric investiga-
tion is largely redundant. Rather than choosing between MAXCOV and MAXEIG,
it may be more useful to regard these procedures as variants of one common proce-
dure that is most appropriately implemented by working through the decision
points outlined previously. That s, one must decide how to allocate variables to the
required input and output indicator roles, whether to calculate covariances or
eigenvalues, how to divide cases into subsamples along the input indicator, and
how to plot the results. Depending on the choices that one makes, the resulting tech-
nique might resemble a traditional MAXCOV analysis, a traditional MAXEIG
analysis, or a blend of the two. Refinements and extensions such as the summed in-
putindicator method and internal replications may further improve the ability of the
MAXCOV and MAXEIG procedures to distinguish taxonic from dimensional la-
tent structure.
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Latent Mode (L.-Mode): Exploring the Distribution
of Factor Scores

The final procedure that we discuss differs from those present.ed previously in ﬂ:jat .1t
is not based on the coherent cut kinetics approach to taxometrics. Instead3 L-Modeis
a taxometric procedure based on factor analysis that tes?s.latent structure in ; m'anlrller
more closely resembling finite mixture models. Tra‘dmo.nally, factor an lysis has
been used almost exclusively to explore the dimenswnghty of psyc‘hologl.cal. con-
structs, most often to resolve the number of latent dimensions underlying \"anatlop in
responses to a large number of items. In contrast, L-M(.)de. see‘ks to <.11ff.er.e(;1t:;tf,:
taxonic and dimensional latent structure by plotting the dlstnbu?lon of 1nd¥v1 uals

scores on a single latent factor calculated through factor analysis (cgnstrame;i to z:
one-factor solution). To the extent that indicators covary due to the mixture of. aten

taxa, factor scores will more validly separate a taxon and complement than will any
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individual indicator. With enough indicators of sufficient validity and negligible nui-
sance covariance, taxonic data will yield a bimodal distribution of factor scores,
whereas dimensional data will yield a unimodal distribution. Because L-Mode auto-
matically involves all available indicators in the calculation of one frequency distri-
bution, there are no significant decisions required to implement the procedure.

The multivariate power of L.-Mode can be seen by comparing the manifest dis-

tributions of the schizotypy indicators (the first of which is shown in grey in Figure
1) with the distribution of factor scores generated using L-Mode (Figure 4, top
graph). Whereas the schizotypy indicators were distributed unimodally, the
L-Mode plot for schizotypy clearly revealed the presence of two groups as did the
plot for the taxonic comparison data (middle graph). In contrast, the plot for the di-
mensional comparison data (bottom graph) was unimodal. The bimodality of
taxonic L-Mode graphs becomes more striking as the quantity and validity of indi-
cators increase (Waller & Meehl, 1998).

L-Mode also provides several methods for estimating the taxon base rate
(Waller & Meehl, 1998). First, one estimate can be derived from the location of
each estimated latent mode (one to the left of x = 0 and one to the right). If these
two estimates agree well with one another, they can be averaged to provide a single
value for subsequent use. Second, based on his or her profile of scores on all avail-
able indicators, each case in the sample can be classified as a likely taxon or com-
plement member. By calculating the proportion of cases classified into the taxon,
an additional base-rate estimate can be obtained. In this example, the taxon
base-rate estimates for the schizotypy and taxonic comparison data were accurate
and consistent, whereas those for the dimensional comparison data were markedly
inconsistent (see Table 2).

Because L-Mode distinguishes taxonic from dimensijonal latent structure in a
manner more akin to finite mixture models than to coherent cut kinetics proce-
dures, it may be susceptible to some limitations of the former. Nonetheless,
L-Mode does provide independent estimates of the taxon base rate that can be use-
fully compared to those obtained from other taxometric procedures. More research
is needed to explore the strengths and limitations of L-Mode.

A PRACTICAL EXAMPLE: CLASSIFYING CASES
INTO THREE GROUPS

In the preceding discussion, we described the use of taxometric procedures to dis- ;
tinguish taxonic from dimensional latent structure, but the method can do more
than this. To provide a brief illustration of the power of taxometric procedures tore-
solve more complex structures and accurately assign cases to multiple latent
classes, we created a data set based on a simple hierarchical structure: A taxon (n=
100) that contains two equal-sized subtypes (Type 1 and Type 2) is distinct from its
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complement class (n = 200). By drawing random norr.nal dc.evi.ates.from spemﬁid
population values, three indicators were created to vahc'l ly dlst{ngl..ush the taxon ()L
=20, 6= 5) and complement (u=10, 6= 13). Thl.'ee additional indicators wer;, 'cre—-
ated to validly distinguish the two subtypes within .the taxon (]:L= 10 for T)l/pe ; tL( =
20 for Type 2; 0= 5 for each) and take on intermediate values in the comp emen n
= 15, 6= 10). The sample size is relatively smal.l fc.)r taxometric analyses, tﬁam}f;:
larly the distinction between the two subtypes }mt?un the ta)_(qn. HO\Xezwz)r(3 e cci o
lenge that this poses is mitigated by the high indicator validity (d = 2.00) an
sence of nuisance covariance.
Because cluster analyses are often used to stud
gan by performing hierarchical, agglomerative ¢

y data structures like this, we be-
luster analyses in a traditional

GLASSIFICATION RESULTS FOR CLUSTER ANALYSES

AVERAGE LINKAGE METHOD, ONE-STAGE
3-Cluster Solution

éﬁ;ltlesrt:r sg:::::: 2 | Total | L Cluster 1 | Cluster 2 Clus1ter 3 '\'2%(8\
Comp. | 197 3 200 | [Comp. |__197 g 1 0
Type 1 50 0 50 | Type 1 50 0 %
Type 2 50 0 50 Type 2 50 0 - 50
Total | 297 3 300 Total | 297 2 M
N = 197 correct (65.7%) N = 197 cormect (65.7%)

4-Cluster Solution

Cluster 1 | Cluster 2 | Cluster 3 Ciuster 4 | Total
Comp. 197 2 1 0 20(?
Type 1 50 0 o] Q 5
Type 2 49 0 0 1 50
Total 296 2 1 1 300
N = 198 cormrect (66.0%)

WARD'S METHOD, ONE-STAGE
3-Cluster Solution

lution
[ éﬁli':f :r sgl:st:r 2 | Total Cluster 1 | Cluster 2 | Cluster 3 Tzo(;gl
[Comp.| 188 4 200 Comp. | 137 519 :7 0
[ Type 1 3 a7 50 Type 1 2 1 T 50
Type 2 8 42 50 Type2 5] 2 2 =
Total 207 33 300 Total 145 6 9
: N = 243 correct (81.0%) N = 186 correct (62.0%)
4-Cluster Solution
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Total
Comp. 73 59 64 4 2508
Type 1 1 1 1 47 x
Type 2 2 2 4 42 2
Total 76 62 69 93
N = 124 comrect (41.3%)

analyses using average linkage or ‘Ward’s method.

ification tables for cluster
G bold print e fications. Comp = complement class.

Numbers in bold print represent correct classi
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manner: We submitted all six indicators to analyses using squared Euclidean dis-
tances and either the average linkage method (Sokal & Michener, 1958) or Ward’s
(1963) method. Because stopping rules are poor guides to the appropriate number
of clusters, we evaluated the classification accuracy of two-, three-, and
four-cluster solutions. The results are shown in Figure 5.

‘Whereas the average linkage method repeatedly lumped nearly all cases into asingle
large cluster, the two-cluster solution using Ward’s method achieved areasonably accu-
rate distinction between the overarching taxon and complement classes. Because only
two clusters were formed, this solution could not make the additional distinction be-
tween the two subtypes within the taxon. Allowing Ward’s method to form additional
clusters did not help matters, as the accuracy of the three- and four-cluster solutions suf-
fered from the well-knownbias of this method toward equal-sized clusters: A large num-
ber of complement members was diverted into Type 1 or Type 2. Thus, none of the
cluster analyses adequately captured the true latent structure of the data. This is a dis-
couraging showing, as the indicators do in fact differ by a substantial amount across
fairly large groups within a simple structural arrangement.

The poor performance of these cluster analyses may be attributed in part to a
potentially unreasonable demand placed on them: simultaneously differentiating
multiple latent classes using indicators that are each relevant to one latent
boundary but not another. Whereas clustering algorithms are ordinarily set to
work using all available indicators in a single analysis, the taxometric method
requires a more careful selection of indicators that represent one putative bound-
ary per analysis. Thus, we performed taxometric analyses (MAMBAC,
MAXEIG, and L-Mode) in a two-stage process. First, each procedure was con-
ducted using the three indicators that distinguish the overarching taxon and com-
plement, As can be seen in Figure 6, all of these results were clearly taxonic.
The average estimate of the taxon base rate was used to assign the cases scoring
the highest on the sum of these three indicators to the taxon until a proportion of
cases equal to its estimated base rate was reached. Second, each procedure was
conducted within the subsample of cases that had been assigned to the taxon in
the first stage, this time using the three indicators that distinguish the subtypes of
the taxon. Once again, all results were clearly taxonic, and cases were assigned
to the two subtypes as described previously. Not only did each taxometric proce-
dure successfully capture the true latent structure of these data, but the average
taxon base-rate estimates perfectly reflected the actual group sizes (200, 50, 50),
and an impressive accuracy was achieved in classifying cases (95.3%). This ac-
curacy level was greater than that achieved by applying Bayes’ theorem using
the results of MAXEIG analyses (90.7%) but less than that achieved by using
Waller and Meeh!l’s (1998) profile similarity technique based on the results of
L-Mode analyses (96.7%).

Finally, whereas cluster analysis is ordinarily conducted using all available
indicators in a single analysis, we also performed it in two stages to enable com-
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CLASSIFICATION RESULTS FOR TAXOMETRIC ANALYSES

STAGE 1 ANALYSES
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CLASSIFICATION RESULTS

Group 1 | Group 2 | Group 3 Total

Comp. 186 2 3 200
Type 1 2 48 2 50
3 2 45 50

e 50 300
Yotal 200 50
N = 288 correct (85.3%)

FIGURE 6 Classification tables for taxometric analyses. Stage 1 analyses used three 1r;;hca-
tors to make the distinction between the complement (Comp) and the taxa, and Stage 2;:\ d)fs:s
used three new indicators to make an additional distinction among cases that wer.e cla.s.& ied into
the taxon in the Stage 1 analysis. Numbers in bold print represent correct classifications.

parisons with the two-stage taxometric approach. Analyses using the av:,lrlagc
linkage method and Ward’s method accurately revealed the structure of these
data, reasonably reflected the three groups’ sizes (20.5, 47, and '43 f(_)r averalgte
linkage; 208, 49, and 43 for Ward's method), and achieved classification resniri S
(94.3% correct for each method) that approached the accuracy of the taxometric
analyses (see the bottom of Figure 6). It is noteworthy that cluste¥ analyses ?‘I,:
capable of impressive performance when they are conducted 1111) succesiv ¢
stages using only the indicators relevant to one particular b'oundary ’etwecnh :

latent classes at each stage. We believe that the taxqme'mc method’s e.mpha:l's;
on testing one latent boundary at a time represents a significant stren.gth. in tha tx
prevents researchers from submitting a large, heterogeneous set of 1nd1c:ator2J 0
a single analysis and expecting the statistical procedure to successfully reveal a

complex structure and accurately classify cases.
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IMPLEMENTING TAXOMETRIC PROCEDURES

We have demonstrated the power of the taxometric method and outlined some of
the most important decisions that must be made to successfully implement each
taxometric procedure. In doing so, we aimed to offer a few pieces of general advice
without suggesting that any particular strategies are universally applicable or ac-
ceptable. There are in fact so many relevant decisions to make when conducting a
taxometric investigation that a “one-size-fits-all” approach would be inappropri-
ate. It would also be impractical, if not impossible, to conduct Monte Carlo studies
that systematically test every realistic configuration of data parameters and analytic
choices that researchers might encounter. Therefore, we urge researchers to simu-
late taxonic and dimensional comparison data and to subject these data to multiple
taxometric analyses, varying the choices that are made for each procedure and not-
ing what influence, if any, each choice has on the results. The goal is to determine
how best to configure each taxometric procedure so thatits results best discriminate
the taxonic from the dimensional comparison data. After the researcher has deter-

mined how best to set up each analysis to maximally differentiate the two latent
structures given the specific parameters of the available research data, these data
can be subjected to precisely that analysis to see which structural solution is best

supported. By intentionally separating the analysis of simulated comparison data

from the analysis of research data, one can circumvent the capitalization on chance

that occurs when many analyses are performed on a set of research data while

avoiding the temptation to select the results most favorable to the hypothesized la-

tent structure. For further details on the simulation and use of comparison data, see

J. Ruscio et al. (2004).

Consistency Tests

A cornerstone of the taxometric method is the evaluation of agreement of results
across as many procedures and consistency tests as possible. In addition to employ-
ing multiple taxometric procedures on the available data—an essential requirement
of any taxometric investigation—users of the method can evaluate consistency in
several other ways. These include the repeated application of each taxometric pro-
cedure with different indicator configurations as well as the comparison of
base-rate estimates (or other latent parameters) within and across procedures. We
discuss each of these approaches along with two consistency tests that may provide
less evidentiary support than is often presumed.

Repeated Application of Each Taxometric Procedure

As was mentioned earlier, most taxometric procedures can be performed multiple
times by using the available indicators in all possible combinations. The resulting
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panels of curves can be compared and interpreted as a whole as can the multiple
taxon base-rate estimates yielded by each set of analyses. Moreover, each proce-
dure can be performed on multiple sets of indicators derived from the research data.

Comparison of Base-Rate Estimates

Large numbers of base-rate estimates can be readily summarized and evaluated for
consistency. Table 2 displays the base-rate estimates yielded by all analyses of the
schizotypy and comparison data sets. Because some procedures tend to yield consis-
tentestimates regardless of latent structure (e.g., whenindicators are skewed), it may
be that the standard deviation of taxon base-rate estimates across procedures is a
more useful measure of consistency than the standard deviation of estimates within a
procedure. For the schizotypy data set, the agreement of base-rate estimates can be
most parsimoniously explained as denoting an actual latent taxon. Moreover, the av-
erage estimate of .25 matched the true taxon base rate. In analyses of the taxonic
comparison data, the estimates were likewise consistent across procedures and
highly similar to the base rate that had been simulated, whereas in analyses of the di-
mensional comparison data, the estimates were often consistent within procedures
but muchless so across procedures. The most parsimonious explanation for this dis-
crepancyisthatnoreal groups were detected by analyses of the dimensional data.

Additional estimates of the taxon base rate can be obtained through reanalysis of
one’sdatafollowing a targeted removal of cases (see J. Ruscio, 2000). This approach
is based on the logic that the removal of specific cases from the data set should result
inapredictable change inthe taxon base rate. For example, if taxometric analysisin a
full sample of data yields a taxon base rate estimate of .20, reanalysis after removing
the lower quartile of cases (which presumably contains virtually no members of the
putative taxon) would be expected to yield anew base rate estimate of .20/.75=.27 in
the reduced sample. A result that diverges markedly from this expected value would
argue against taxonic structure. Finally, one can also compare base-rate estimates
derived from taxometric analysis to independent, externally derived estimates. For
example, when evaluating the structure of a mental disorder, one might use its rate of
diagnosis in the sample (based on clinical interviews or other data) as a plausible
base-rate estimate to compare to those derived from taxometrics (e.g., A. M. Ruscio
et al., 2002; J. Ruscio & Ruscio, 2000).

Distribution of Bayesian Probabilities

Another frequently used consistency test involves examining the distribution of
Bayesian probabilities of taxon membership. To perform this test, one calculates
the probability of taxon membership for each case in the data set using Bayes’ theo-
rem, then inspects the distribution of these probabilities. The rationale is that if
cases pile up near probabilities of O or 1, with few cases scoring at intermediate val-

INTRODUCTION TO TAXOMETRICS 187

ues, this supports a taxonic interpretation (Waller & Meehl, 1998). Unfortunately, a
U—shz}ped distribution of Bayesian probabilities is readily obtained even with cii—
mensional latent structure. The reason for this is that Bayes’ theorem—as it is pre-
§ented and utilized in taxometric research—involves the assumption of conditional
1pdependence. This requires that variables be unrelated within groups, an assump-
tion that is violated with dimensional structure because there is only on,e group (the
full san}ple) within which the indicators covary. Because of these interindicator
correlations, individuals scoring above the threshold on one indicator will also tend
to score above the threshold on many or most other indicators (and vice versa for
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To illustrate the potentially low specificity of U-shaped distributions to taxonic
latent structure, results from the MAXCOYV analyses reported earlier were used to
generate the distribution of Bayesian probabilities of taxon membership for the
schizotypy data as well as the taxonic and dimensional comparison data (see Fig-
ure 7). All three distributions appeared U shaped, with many more cases’ probabil-
ities falling close to 0 than close to 1 because of the low taxon base rate in the
sample. Even the distribution for the dimensional comparison data might have led
to an inference of taxonic latent structure. Although there may be differences in the
extent to which these distributions can be characterized as U shaped or in the fre-
quency with which such distributions are obtained from taxonic versus dimen-
sional data, there is clearly the potential for ambiguity and misinterpretation when
using this consistency test. Until research clarifies the sensitivity and specificity of
this test, we suggest that researchers avoid it or interpret its results with caution.

GFI

One final consistency test is worthy of mention because its use appears to be on the
rise in taxometric investigations despite recent research calling its utility into ques-
tion. Waller and Meehl (1998) introduced a Goodness-of-Fit Index (GFI) that tests
the fit of output yielded by the MAXCOYV procedure to a taxonic structural model.
After conducting a small-scale Monte Carlo study, Waller and Meehl reported that
taxonic data usually yielded GFI values above .90, whereas dimensional data sel-
domdid so. Unfortunately, no information was provided regarding the parameters of
the data employed in the study (e.g., sample sizes, base rates, indicator validities).
Based on subsequent Monte Carlo research (Cleland, Rothschild, & Haslam, 2000;
Haslam & Cleland, 2002), two tentative conclusions can be reached. First, the GFI
poorly discriminated taxa from dimensions. Second, no particular cutoff was found
to be universally optimal for differentiating these two structures. For some paramet-
ric configurations, both taxonic and dimensional data tended to yield GFI values be-
low .90, whereas for other configurations, both types of data tended to yield values
above (sometimes well above) .90. Although several recent taxometric investiga-
tionshaverelied on this GFI as a source of structural evidence, Monte Carloresearch
suggests that it may be best to suspend the use of this index unless it is refined and

demonstrated to validly distinguish competing structures.

INFORMATIVE TAXOMETRIC INVESTIGATIONS

Many fields of study stand to profit from empirically evaluating the latent structure
of the constructs that they study. Knowledge of latent structure has the potential to
simplify communication, identify more accurate taxonomies, improve the reliabil-
ity and validity of assessment devices, and increase the statistical power of re-
search. In these and many other ways, latent structure poses an empirical question
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fundamental to both theory and application, and the taxometric method provides a
powerful tool to test it.

Our primary goal in this nontechnical introduction has been to promote a con-
ceptual understanding of the taxometric method and the analytic procedures that it
subsumes. A working knowledge of taxometrics is important not only for re-

_ Sf':archers who use the method but also those who wish to be informed readers, re-
viewers, and consumers of this research. In this spirit, we conclude with a checl’(list
of ﬁ.ve- general questions that we contend should be thoughtfully considered and
explicitly aaidressed when reporting or evaluating any taxometric investigation
These ques.tlon_s are designed to highlight the potential limitations of taxometn'cs'
when. certain conceptual and methodological requirements of the method and its
constituent procedures are not met.

Question 1: Is a Taxometric Analysis
Scientifically Justified?

Haslam and.Kim (2002) documented a recent surge in taxometric investigations
many of which are being published in top-ranked psychological journals. As witf;
any statistical tool that begins to enjoy increased attention, the taxometn'c; method
runs the risk of becoming a “flavor of the month” analytic approach that is applied
to any data set that appears suitable. Investigators must be careful to avoid the temp-
tation of conducting a taxometric study simply because it appears trendy or publisg—
able. As with any other type of research, it is incumbent on investigators to provide
a compelling scientific rationale for the appropriateness of the taxometric method
for their specific research questions.

Question 2: Are the Data Suitable for Taxometric Analysis?

Before engaging in taxometric analysis, it is the investigator’s responsibility to
demf)nstrate that his or her data meet certain basic requirements. Researchers run
the risk of reaching unfounded conclusions if they fail to establish prior to analysis
that their data are sufficiently valid for the planned taxometric analyses. For exam-
ple, a latent taxon may go undetected if there are too few total cases of data or too
few taxon members in the sample or if the available indicators do not adequately
define the construct of interest, are too few in number, vary across too narrow a
range (?f values, are insufficiently valid, or are overly redundant with one aniother

L.1kew1se, artificially constructed or highly selected samples as well as skewed in—'
dicators raise the likelihood of detecting spurious pseudo-taxa and reaching incor-
rect f:onclusions about latent structure. We have described many of the relevant
considerations for establishing the suitability of data for taxometric analysis, and
Wwe encourage researchers to pay careful attention to this important but often <;ver-
looked aspect of taxometric research. Without convincing readers that the data can
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provide a powerful test between competing latent structures, the results of
taxometric analyses may have little theoretical or practical value for the field.

Question 3: Has a Sufficient Variety
of Procedures Been Implemented Properly?

Because the taxometric method depends so heavily on consistency checks, any
taxometric investigation must include multiple procedures to build confidence in
the obtained structural solution. Although the nature of the available data may con-
strain the analytic options available to researchers, a variety of procedures and con-
sistency tests should always be selected with an eye toward obtaining
nonredundant information. For example, once MAXCOV has been conducted,
MAMBAC would add some independent evidence, whereas MAXEIG would not.
Also, because most taxometric procedures can be conducted in a variety of
ways, it is essential to make informed choices at each decision point. For example,
researchers should clearly specify the methods by which variables were assigned
to input—output roles, the methods by which cutting scores were located or
subsamples formed along the input for each analysis, and so forth. Ideally, re-
searchers would also explain their reasons for having made these choices.

Question 4: Have the Results Been Presented
and Interpreted Appropriately?

There are a number of issues to consider when presenting taxometric results. For
example, researchers should think through the most appropriate scaling of y-axes
and the need for and consequences of smoothing curves. Moreover, although it may
go without saying, it is important to fully label all graphical results so that it is per-
fectly clear what is being graphed. Many taxometric reports have included graphs
whose axes have been inadequately labeled or whose figure captions have failed to
indicate how a given analysis was performed (e.g., what variables were assigned to
be input and output indicators, how cuts were made or subsamples formed). It is
still more problematic when the text does not clarify which results are being pre-
sented in a given graph, whether the presentation includes all or a subset of the re-
sults, and which procedures were used to generate which results.

It is also critical that the full set of taxometric results be interpreted carefully.
The nature of the latent construct—which is represented by the manifest indica-
tors—should be considered and discussed along with alternative explanations for
apparently taxonic or dimensional results (e.g., selected samples, indicator skew).
Parallel analyses of simulated taxonic and dimensional comparison data can serve
as a particularly valuable interpretive aid allowing readers not only to judge for
themselves whether the research data are suitable for particular taxometric analy-
ses but also whether the proffered structural conclusions appear reasonable. If the

INTRODUCTION TO TAXOMETRICS 191

;urve shapes, taxon base-rate estimates, and other results yielded by the research
ata appear much more consistent with those of one comparison data set than of
another, readers can readily verify the appropriateness of the authors’ conclusions,

Question 5: Are Implications
of the Findings Clearly Articulated?

Finally, a researcher’s responsibility does not end with the conclusion that a cori-
struct’s latent s'tructure is best characterized as taxonic or dimensional. To be use-
ful, a taxometric report should spell out the implications of this structura] findin,

for future research and practice. Perhaps the taxometric analysis is part of a broadegr
research program investigating the latent structure of a particular construct or
group of related constructs, or perhaps it has implications for extant theories of the
target construct or for the manner in which this construct is assessed or studied

Whatever the scientific issues that originally prompted the taxometric investi a—.
tion, they should be revisited at this stage to consider and build on the advan " -
vided by the taxometric results, e
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