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The taxometric method is an increasingly popular statistical approach that tests
whether the structure of a latent construct is categorical or continuous. This article
presents the key conceptual and methodological issues that should be addressed in
an informative taxometric investigation. We aim to help potential users of taxomet-
rics determine: (a) when a taxometric analysis is scientifically justified, (b) whether
their data are suitable for taxometric analysis, (c) whether they have properly imple-
mented a sufficient variety of taxometric procedures, (d) whether they have appro-
priately presented and interpreted the obtained results, and (e) whether they have
adequately articulated the implications of their structural solution. Annotated pro-
gram code and empirical examples are provided to illustrate how taxometric analysis
is applied in practice.

The taxometric method pioneered by Paul Meehl (1973, 1995, 1999) and
developed with several of his colleagues (e.g., Golden & Meehl, 1979; Grove
& Meehl, 1993; Meehl & Golden, 1982; Meehl & Yonce, 1994, 1996; Waller
& Meehl, 1998) is one of a growing number of statistical approaches avail-
able for studying the nature of latent variables. Taxometric procedures explore
the relations among a set of manifest indicator variables to determine whether
the structure underlying them is dimensional (consisting of a single latent
continuum) or taxonic (consisting of two discrete latent classes traditionally
referred to as the taxon and complement). Like any other statistical approach,
taxometrics addresses a particular kind of research question, works best with
certain data parameters, and poses a number of critical decision points at each
stage of analysis. The present article seeks to provide investigators who are
new to the taxometric method with an introduction to these basic features. By
the end of the article, we hope that readers will be able to: (a) determine
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whether taxometrics can be fruitfully applied to their own data and research
questions, (b) identify the conceptual and methodological issues that should
be considered in conducting an informative taxometric investigation, and (c)
apply the program code shown in the Appendix to begin performing taxometric
analyses.

This article is intended to stimulate research on latent structure through the
sound application of taxometrics and presumes no prior familiarity with taxo-
metric theory or practice. It begins with a list of five questions that we believe
should be carefuily considered and explicitly addressed in any taxometric
investigation. It then proceeds to empirical illustrations of taxometric analy-
sis in several research data sets. Due to space limitations, we focus on provid-
ing a broad introduction to the relevant issues using a brief, checklist-like
format. For an elaboration of the points raised here as well as additional illus-
trations, we refer interested readers to an expanded, book-length treatment
that we are currently preparing (J. Ruscio, Haslam, & Ruscio, 2004).

Question 1: Is a Taxometric Analysis Scientifically Justified?

The first question confronting the potential user of taxometrics is whether
this method is an appropriate statistical tool for the basic and applied scien-
tific issues that he or she wishes to address. Before considering the types of
research questions that can be investigated using taxometrics, we describe the
nature of the structural distinction that the taxometric method is designed to
make and the types of evidence that it provides.

The Classification Problem

One of the fundamental challenges in any scientific discipline is to classify
the objects of study. In psychological research, there is often heated debate
about whether particular constructs are most appropriately classified using a
categorical (taxonic) or a continuous (dimensional) framework. Because we
wish to avoid applying a spurious typology to latent dimensional variables or
representing latent taxa by artificial dimensions, it is important to empirically
assess the latent structure of each construct of interest. Unfortunately, the
process of distinguishing taxonic from dimensional latent structure is not as
straightforward as it may seem (Grayson, 1987; Murphy, 1964). This is be-
cause the structure of a set of observed variables may or may not match that
of the latent construct underlying these variables. For example, even valid
indicators of two latent groups may be distributed unimodally due to mea-
surement error. Figure 1 depicts the within-group and full-sample distribu-
tions of three indicators of biological sex. As we will later see, taxometric
analyses of these indicators readily detect the two taxa (males and females)
underlying the distributions. However, the substantial overlap of these mani-
fest distributions, especially when exacerbated by other factors (e.g., within-
group correlations among observed variables), makes it difficult to detect the
existence of taxa using manifest-level data. To further complicate the picture,
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Fic. 1. Frequency distributions for three factor-score indicators of biological sex derived
from the 24 items on the Masculinity-Femininity scale of the Minnesota Multiphasic Personal-
ity Inventory that most validly distinguish women (n = 7,994) from men (n = 5,586) in the
Hathaway Data Bank. Solid lines represent the full sample; dotted lines represent the taxon
(women, who score higher) and complement (men, who score lower) groups.

a latent dimensional construct can give rise to bimodally distributed indica-
tors through such factors as threshold effects, sampling error (particularly in
small samples), selective sampling from the extremes of a continuum, or ob-
server bias. Thus, observed unimodality or bimodality of test scores, inter-
view responses, and other manifest measures of a construct cannot be assumed
to reflect the latent structure of that construct.

Making a Case for the Appropriateness of Taxometrics

The taxometric method was specifically designed to distinguish between
taxonic and dimensional structure at the latent level. Because alternative pro-
cedures such as cluster analysis, mixture modeling, and latent class analysis
are prone to false-positive identification of latent classes (see J. Ruscio &
Ruscio, 2004), the goal from the earliest development of taxometric proce-
dures was to safeguard against this possibility. There are two ways in which
this defense is achieved. First, the taxometric method focuses on one putative
taxonic boundary at a time using multiple indicators that have been carefully
chosen to test for this boundary. Rather than submitting a large assortment of
variables to a single analysis with the hope of simultaneously disentangling
several potential boundaries between multiple latent classes, the taxometric
method forces researchers to adopt a more focused approach tailored to
the investigation of each latent class (J. Ruscio & Ruscio, in press). Second,
the taxometric method includes a wide range of procedures and consistency
tests that provide nonredundant evidence of latent structure. Investigators are
expected to perform multiple procedures and tests within each taxometric
study, and confidence in the uncovered structural solution accumulates to the
extent that the results agree with one another.

Meehl (1973, 1995) often described the taxometric method as a heuristic
search technique for identifying latent taxa, and others have conceptualized
taxonic structure as an alternative hypothesis to be provisionally accepted if
the null hypothesis of dimensional structure can be rejected (e.g., Beauchaine,
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2003). According to this position, taxonic results provide evidence in favor
of taxonic latent structure, but dimensional results are — like all “null”
results — inherently ambiguous: They leave open the possibility that existing
taxa were not detected because the data were unsuitable for analysis (e.g., the
sample was too small, the indicators were insufficiently valid, and so forth).
Thinking along these lines, some researchers prefer not to judge nontaxonic
results as evidence of dimensional structure, believing that the alternative
explanation of unsuitable data cannot be ruled out. In contrast, we believe
that neither taxonic nor dimensional structure should be regarded as the null
hypothesis in taxometric analysis, and that the taxometric method is capable
of providing evidence in support of either structural solution. We take this
position because recent advances in simulation methodology allow investiga-
tors to rule out the alternative explanation of unsuitable data in an appropri-
ately conservative manner. As will later be described in greater detail, we
advocate an approach that requires data to pass a “suitability test” before it is
submitted to taxometric analysis (J. Ruscio, Ruscio, & Meron, 2004). If the
data parameters — in combination with the planned analysis — are shown to be
capable of differentiating taxonic from dimensional structure, researchers can
confidently draw a dimensional inference if dimensional results are obtained.

Although the taxometric method has been demonstrated to accurately and
powerfully distinguish taxonic from dimensional latent structure (e.g., Meehl
& Yonce, 1994, 1996), it is important to emphasize that this is the only dis-
tinction that the method was intended to make. That is, taxometric results can
be used to determine whether two groups or a single dimension better accounts
for the observed relations among the indicators. More complex structural
models (e.g., a hierarchical arrangement of types and subtypes, a taxon with
meaningful dimensional variation) cannot be tested in a single taxometric
analysis and will require additional applications of taxometric procedures
and/or the use of complementary statistical tools to be fully resolved (see J.
Ruscio & Ruscio, 2004, in press).

Making a Case for the Value of a Taxometric Investigation

We have argued that taxometrics may be fruitfully employed to distinguish
taxonic from dimensional latent structure, and researchers seeking to make
this distinction have a good case for performing taxometric analyses. How-
ever, noting the appropriateness of taxometrics for the structural question at
hand is only part of the rationale that should be provided in a taxometric in-
vestigation. To fully justify such an investigation, researchers also need to
articulate the scientific implications of taxonic versus dimensional structure
for this particular construct and make a persuasive case that the outcome of
the investigation will be of value to the field. As has been articulated else-
where (e.g., Haslam, 1997; Meehl, 1992; Meehl & Golden, 1982; A. M.
Ruscio, Borkovec, & Ruscio, 2001; J. Ruscio & Ruscio, 2002, 2004), struc-
tural understanding of a construct may enhance its theoretical conceptualiza-
tion, shed light on its etiological origin, facilitate its accurate classification and
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diagnosis, promote its valid and powerful measurement, specify the most ap-
propriate research designs for its investigation, and help inform its manage-
ment in clinical and public health settings. Until now, the classification value
of taxometrics has been most heavily emphasized, with some mental health
professionals suggesting that the method can help to “do diagnostics right”
by basing nosological systems on empirically derived latent structure (Joiner
& Schmidt, 2002; Meehl, 1995). The result is that the majority of taxometric
studies performed to date have focused on the structure of diagnostic entities
appearing in the Diagnostic and Statistical Manual of Mental Disorders
(DSM-1V; American Psychiatric Association, 1994) with the goal of inform-
ing the decades-old debate in this area. However, taxometric analysis has also
been effectively applied to a number of other psychological and behavioral
constructs (Haslam & Kim, 2002) and has the potential to valuably elucidate
the nature of variables beyond the DSM disorders.

Whatever the reasons underlying a particular taxometric investigation, it is
essential that they be clearly enumerated and grounded in an appropriate the-
oretical and empirical context. The explosion in taxometric studies in recent
years, many of which have appeared in prestigious journals (Haslam & Kim,
2002), raises the possibility that some researchers will use taxometrics sim-
ply because they perceive the method to be fashionable or view studies that
use it as attractive to editors and reviewers. Therefore, it is important to
clearly articulate the scientific rationale for performing a taxometric analysis
to avoid the impression that one is merely employing the “flavor of the
month” statistical technique.

Question 2: Are the Data Suitable for Taxometric Analysis?

An informative taxometric investigation requires an appropriate sample of
data in which to search for the hypothesized taxonic boundary. We begin by
describing the sample and indicator parameters that are relevant to taxomet-
rics, then present a technique that researchers can use to empirically evaluate
the suitability of their data for taxometric analysis.

Sample Considerations

Sample size. On the basis of considerable Monte Carlo research, Meehl
(1995) recommended a minimum sample size of N = 300 for taxometric
investigations. Although taxometric procedures have distinguished latent struc-
tures in smaller samples, this has generally occurred only when the data pos-
sessed otherwise ideal characteristics (e.g., equal-sized groups that were sep-
arated by a large amount on indicators that were uncorrelated within groups).
Because actual research data are unlikely to possess such desirable parame-
ters, Meehl’s recommendation appears to be a reasonable rule of thumb.

Taxon representation. In addition to having a large sample, it is important
that this sample contain a sufficient number of putative taxon members to
permit their detection. Monte Carlo studies have generally shown that taxo-
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metric procedures can reveal taxonic structure with a taxon base rate as low
as .10 (and, conversely, as high as .90). However, there are several reasons to
treat this information with caution. First, Monte Carlo studies have seldom
evaluated the performance of taxometric procedures with taxon base rates
smaller than .10, so the lower limit of what the procedures can detect is pres-
ently unknown. Second, there is evidence that the absolute number of taxon
members in the sample may be at least as important as the proportion of the
sample that they comprise. We have found that taxometric procedures con-
tinue to detect a taxon of a constant size even when extremely large numbers
of complement members are added to the sample, causing the taxon base rate
to fall well below .10 (J. Ruscio & Ruscio, 2004). Thus, we use the term
“small taxon” rather than “low base rate taxon” to underscore the importance
of the absolute size of the putative group as well as its base rate in a given
sample. Third, the sensitivity of taxometric procedures to the existence of a
small taxon depends on many other characteristics of the data. Especially
important is the validity with which the indicators separate the groups, but
also relevant are the number of indicators, the magnitude of within-group
correlations (or “nuisance covariance”), and the degree of indicator skew. It
may therefore be misleading to set a single acceptable base rate threshold
without regard for other characteristics of the data. Until further Monte Carlo
research is conducted to explore this issue, researchers should take care to use
the .10/.90 guide with caution, and — where possible —to collect data from a
population in which the putative taxon base rate is closer to the ideal of .50.

Population sampled. The nature of the population from which cases are
sampled will influence the likely size of the putative taxon and the adequacy
with which the full range of functioning is represented. Samples drawn from
relevant clinical populations will often provide greater representation of a
putative psychopathology taxon (as well as more intermediate or “subthresh-
old” cases) than will samples drawn from community or student populations.
For example, whereas 25% or more of the individuals served by a clinic spe-
cializing in the treatment of mood and anxiety disorders may receive a diag-
nosis of major depressive disorder (MDD), the base rate of MDD among
unselected, nonclinical samples may be a small fraction of that amount.
Because a far larger community or analogue sample will be required to obtain
the same number of MDD-diagnosed cases available in a well-chosen clinical
sample, it may be more feasible to conduct a high-power taxometric investi-
gation in an appropriate clinical sample.

However, there are also potential disadvantages to conducting taxometric
investigations with clinical samples. First, such samples may contain too
many cases belonging to the putative taxon. For instance, a clinic that special-
izes in the treatment of social phobia may have a client roster consisting al-
most entirely of individuals with this diagnosis, thereby including too few
members of the complement to distinguish it from the putative social phobia
taxon. Similarly, if the demand for services exceeds the capacity of a clinic or
hospital, clinical staff may be able to provide services only to the individuals
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exhibiting the most severe levels of distress or impairment, which may elimi-
nate most or all members of the putative complement and artificially con-
strain the range of functioning within the sample to the point where it is no
longer suitable for taxometric analysis. Conversely, not all clinical samples
will include sufficiently high rates of all forms of psychopathology. For ex-
ample, some conditions may be too rare to be powerfully studied in a gen-
eral outpatient setting, requiring data to be collected in an inpatient facility
or a specialty clinic to obtain a sufficiently large putative taxon for analysis.
Finally, research estimating the base rate of a taxon in the general community or
evaluating the latent structure of clinically relevant — but relatively prevalent —
phenomena may be most appropriately undertaken in epidemiological samples
(see Kessler, 2002).

Problematic Sampling Practices

Admixing samples. Three sampling approaches are worthy of special note
because they can undermine the results of taxometric analysis. One practice
that has been used with some frequency is to combine patient and nonpatient
subsamples into a single sample for analysis. The problem with this is that
tpe omission of cases experiencing intermediate or subclinical levels of func-
tioning, along with the introduction of other systematic differences that dis-
tinguish clinical samples from normal controls, can bias results toward a tax-
onic solution. This false taxon, or “pseudotaxon” (Grove, 1991a), reflects the
artificial admixture of two different populations rather than the true structure
of the underlying construct.

Dividing samples into subsamples. A second problematic practice con-
sists of splitting the available sample into subsamples for analysis to permit
replication of the taxometric results. Although replication is, in principle, a
highly desirable goal, analyses performed in subsamples drawn from a single
population only examine the influence of sampling error without addressing
the more important question of whether results generalize to other popula-
tions or to different conceptualizations and measurements of the target con-
struct. Also, because taxometric procedures require large samples for analy-
sis, we suggest that the best use of a given data set is to retain all cases for a
§1ngle series of maximally powerful taxometric analyses. Splitting a sample
into subsamples may be especially problematic in research involving a small
hypothesized taxon, as it reduces the number of putative taxon members
available for each analysis and lowers the odds of correctly detecting the
taxon in any analysis.

_Trimming the complement. A third questionable sampling practice involves
discarding likely complement members to increase the base rate of the puta-
tive taxon in the sample. The appeal of this technique probably stems from
the common assumption that it is the taxon base rate — not the absolute
number of taxon members — that is critical to taxon detection by taxometric

- procedures. Earlier we argued that the number of taxon members may be at

least as important as their base rate within the sample, and since the removal
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of likely complement members does not increase the number of taxon mem-
bers, this practice may be of little use to improve taxon detection. Indeed,
eliminating cases with the lowest indicator scores (who are most lik'ely to be
belong to the complement) will not influence the regions of taxometric graphs
that are critical to interpretation and will only diminish statistical power by
unnecessarily reducing the size of the sample. .
An alternative approach — eliminating cases at random frqm the putative
complement group —is even more problematic than eliminaFmg the: lowest-
scoring cases. This approach uses a fallible criterion, such as diagnostic status,
to randomly discard some of the complement members (in an effort to in-
crease the taxon base rate) or a sufficient number of complement members to
equate the sizes of the two hypothesized groups. Unfortuna?ely, this strategy
can produce pseudotaxonic results. To illustrate the distortmg effect of this
sampling approach, consider the case of a researcher who posits that 100 out
of a sample of 1,000 individuals are taxon members and that complement
members should be dropped to equate the base rates. The left panel of Flgure
2 shows the distribution of one of four indicators of a latent dimension in a
sample of 1,000 cases, with the highest-scoring 100 cases and lowest-scoring
900 cases on this dimension designated by dotted lines. The right panel
shows the distribution of this indicator in a subsample formed by rapdomly
dropping all but 100 of the putative complement members (i.€., removing 800
of the 900 lowest-scoring cases). With the random removal of putative com-
plement members, the indicator distribution becomes bimodal; the dotted
lines reflect artificial groups created by this sampling technique. Subse'quent
taxometric analysis of the four indicators in the modified sample y1e1(§ed
pseudotaxonic results for this dimensional construct, sug_gqsting that.— like
other statistical procedures — taxometric analyses cannot distinguish this type
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FiG. 2. Frequency distributions for one of four indicators of a latent dimensiol}. The left
graph shows the distribution of scores in the full sample of 1,000 cases, z.md the rlght. graph
shows the distribution of scores in a subsample of 200 cases formed by retaining the 100 highest-
scoring cases plus a random selection of 100 of the 900 lower-scoring cases. Solid lines repre-
sent the full sample; dotted lines represent the putative taxon (higher-scoring) and complement
(lower-scoring) groups.
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of artificial bimodality from the “real thing” caused by taxonic latent struc-
ture. Although the removal of 800 cases is a particularly drastic step, the re-
moval of fewer cases poses the same problem to a lesser degree. There is no
apparent justification for introducing this potential structural confound.

In sum, we urge taxometricians to draw their sample from a single popula-
tion that contains the full range of presentation of the target construct and
provides a sufficient representation of the putative taxon and complement
groups. We further recommend that researchers use all available cases in each
analysis and studiously avoid sample selection and construction techniques
that are known to increase the odds of pseudotaxonicity through sampling
artifacts.

Selecting and Constructing Indicators

Content coverage. The use of any statistical tool that uses manifest indica-
tor varjables to infer latent structure requires careful consideration of how
well the indicators represent the target construct (Widi ger, 2001). This problem
can be conceptualized in terms of content and discriminant validity (Cron-
bach & Meehl, 1955). For a taxometric analysis to yield informative results,
one needs assurance that the indicators assess all relevant facets of the target
construct and that they do not inadvertently assess some other construct. For
example, a taxometric investigation of MDD whose indicators exclusively
assess somatic symptoms may raise questions about content validity. How-
ever, even if the indicators assess each of the primary somatic, cognitive, and
affective features believed to characterize MDD, they must also be shown not
to converge on one or more other mood disorders (e.g., dysthymia, bipolar
disorder), anxiety disorders (e.g., GAD), or psychotic disorders (e.g., schizo-
affective disorder) whose features overlap with those of MDD. It is important
to remember that the nature of the uncovered taxon or dimension is determined
primarily by evaluating the constellation of indicators that were used to reveal
it. Thus, careful selection of indicators is essential for meaningful results.

Using the available items in a data set, indicators can be constructed
according to one or more accepted theoretical conceptualizations of the latent
construct, according to empirical criteria (as when the observed relations
among items in correlational or factor analysis form the basis for item com-
posites), or according to a blend of theoretical and empirical considerations.
So long as each of these indicator sets provides good content coverage of the
underlying construct, confidence in a structural solution is increased when
their results converge.

Validity and nuisance covariance. In addition to adequately representing
the target construct, the indicators chosen for taxometric analysis must pos-
sess sufficiently high validity and be correlated at an acceptably low level
within the hypothesized groups. Of course, without an infallible criterion to
classify cases into the putative taxon and complement, it can be challenging
to estimate these parameters and evaluate their adequacy for taxometric anal-
ysis. Nonetheless, there are ways to gauge the likely validity and within-
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group correlations of a candidate indicator set. For example, one can assign
cases to groups based on a criterion measure such as diagnostic statu.s or a
conventional threshold on one or more well-validated assessment instru-
ments. Alternatively, one can estimate the likely base rate of .taxon.me_mbers
in the sample, then assign the highest-scoring cases on all available indicators
to the taxon and the remaining cases to the complement (the so-called “base-
rate classification method” evaluated in J. Ruscio, Haslam, & Ruscio, 2004).
Once cases are classified, it is a simple matter to correlate the indica.tors
within groups as well as to estimate indicator validity. In the taxometric liter-
ature, indicator validity is usually expressed as the mean difference betweep
the taxon and complement, standardized by the pooled within-groups vari-
ance, the metric known more familiarly as Cohen’s d:

g M M )

J(SD?)(n,— 1) + (5D))(n,— 1)

N-2

Meehl (1995) suggested that suitable indicators should separate the taxon
and complement with 4 = 1.25 and be correlated within groups at r = .30.
While these values provide useful rules of thumb, we caution resear.chfers to
evaluate indicator suitability not by the adequacy of each parameter in 1so!a—
tion, but by their joint sufficiency. For example, whereas four indicators w1Fh
an average validity of d = 1.25 may detect a taxon with base rate P = .50 in
a sample of 600 cases when within-group correlatlons_ are close to 0, greater
validity will be required if there are fewer indicator's, if the taxon 1s.sgbstan-
tially smaller (or larger), if the sample is smaller, or if there are nontrivial cor-
relations within groups. o

Distributional properties. Indicator distributions also influence the su1t2_1b11—
ity of data for analysis. Although taxometric analyse§ rn'ake no assumptions
regarding normality or continuity, positively skewed indicators tend to yield
rising curves in many taxometric procedures regardless of latent structure,
which can make it difficult to distinguish a small taxon from a latent dm}en—
sion (A. M. Ruscio & Ruscio, 2002; J. Ruscio, Ruscio, & Keane, 2004). Like-
wise, discrete indicators (i.e., those possessing dichotomous or (?ther sm'flll
response scales) may require special accommodations in taxometric ana1y§1s.
For example, it may be advantageous to aggregate discrgte items assessing
the same facet of the target construct into composite indicators whqse dis-
tributions better approximate continuity. Alternatively, some taxomgtrlc pro-
cedures can be modified to accommodate discrete indicators by forming com-
posites as needed to run the analysis (Gangestad & Snyder, 1985; J. Ruscio,
2000). o ' '

Number of indicators. Finally, the number of indicators mclugie(.i in a taxo-
metric analysis has implications for analytic flexibility and.sta.tlstlcal power.
Taxometric procedures can be performed with as few as two indicators, but the
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range of analyses that can be conducted — and the statistical power of each —
increases as the number of indicators increases. It is important to emphasize,
however, that we recommend against simply submitting as many indicators
as possible to taxometric analyses. Although indicators must be positively
correlated in the full sample, each should be relatively independent of the
others, assessing a unique facet of the target construct to keep within-group
correlations low. It may be the rare psychological construct that can be repre-
sented by more than a half-dozen indicators without introducing substantial
redundancy. Unfortunately, some taxometric investigators have taken the ap-
proach of first identifying a desired number of indicators and then assigning
items at random to composite indicators, a strategy that virtually guarantees
high indicator redundancy and, in turn, high within-group correlations. We
suggest instead that researchers begin with a list of theoretically relevant fac-
ets of the target construct, then form composite indicators by joining together
those variables that most validly assess each facet. The empirical suitability of
this candidate indicator set can be evaluated (as described below) and refined
as necessary.

In conclusion, the indicators submitted to taxometric analysis must sensi-
tively and specifically represent each facet of the target construct and dis-
tinguish the putative latent classes with sufficient validity and tolerably low
within-group correlations. Indicator selection or construction should be guided
by relevant theory, with consideration for empirical properties (e.g., validity,
distributions, cross-indicator redundancy) that may influence the suitability
of the indicators for taxometric analysis.

Empirically Evaluating Data Suitability

As noted in the preceding section, evaluating the suitability of individual
data parameters overlooks the potential importance of their joint influence on
taxometric analysis. One favorable parameter may (or may not) compensate
for a questionable value on another parameter, different taxometric procedures
and consistency tests are unlikely to be equally effective for a given set of
parameters, and it can be exceptionally difficult to judge the suitability of a
planned analysis for a particular set of research data. Monte Carlo studies
provide only limited guidance in this regard, as their unavoidably idealized
parameters and fixed implementation approach cannot cover all of the pos-
sible permutations found in specific studies. Although interpolations from the
parameters of Monte Carlo studies would be feasible, the problem faced by
researchers considering a taxometric analysis is often one of extrapolation, as
the full range of potentially influential factors has never been systematically
varied.

For these reasons, we recommend that investigators simultaneously evalu-
ate all characteristics of their indicators in the context of the particular analyses
planned for the research data. Rather than looking to large-scale simulation
studies for detailed guidance, researchers can perform their own simulations
in ways that are custom-tailored to their particular study. By generating tax-
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onic and dimensional data sets that reproduce the parameters of the research
data, then submitting these simulated data sets to each analysis intended for
the research data, investigators can judge whether the research data are suit-
able for these analyses. If an analysis yields noticeably different results for
the simulated taxonic and dimensional data, this suggests that the parameters
of the research data (which were reproduced in the simulated data sets) are
~suitable for this analysis. If the simulated taxonic and dimensional data do
not produce distinguishable results, this suggests that the indicators need to
be refined (e.g., select variables that are more valid, combine redundant vari-
ables to reduce within-group correlations), that the taxometric procedure
needs to be performed in a more effective way, or— if these improvements
fail to produce distinguishable results — that the available data are simply
unsuitable for this taxometric procedure.

An iterative simulation technique. We have developed an iterative tech-
nique for simulating taxonic and dimensional comparison data that repro-
duces the distributional and correlational properties of a specified set of
research data (J. Ruscio, Ruscio, et al., 2004). To simulate dimensional data
sets, the program begins by reading the sample size, the number of indicators,
and the distribution of scores on each indicator in the research data. It then
reproduces the observed indicator correlation matrix by applying shared load-
ings on a common latent factor to vectors of random normal deviates used to
represent each indicator. Next, it pastes the observed score distributions onto
each simulated indicator to replace the normally distributed, continuous scores
with those from the research data. Because this alteration in the simulated
indicator distributions typically reduces the indicator correlations, the program
checks to see how closely these correlations now match those in the research
data. The discrepancy is used to update the target correlation matrix, and the
program launches a new iteration by reproducing this target matrix through
new factor loadings, again pasting the observed score distributions onto the
simulated indicators. The program continues until 10 successive iterations
fail to improve the accuracy with which the target correlation matrix is repro-
duced. Thus, the simulated dimensional comparison data will match each
indicator’s score distribution and reproduce the indicator correlation matrix
as accurately as sampling error and indicator variability allows. Naturally,
correlations will be reproduced more accurately with large samples and with
indicators that vary across a wide range of values.

To simulate taxonic data sets, the program requires a classification variable
that indicates whether each case in the research data has been assigned to the
putative taxon or complement. This classification variable can be created
by considering diagnostic status, by applying a theory-based algorithm, or by
simply assigning the highest-scoring cases t0 the taxon and the remainder to
the complement following a prespecified taxon base rate. Provided with the
research indicators and a fallible criterion variable denoting putative group
membership, the program reproduces the indicator distributions and correla-
tions observed within each group by submitting each subsample (ie., the
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taxon and the complement) to the dimensional simulation algorithm described
ab.ov'e, then merges the results. In this way, the technique reproduces not only
within-group distributions and correlations, but full-sample parameters as well.

The .resulting simulated data sets will be indistinguishable in their ob-
serve§1 indicator distributions and correlations; they will systematically differ -
only in their latent structure. Subsequent taxometric analysis of these simu-
lated data will reveal which analyses are likely to provide informative struc-
tural tests of the research data. In general, when working with very large
sarpples (e.g., many thousands of cases), a single set each of simulated tax-
onic .and dimensional comparison data may suffice, whereas investigators
worklpg with smaller samples may wish to simulate multiple sets of taxonic
and dimensional data to determine whether sampling error has a substantial
effec_t on the taxometric results. Likewise, researchers may wish to simulate
multiple sets of taxonic comparison data using different classification criteria
to ensure that the suitability test was not passed (or failed) owing only to an
oyerly optimistic (or pessimistic) estimated rate of taxon membership in the
simulated data. Such applications of this simulation technique are likely to
provide a more informative and empirically rigorous evaluation of the unique
parameter configuration of a research data set than an evaluation guided
solely by Monte Carlo findings.

Question 3: Has a Sufficient Variety of Procedures
Been Implemented Properly?

A cornerstone of the taxometric method is its reliance on consistency
across nonredundant analytic techniques, rather than on significance testing
to establish confidence in a given structural solution. In this section, Wej
present a conceptual overview of a number of taxometric procedures and
consistency tests that can be used to amass evidence about latent structure. As
different approaches will be appropriate for different studies, no one template
can be created to guide all taxometric investigations. Instead, we suggest that
researchers consider a wide range of possible procedures and consistency
tests, but submit their data only to those analyses in which simulated taxonic
and d.imensional comparison data pass the suitability test. In what follows,
we briefly review the major taxometric procedures and consistency tests, note
the extent to which each has (or has not) been supported by Monte Carlo
s_tudies, and offer suggestions for their appropriate selection and implementa-
tion. The taxometric programs that we have written can be used to perform all
of the procedures and tests described below.

Taxometric Procedures

Although a number of taxometric procedures have been developed, a core
subset has received the most empirical attention in Monte Carlo studies and
ha}s been applied most frequently in taxometric investigations (Haslam &
Kim, 2002). We will focus on three procedures that nicely complement one
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another, providing nonredundant evidence and facilitating a substantial num-
ber of consistency tests. Each of these procedures yields distinct graphical
results for taxonic and dimensional latent structures, and structural inferences
are based primarily on inspection of these curves. Additional information
yielded by the procedures and by ancillary consistency tests provide further
clues to latent structure.

MAMBAC. The MAMBAC procedure (Mean Above Minus Below a Cut;
Meehl & Yonce, 1994) requires just two indicators and is based on the search
for a cutting score that would optimally distinguish taxon and complement
members if these groups in fact exist. The technique is simple: Assign one
indicator to the role of “input;” which forms the x axis of the MAMBAC
graph, and the other indicator to the role of “output.” Then, calculate mean
differences on the output between cases scoring above and below each of sev-
eral cutting scores along the input. These mean differences are plotted as the
y values for each cutting score. Because the difference between latent classes
will be greatest at the optimal cutting point and lower elsewhere, taxonic
structure produces a peaked MAMBAC curve. For dimensional structure, the
absence of an optimal cutting point produces a concave MAMBAC curve.

Although this procedure requires only two indicators, it can be performed
using all available data by removing one variable at a time to serve as the out-
put and summing the remaining variables to serve as a composite input indi-
cator. The use of composite input indicators accommodates variables that
vary across too few values to serve as input indicators alone. For example,
whereas dichotomous items cannot adequately rank-order cases along the x
axis, the sum of many dichotomous items can. On the other hand, when indi-
cators possess sufficient variation to serve as input indicators, the traditional
use of input-output indicator pairs yields more MAMBAC curves (k variables
produce k[k — 1] curves) than does the use of composite input indicators
(which yields k curves). Obtaining more curves affords more opportunities to
check the consistency of results. This benefit must be weighed against the
potentially greater statistical power of composite input indicators, which are
likely to provide a more valid rank-ordering of cases along the x axis.

When performing MAMBAC, researchers must decide how cuts will be
made along the input indicator. Cuts can be placed at fixed SD units (e.g.,
locate cuts at every .25 SD units along the input, which is usually standard-
ized for this purpose), at intact scale values (e.g., locate cuts at particular
values of the input indicator), between each case in the data set, or at a fixed
number of equally-spaced locations between cases. Whereas cuts made at

scale values or SD units yield relatively few points on a MAMBAC curve and
may make it more difficult to interpret, cuts made between every case in the
data set yield an enormous number of points that may be excessive. A com-
promise position is to locate a fixed number of cuts at equally-spaced inter-
vals between cases, with about 50 cuts (beginning and ending 25 cases from
cither extreme to avoid undue sampling error in the calculation of mean dif-
ferences) often working well to delineate the shape of the curve. Because this
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apprqach may place cuts between equal-scoring cases, it can be useful to per-
form internal replications to remove this obfuscating influence on curve shape.
This is done by randomly resorting tied cases and rerunning the MAMBAC
analysis. The mean differences are averaged across these replications to plot
Fhe final MAMBAC curve. When replications are necessary to make a curve
interpretable, we have found that as few as 5 or 10 such replications are usu-
ally sufficient to smooth the shape of the curve.

MAXCOV/MAXEIG. The MAXCOV (MAXimum COVariance; Meehl
1973; Meehl & Yonce, 1996) and MAXEIG (MAXimum ElGenvalue; Waller’
& Mt?eh.l, 1998) procedures both require at least three indicators and operate
ina S{m{lar way, causing us to group them here. Both procedures examine the
association among two or more “output” indicators within subsamples of
cases ordered along an “input” indicator that forms the x axis for the graph. In
MAXCOV, the covariance is calculated between two output indicators and
plotted as the y value for each subsample of cases; in MAXEIG, the first
(largest) eigenvalue of the covariance matrix of two or more output indicators
(with. variances on the diagonal replaced by zeros so that only covariances
remain) is calculated and plotted as the y value for each subsample. Taxonic
structure causes a peak to emerge in the subsample containing an equal mix-
ture of taxon and complement members, with the association among indica-
tors tapering off in adjacent subsamples. Dimensional structure produces a
nonpeaked curve.

MAXCOV can be performed using indicators in all possible input-output-
output triplets (which yields [k — 1][k — 2]/2 curves) or by removing two
var}ables at a time to serve as output indicators and summing the remaining
variables to serve as a composite input indicator (which yields k[k — 1]/2
curves). As with MAMBAC, the latter technique may increase statistical
power and can accommodate the use of variables with restricted response
scales (Gangestad & Snyder, 1985; J. Ruscio, 2000). MAXEIG can be per-
formed by using indicators in all possible input-output-output triplets, by using
the composite input indicator technique, or by removing one variable at a
time to serve as the input indicator and using all remaining variables as out-
put indicators (yielding k curves). While MAXCOV may help to isolate the

relative influence of individual indicators in the early stages of indicator
selection and construction, we recommend using the multivariate MAXEIG
procedure for the final analyses (J. Ruscio, 2004).

To implement MAXCOV/MAXEIG, the researcher must also decide how
to divide cases into ordered subsamples along the input indicator. This can be
done using nonoverlapping intervals or overlapping windows. Intervals can
!)e coqstructed using SD units (e.g., divide the sample every .25 SD along the
input indicator, which is usually standardized for this purpose), intact scale
values (e.g., divide the sample according to particular scores or ranges of
scores on the input indicator), or fixed-size subsamples (e.g., divide the sample
into deciles). Windows are constructed as fixed-size subsamples that over-
lap (conventionally by 90%) with adjacent subsamples. We recommend that
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windows be used when performing either MAXCOV or MAXEIG, as thi's
technique provides more data points for the resulting curve — ar.ld thus facili-
tates interpretation of curve shape — with no increase in sampling error. For
example, a sample of 1,000 cases can be divided into decile intervals to create
10 subsamples containing cases 1-100, 101-200, 201-300, . . ., 901-1,000,
or the same sample can be divided into 91 windows with 90% qverlap con-
taining cases 1--100, 11-110, 21-120, . . ., 901-1,000. Alternatively, if one
was satisfied with just 10 points on the curve, the use of windows would per-
mit larger subsamples to be formed (and sampling error to be reduced) by allow-
ing these subsamples to overlap, as in cases 1-526, 54-579, 106-631, . . .,
475-1,000. Or, an intermediate number of windows could be selected such
that each subsample contains more than 100 cases and more than 10 data
points appear on the resulting curve. In general, Waller and Meehl (1998)
described the relationship between the sample size of each window (n,?), the
number of windows (W), and the proportion of overlap between adjacent
windows (O) as:

- N 9
T WX (1-0)+ 0 @

In MAXCOV/MAXEIG, just as in MAMBAC, internal replications can off-
set the distorting effect of drawing subsample divisions between cases pos-
sessing equal scores on the input indicator. ‘ o

L-Mode. 1.-Mode (Latent Mode; Waller & Meehl, 1998) requires a mini-
mum of three indicators. It works by examining the distribution of scores on
a single factor — estimated in a factor analysis of all available indicators — to
determine whether multiple modes are evident in this distribution. For tax-
onjc data, two modes should emerge, whereas for dimensional data, one mode
should emerge. There are no significant implementation decisions to be made
when performing L-Mode, which uses all available indicators in a single angl—
ysis and produces one graph depicting the distribution of factor scores, with
lower and upper modes highlighted. By convention, L-Mode curves are auto-
matically smoothed to minimize any “lumpiness” due to sampling error that
could interfere with mode location.

Consistency Tests

In addition to the three taxometric procedures described above, a number
of additional tests can be conducted to distinguish taxonic from dimensional
structure. We review three broad types of consistency tests: those that involve
performing taxometric procedures multiple times in multiple ways, t_hose that
evaluate latent parameters and classified cases, and those that examine the fit
of taxonic and dimensional structural models to the data. We have attempted
to provide a comprehensive list of the consistency tests that have been per-
formed in taxometric investigations. However, it is important to note that
these tests vary considerably in quality and utility, and that while some can be
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endorsed for all taxometric investigations, others may be appropriate only in
some instances, and still others may seldom provide informative results and
are included here primarily for cautionary purposes.

Taxometric procedures as checks for one another. Perhaps the most basic
rule for any taxometric investigation is that multiple taxometric procedures
should be performed. Because MAXCOV and MAXEIG operate in a similar
way, they provide highly redundant evidence. Thus, we suggest including
only one of these in any given study, with preference given to MAXEIG.
MAMBAC should serve as a complementary source of evidence in any study,
as should L-Mode when a sufficient number of indicators is available for the
meaningful calculation of factor scores.

Repeated application of each taxometric procedure. Although L-Mode yields
a single graph, MAMBAC and MAXCOV/MAXEIG can each be perforimed
a number of times by using the available variables in different input-output
indicator configurations. Even if averaged curves are presented to conserve
space in a manuscript, researchers can inspect the full panel of curves gener-
ated by each procedure to evaluate the consistency of results.

Analyzing multiple sets of indicators in multiple populations. In addition to
performing multiple procedures using multiple configurations of a single
indicator set, one can construct and analyze several different indicator sets
within a given sample of data. Conversely, similar or different indicators can
be analyzed in samples drawn from different populations as a further test of
consistency. Greater confidence can be held in a structural inference based on
convergent results across multiple measures of the target construct in miltiple
populations.

Inchworm consistency test. When a MAXCOV/MAXEIG analysis is per-
formed, an existing taxon that is very small (or very large) may produce a
cusp at the upper (or lower) end of the curve rather than a clearly defined
peak. Such a cusp can be especially difficult to distinguish from dimensional
results when indicators are skewed (J. Ruscio et al., 2004). Fortunately, the
“inchworm consistency test” (Waller & Meehl, 1998) can help to clarify mat-
ters. Using overlapping windows, researchers can systematically increase the
number of windows over a series of analyses to determine whether a cusp
near the upper end of the curve becomes a better-defined peak. The premise is
that this cusp may suggest the presence of a taxon so small that taxon mem-
bers are outnumbered by complement members even in the uppermost win-
dows. By increasing the number of windows, the sample size within each
window decreases, and the number of taxon members should eventually equal
and then surpass the number of complement members in the uppermost win-
dows. By contrast, when latent structure is dimensional, a cusp due solely to
indicator skew should remain in the uppermost window even when the num-
ber of windows increases. Although a similar effect could be produced by re-
ducing the amount of overlap between windows, we recommend against this
practice because it unnecessarily reduces the number of data points on the
MAXCOV/MAXEIG curve. Given its considerable utility in distinguishing
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taxonic from dimensional structure under the adverse conditions of extreme
taxon base rates and indicator skew, we believe that the inchworm consistency
test should be required in any taxometric investigation that involves a small
taxon. '

Estimates of the taxon base rate. Each taxometric curve can be used to esti-
mate a number of latent parameters, most notably the taxon base rate. This ba§:e
rate is estimated from the relative heights of the endpoints of the curve in
MAMBAC (Meehl & Yonce, 1994) and from the location of the maxim.al
association (in covariances or eigenvalues) among the output indicators in
MAXCOV/MAXEIG (Meehl & Yonce, 1996; J. Ruscio, 2004). In L-Mode,
the locations of the lower and upper modes each yield an estimate of the
taxon base rate, as does an empirical classification of cases (Waller_& Meehl,
1998). The resulting base rate estimates can be compared within apd between
procedures. To the extent that they diverge, this suggests that no single group
of cases was consistently detected by the differing procedures. In contrast,.a
high level of consistency among base rate estimates is suggestive of taxonic
structure. However, it should be noted that there are other circumstances —
such as when skewed indicators tilt taxometric curves in consistent ways {d.
Ruscio et al., 2004) — wherein even dimensional data will produce highly
concordant base rate estimates. The interpretation of base rate estimates wi'll
be discussed at greater length in the empirical illustrations appearing later in
this article. . o

Although a number of additional latent parameters (e.g., indicator vahc'hty)
can be estimated from taxometric results, research has not yet determined
whether such estimates can be used to validly distinguish latent structures.
Thus, it is presently unknown whether coherence among such estir.nates pro-
vides support for an inference of taxonic structure, nor how large a d}screpancy
between these estimates is required to support an inference of dimensional
structure. .

Case removal consistency test. Although earlier we advised against remov-
ing likely complement members to increase the taxon base rate for analysis, a
related technique can be useful as a consistency test. Specifically, one can
remove a targeted subset of cases that constitute either likely taxon members
or likely complement members, rerun the taxometric analyges, ar'ld assess
whether the direction and magnitude of the resulting change in estimates of
the taxon base rate are consistent with what one would expect if a taxon exists
(Meehl & Yonce, 1994; J. Ruscio, 2000). For example, if an initial series of
taxometric analyses in a sample of 1,000 cases yields an averaged taxon base
rate estimate of .20, rerunning the analyses following the removal of the
lowest-scoring 25% of cases (almost all of whom are likely complement
members) should produce a taxon base rate estimate that ap}.)roach.es (20 X
1000)/750 = 27 if latent structure is taxonic. In contrast, dimensional .data
often yield a base rate estimate that is inconsistent with tbe e).(pected direc-
tion of change or that changes minimally in the expected direction.
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T-tests between cases classified into the taxon and complement. A few taxo-
metric reports have compared the means of putative taxon and complement
members on variables expected to be associated with the taxon. Unfortu-
nately, these kinds of comparisons do not pose a useful consistency test of
either latent structure. This is because substantial mean differences would be
expected on any variable that is related to the target construct, regardless of
whether the classified groups correspond to true latent classes or to artificial
groupings created along a latent dimension. When the dependent variables in
these analyses are the very indicators that were employed in taxometric anal-
yses, researchers must find substantial mean differences or else conclude that
the indicators were not sufficiently valid for taxometrics. While the presence
or absence of mean differences on external variables may be relevant to the
construct validity of the target construct, they have little to no bearing on its
latent structure.

Distribution of Bayesian prokabilities of taxon membership. The results of
a MAXCOV/MAXEIG analysis can be used to estimate not only the taxon
base rate, but also the valid and false positive rates achieved by the optimal
cutting score on each indicator (Meehl, 1995; J. Ruscio, 2004). Plugging this
information into Bayes’ Theorem yields estimates of the probability of taxon
membership for each case in the sample (Meehl, 1995; Meehl & Golden,
1982), and plotting the distribution of Bayesian probabilities may provide
evidence pertinent to latent structure. If the probabilities cluster around the
values of 0 and 1, the resulting U-shaped distribution is suggestive of taxonic
structure. On the other hand, a more broadly dispersed distribution of proba-
bilities is suggestive of dimensional structure.

Although this consistency test has been employed in many taxometric
studies (Haslam & Kim, 2002), we advise caution in the interpretation of U-
shaped distributions. This is because it is possible for dimensional data to
produce a U-shaped distribution of probabilities. A requirement of taxometric
analysis is that the indicators be substantially correlated in the full sample, as
all valid indicators of a construct will be positively associated due either
to the mixture of latent classes or to shared loadings on a latent dimension.
Thus, any individual who scores above the optimal cutting score on one indi-
cator will tend to score above threshold on other indicators as well, with the
reverse being true for those scoring below the threshold. For this reason,
Bayesian probabilities of taxon membership can tend toward 0 or 1 even in
the presence of dimensional structure (J. Ruscio & Ruscio, in press), making

-shaped distributions a poor marker of taxonic structure. However, the
absence of a U-shaped distribution may prove to be a relatively useful marker
of dimensional structure.

Goodness of Fit Index (GFI). Using estimates of the taxon base rate, of each
indicator’s validity, and of each indicator’s variance among cases assigned to
the taxon and complement, one can reproduce the indicator variance-covariance
matrix and compare its fit to the observed matrix. Waller and Meehl (1998)
infroduced the GFI, familiar to users of structural equation modeling, as an
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index suitable for use in taxometric research. Unfortunately, Monte Carlo
studies do not support the use of the GFI as a taxometric consistency test
(Cleland, Rothschild, & Haslam, 2000; Haslam & Cleland, 2002). These
studies found the GFI to poorly differentiate taxonic and dimensional struc-
ture, and neither the suggested cutoff of .90 or any other value was generally
appropriate for discriminating these structures even when taxonic and dimen-
sional data did yield different GFI values.

Using simulated comparison data to evaluate results obtained for the
research data. The limitations of the GFI can be summarized by making ref-
erence to two overarching challenges. First, the GFI provides a single mea-
sure of fit to a taxonic model, with no measure of fit to a dimensional model
provided for comparison. Hence, one cannot determine which structural
model achieves a superior fit. Second, attempts to identify a single GFI cutoff
value that is generally indicative of taxonic structure does not allow re-
searchers to take into account the unique parameters of a particular data set
that may artificially inflate or deflate the GFI, independent of the actual fit of
a taxonic model. Fortunately, investigators can avoid both of these problems
by examining — and even quantifying — the extent to which the taxometric
results yielded by the research data are similar to those yielded by the simu-
lated taxonic and dimensional comparison data.

This process begins by using the iterative technique described previously
to simulate one or more sets of taxonic and dimensional comparison data.
Next, these data are submitted to the same analyses that were performed on
the research data. To the extent that the results of the research data more
closely resemble those of one type of simulated data than the other, confi-
dence in that structural solution is increased. Thus, simulated comparison
data matching the parameters of the research data can serve not only as an
essential suitability test, but also as a valuable interpretive benchmark against
which to evaluate the research results.

This technique has proven especially helpful in studies that have attempted
to distinguish a small taxon from positively skewed indicators of a latent
dimension (A. M. Ruscio & Ruscio, 2002; J. Ruscio et al., 2004), as it holds
indicator skew constant across data sets and identifies any remaining differ-
ences in curve shapes and parameter estimates arising from latent structure.
The approach may also be able to redeem consistency tests that have per-
formed poorly in isolation but that, when applied to both taxonic and dimen-
sional simulated data and compared to the research data, may yield more con-
clusive results. For example, although there may not be one single GFI value
that validly distinguishes taxonic from dimensional structure under varying
data conditions, the GFIs yielded by simulated taxonic and dimensional com-
parison data within a given study may be quite distinct. If the GFI yielded by
the research data closely approximates one (but not the other) of these values,
a defensible structural conclusion may be reached without the need for a
broadly applicable threshold.
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Quantifying fit to curves of known structure. It is also possible to quantify
the fit'of taxometric curves yielded by the simulated comparison data sets to
those yielded by the research data. For example, after conducting a series of
MAXCOV/MAXEIG analyses and obtaining an averaged curve for the re-
se.arch data, researchers can perform two additional series of analyses to ob-
tain averaged curves for the simulated taxonic and dimensional data. Then. in
addition to visually gauging whether the research curve is more consist;:nt
with the simulated taxonic or dimensional curve, the similarity of these
curves can be quantified. This is done by calculating the root mean square re-
sidual (RMSR) of the y values on the averaged curves of the research data
and the simulated data. This index is calculated once to evaluate the fit of the
averaged curve for the simulated taxonic data and once to evaluate the fit of
the averaged curve for the simulated dimensional data. The Fitpysr index is
calculated as follows:

2
Fit — E(yres.data"ysim_dam)
RMSR N , (3)

where Vo 4ors Tefers to a data point on the averaged curve for the research
data, Y dare Tefers to the corresponding data point on the averaged curve for
simulated taxonic or dimensional data, and N refers to the number of points
on each curve. Lower values of Fitgysy reflect better fit, with perfect fit repre-
sented by a value of 0. To the extent that F itrysr differs across the simulated
taxonic and dimensional data, evidence accumulates in favor of the structure
that yielded the superior fit.

If multiple sets of taxonic and dimensional comparison data are generated,
one can calculate Fitgysr for each and then compare the average fit of the
simulated taxonic data sets to the research data relative to the average fit of
the simulated dimensional data sets. This is done by calculating the mean and
standard deviation of the Fitgysz values for the taxonic data sets (M, and SD))
and the dimensional data sets (M, and $Dy), then calculating a fit index based
on Cohen’s d as follows:

M,-M, @)

IsD? + sp?
2

Because lower values of Fitgys are indicative of taxonic structure, subtract-
ing the average fit of the curves for dimensional data from those for taxonic
data should yield negative values of Fit, for taxonic structure and positive
values for dimensional structure. Thus, the sign of the Fir; suggests a struc-
tural conclusion and its magnitude suggests the strength of the evidence for
this conclusion.

Fit, =
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When we have performed the Fit; consistency test in the past, we have
tended to use 10 sets each of simulated taxonic and dimensional comparison
data. However, further study is needed to determine whether larger numbers of
data sets yield more accurate results that offset the additional computational
demand, as well as to establish positive and negative threshold values for
inferring dimensional and taxonic structure, respectively. The potential utility of
the Fitgyse and Fit, indices will be explored in our empirical illustrations,
though more rigorous Monte Carlo evaluations of these indices are also needed.

Question 4: Have the Results Been Presented and
Interpreted Properly?

There are few hard-and-fast rules concerning the presentation of taxometric
results. Rather than espousing a one-size-fits-all approach to the reporting of
taxometric analyses, this section will highlight a few issues that warrant care-
ful consideration and offer a few tentative suggestions for communicating the
wealth of information yielded by a taxometric investigation in an economical
way without compromising its informativeness.

Graphing Considerations

Summarizing graphical results. Taxometric studies inevitably produce a
large number of graphs. We believe that it is essential to provide readers with
sufficient information about how these graphs were generated, along with a
sufficient representation of the graphs themselves, to permit an independent
evaluation of their shapes. To conserve space, it is often helpful to present a
single averaged curve or a small number of representative curves in lieu of an
entire panel of curves generated by a given taxometric procedure. However,
because averaging curves has the potential to distort results, we recommend
that researchers interpret the full panel of curves, carefully inspect averaged
curves to ensure their representativeness of the full panel, and make the full
panel available to interested readers upon request.

Smoothing and scaling graphs. While early taxometric studies relied
heavily on curve smoothing techniques (e.g., variants on the running medians
procedure, Tukey, 1977; locally weighted scatterplot smoothing, Cleveland,
1979), this practice has been controversial because it can artificially flatten
genuine taxonic peaks. If smoothing is performed, it may be best to present
both “raw” and smoothed data points on the same graph. A related consider-
ation specific to the graphing of MAXCOV/MAXEIG results concerns the
scaling of the y axis: Too narrow a range of values may give fluctuations
caused by sampling error the appearance of a peaked curve, whereas too wide
a range of values may artificially flatten the curve. Provided that interpreta-
tions are based on full panels of curves, this should not be a significant prob-
lem, as a consistent curve shape should emerge in taxonic data even if a poor
choice of scaling is made. The program that we have written to perform taxo-
metric analyses holds the y axis constant across each triplet of research, sim-
ulated taxonic, and simulated dimensional curves to facilitate their accurate
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comparison. In addition, the curves for multiple sets of simulated comparison
data, along with the average of these curves, are presented on the same graph
so that one can see the extent to which sampling error is influential on curve
shape for a given analysis and sample size.

Interpretation Considerations

In addition to the choices that must be made in communjcating graphical
res.ults, it is essential that this graphical output and its accompanying quanti-
tative information be interpreted correctly. In the foregoing discussions of
data suitability, taxometric procedures, and consistency tests, we have stressed
the value of using simulated comparison data to help guide interpretations, a
point that we reiterate here. ’

'Rc?gardless of the structural inference that is drawn, the construct to which
this inference pertains must be carefully identified by scrutinizing the indica-
tors that were submitted to analysis. Too often, researchers either assume it to
be self-evident that their indicators represent the target construct or provide
insufﬁcient detail about the nature of the construct that they intended to
examine. However, in any study that uses manifest indicators to draw infer-
ences about latent constructs, a principled argument is required to establish
construct validity. In particular, researchers must establish that their indi-
cators converge on the desired construct and discriminate it from other con-
structs whose structure they did not intend to test. Follow-up analyses exam-
ining associations between the taxon (or dimension) and external variables
may help to more firmly establish its construct validity (Watson, 2003).

Question 5: Are Implications of the Findings
Clearly Articulated?

Just as we argued for the importance of beginning a taxometric study with
a compelling scientific rationale for its conduct, we encourage researchers to
return in their discussions to the basic and applied scientific issues that moti-
vated their study, drawing conclusions in light of the obtained structural
results. Simply stating that the construct appears to be taxonic or dimensional
is not sufficient. Instead, researchers should clearly articulate what they regard
as the theoretical, empirical, and practical implications of these results. Even
better would be to use the taxometric results as a launching pad for additional
theoretical or empirical analysis, such as further delineation of remaining
s.tructural complexities underlying the construct, examination of its associa-
tion with other variables at the latent level, and evaluation of competing
causal models that may explain its revealed structure (J. Ruscio, Haslam, et
al., 2003; J. Ruscio & Ruscio, 2004).

Empirical lllustrations

Having identiﬁed the particular research questions that taxometrics can
address and outlined the major conceptual and methodological issues that an
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informative taxometric investigation should consider, we turn now to a series
of empirical illustrations to demonstrate how taxometric procedures and con-
sistency tests may be selected, performed, and interpreted using real data.
Though our presentation is far more concise than a typical taxometric report
(to make room for illustrations of the method in several data sets), we highlight
the major steps involved in each series of analyses so that prospective users
of the method can gain a sense for how it is applied in practice. An annotated
listing of all command lines that were used to perform these analyses appears
in Appendix A, and sample output for one analysis appears in Appendix B.
Because the purpose of these examples is to illustrate how taxometric anal-
yses are performed, we concentrate our discussion on the methodological
considerations outlined in Question 3 of the foregoing checklist. Due to
space limitations, we focus on three taxometric procedures — MAMBAC,
MAXEIG, and L-Mode — and on consistency tests whose results can be con-
cisely summarized. In addition, we employed the same three consistency
tests in each example to underscore their varying performance under different
data conditions. These included the base rate consistency test, selected be-
cause of its widespread popularity and use; the new curve-fit indices Fitgysr
and Fit,, included to demonstrate their potential utility; and the GFI, selected
to show how even a test that may yield ambiguous results in isolation can be
informative when applied in a comparative context using simulated data.

Biological Sex

For our first example, we performed taxometric analyses using fallible
indicators of a construct with known structure: biological sex. We chose this
data set to demonstrate the ability of taxometrics to correctly reveal a known
taxon and to accurately estimate its base rate in the sample. This example
also illustrates how taxometrics can be performed using very different kinds
of indicators drawn from the same set of research data.

Sample and indicators. The data for this example were drawn from the
Hathaway Data Bank, a large data set comprising all available Minnesota
Multiphasic Personality Inventories (MMPI) completed at the University of
Minnesota Hospitals between 1940 and 1976. The present sample included
one valid MMPI for each patient (see J. Ruscio & Ruscio, 2000, for a
description of how valid MMPIs were identified). Within this sample, the 55
dichotomous items of the Masculinity-Femininity (Mf) scale were used to
construct two indicator sets of biological sex (see J. Ruscio, Ruscio, et al.,
2004). The first indicator set (MMPI#1, N = 14,049) contained the 8 Mf
items that most validly distinguished females (the taxon) from males (the
complement) while also being minimally correlated within groups; these
groups were formed using the criterion of reported sex. We retained 8 of
these dichotomous items because studies have found this number to produce
interpretable taxometric curves (e.g., Gangestad & Snyder, 1985; J. Ruscio,
2000). The second indicator set (MMPI#2, N = 13,580) was constructed by
submitting the 24 most valid Mf items to a factor analysis constrained to a
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.3-fa.10tor solution. Factor scores were calculated on each of the three resulting
indicators for each case possessing complete data. Thus, both indicator sets
were Fonstr}lcted according to purely empirical considerations, given the
empirical criterion-keying approach underlying the MMPI. The large sample
size, moderate taxon base rate (.59), and unselected nature of the sample were
quite appropriate for taxometric analysis,

Table 1 summarizes the distributions and estimated validities of each indi-
cator from the two indicator sets, and Table 2 summarizes their correlations.
Both indicator sets appear to possess dubious validity. This is especially true
of MMPI#1, in which only I of the 8 indicators achieved a validity greater
than the conventional threshold of d = 125 SD. We note this concern to
underscore the value of evaluating data suitability using parallel analyses of
s1mula.1tec_1 taxonic and dimensional comparison data. As will be seen shortly,
these 1pdlcator sets performed admirably in taxometric analysis even though
they might have been rejected outright based on conventional rules of thumb.

. Taxometric analysis of MMPI#1. Because the MMPI#] indicator set con-
sisted solely of dichotomous items, MAMBAC and MAXEIG were performed
using composite input indicators, and L-Mode was not performed at all.

TABLE 1
DISTRIBUTIONS AND ESTIMATED VALIDITIES FOR EacH INDICATOR SET

Sex, Dichotomous Items®

1 2 3 4 5 6 7 8

Taxon M 81 .68 43 54 79 36 48 57
Cor{lp. M 40 13 16 20 37 11 .19 24
Validity (d) 96 1.33 62 75 97 59 64 70

Sex, Factors? PTSDe GAD¢

1 2 3 1 2 3 4 AB C E

Skew ] 02 -29 17 —-42 -55 -—.18 14 56 .98 69
Kurtosis ~8 -—-87 -—87 .10 0 -27 ~-59 —-63 -—-21 -2
Taxon M 40 47 31 45 46 45 44 1.88 1.95 1.83
Taxon SD 80 .88 93 72 .69 75 84 50 63 63
Comp. M ~64 —68 -4 —-97 -98 —-99 —05 — 12 02 -.15
Comp. SD 90 76 93 79 82 69 58 92 92 87

Validity (d) 129 1.38 80 191 197 197 180 224 2:14 234

*Taxon = 8,282 women (59%); complement = 5,767 men (41%); N = 14,049,

bTaxon = 7,994 women (59%); complement = 5,586 men (41%); N = 13,580.
¢Post-traumatic Stress Disorder (N = 1,063); taxon n = 723 (68%), complement n = 340
(32%); indicator 1 = reexperiencing and situational avoidance; indicator 2 = withdrawal and
emotional numbing; indicator 3 = arousal and lack of control; indicator 4 = self-persecution
(guilt and suicidality).

4 Generalized Anxiety Disorder (N = 4,824); taxon n = 376 (8%), complement n = 4,448
(92%); indicators represent the corresponding DSM-IV diagnostic criteria. |
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TABLE 2
SUMMARY OF CORRELATIONS FOR EACH INDICATOR SET
Full Sample Taxon Complement
Indicator Set M SD M SD M SD
Sex, Dichotomous Items?* 20 07 03 08 21 14
Sex, Factors® 27 02 -02 06 14 05
PTSD¢ 61 03 36 06 .19 08
GAD¢ 63 08 .18 12 51 .10

aTaxon = 8,282 women (59%); complement = 5,767 men (41%); N = 14,049.
b Taxon = 7.994 women (59%); complement = 5,586 men (41%); N = 13,580.
¢ Post-traumatic Stress Disorder (N = 1,063); taxon n = 723 (68%), complement n = 340 (32%).
dGeneralized Anxiety Disorder (N = 4,824); taxon n = 376 (8%), complement n = 4448 (92%).
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MAMBAC was conducted with 50 equally-spaced cuts along the input indica-
tor (beginning and ending 25 cases from both extremes), whereas MAXEIG
was conducted using 50 windows that overlapped by 90%; these analytic
approaches were applied in all subsequent analyses. To generate taxonic
comparison data, the infallible criterion was provided to the simulation pro-
gram. As can be seen in Figure 3, the averaged MAMBAC and MAXEIG
curves for the research data were virtually identical to those for the similated
taxonic data and quite distinct from those for the simulated dimensional data.
Hence, the suitability test was passed, and the taxometric curves were easily
interpreted as taxonic.

Next, the taxon base rate was estimated from each taxometric analysis (see
Table 3), and these values were inspected for consistency. Examination of the
standard deviations within and between procedures revealed few differences
across simulated taxonic and dimensional data sets, suggesting that the base
rate consistency test was not particularly informative for this indicator set.
Two observations are worthy of note, however. First, taxon base rate esti-
mates derived from the research data were highly accurate: The averaged
estimate of .61 was close to the true base rate of .59. Second, MAMBAC base

TABLE 3
SUMMARY OF TAXON BASE RATE ESTIMATES
Research Data Sim. Tax. Data Sim. Dim. Data
Indicator Set N M SD M SD M SD
Sex, Dichotomous Items
MAMBAC 8 62 .15 78 21 43 07
MAXEIG 28 59 13 65 .10 43 15
M (SD) 61(.02) 72 (.09) 43 (.00)
Sex, Factors
MAMBAC 6 32 50 58 46 48 09
MAXEIG 3 65 05 75 06 34 13
L-Mode 3 61 07 .63 05 49 49
M (SD) 53 (.18) .65 (.09) 44 (.08)
PTSD ’
MAMBAC 4 52 05 .52 04 51 04
MAXEIG 4 73 .14 .64 02 a1 03
L-Mode 3 45 44 61 .08 51 .50
M (SD) S57(.15) .59 (.06) .58 (.12)
GAD
MAMBAC 3 .33 06 32 02 33 02
MAXEIG® 3 26 02 .18 02 24 06
L-Mode 3 35 02 29 04 64 33
M (SD) 31(.05) 26 (07) 40 (21)

Notes. PTSD = Posttraumatic Stress Disorder; GAD = Generalized Anxiety Disorder.
2These estimates were derived from MAXEIG analyses performed using 100 windows.
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TABLE 4
SumMARY OF GOODNESS OF FIT (GFI) VALUES

Indicator Set Research Data Taxonic Data Dimensional Data

Sex, Dichotomous Items

MAMBAC 1.00 1.00 1.00

MAXEIG 1.00 - 1.00 1.00
Sex, Factors

MAMBAC 1.00 99 , 1.00

MAXEIG 1.00 1.00 98

L-Mode 99 99 1.00
PTSD

MAMBAC 86 90 84

MAXEIG 79 91 79

L-Mode 85 92 84
GAD

MAMBAC 96 95 95

MAXEIG® .80 - 93 .87

L-Mode 94 92 32

1\;btes. PTSD = Posttraumatic Stress Disorder; GAD = Generalized Anxiety Disorder.
GFl is reported for MAXEIG analyses performed using 100 windows.

rate estimates for the simulated dimensional data were quite consistent with
one another (SD = .07), contrary to the expectation of widely diverging esti-
mates for dimensional structure.

As a second consistency test, GFI values were calculated from estimates of
indicator validity and within-group variance obtained by classifying cases
using each taxometric procedure. For MAMBAC, cases were classified using
the averaged base rate estimate: the cases scoring highest on the sum of all
indicators were assigned to the taxon at a proportion equal to the base rate,
with the remaining cases assigned to the complement. For MAXEIG, cases
were classified using Bayes’ Theorem. (Had L-Mode been performed with
this indicator set, cases could have been classified using the profile similarity
algorithm described in Waller & Meehl, 1998.) As can be seen in Table 4, the
GFI values failed to differentiate taxonic from dimensional structure, with all
three data sets yielding perfect fit. Parallel computation of the GFI in the sim-
ulated data sets was especially valuable in this instance; without this compar-
ison, it would have been tempting to interpret the GFI of 1.00 for the research
data as strongly supportive of a taxonic conclusion. Indeed, the fact that seem-
ingly perfect fit was achieved for simulated dimensional as well as taxonic
data argues against the use of any fixed threshold for interpreting the GFL.

Finally, both of the new curve-fit indices (Fitrusr and Fit,) confirmed what
was plainly evident in visual inspection of the curves: The MAMBAC and
MAXEIG curves yielded by the simulated taxonic data more closely fit those
of the research data than did the curves yielded by the simulated dimensional

l
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TABLE 5
SUMMARY OF CURVE-FIT VALUES FOR MAMBAC AND MAXEIG ANALYSES
Fitgpmsr

Indicator Set Taxonic Dimensional Fitg '
Sex, Dichotomous Items

MAMBAC 034 072 -7.62

MAXEIG 006 009 —4.44
Sex, Factors

MAMBAC 104 227 —967

MAXEIG 041 086 -9.15
PTSD .

MAMBAC 143 030 7.46

MAXEIG 139 041 476
GAD

MAMBAC 090 075 161

MAXEIG — 50 windows 046 019 7.12.

MAXEIG — 100 windows 048 026 315

Notes. PTSD = Posttraumatic Stress Disorder; GAD = Generalized Anxiety Disorder. For’
each comparison of Fitgyse values across the simulated taxonic and dimensional com- *
parison data, the value representing better fit appears in bold print.

data (see Table 5). Thus, whereas the GFI was unable to differentiate taxonic
and dimensional structure, the curve-fit indices made this distinction well.

Taxometric analysis of MMPH{2. The MMPI#2 (factors) indicator set con-
sisted of three continuously distributed indicators, enabling us to perform
MAMBAC, MAXEIG, and L-Mode analyses. Given the continuous distribu- -
tions of the indicators and favorable data parameters (e.g., very large N, mod-
erate taxon base rate), MAMBAC was performed with individual (rather than
composite) indicators to generate more curves for consistency testing. Given
these reasons as well as the availability of only three indicators, MAXEIG
was performed with individual indicators in all possible input-output-output
configurations. Finally, a single L-Mode analysis was performed with all
three indicators. -

Results of these analyses are displayed in Figure 4. The suitability test was
clearly passed for MAMBAC and MAXEIG, whereas the L-Mode curves for
the two simulated data sets were a bit more difficult to differentiate. When
analyses were performed on the research data, MAMBAC and MAXEIG re-
sults were highly similar to those yielded by the simulated taxonic data and
very different from those yielded by simulated dimensional data. Interest-
ingly, the L-Mode results for the research data were clearly bimodal, provid-
ing strong evidence for taxonicity even though the initial suitability test was
only marginally passed. '

Taxon base rate estimates generated by MAXEIG and L-Mode were con-
sistent and accurate for both the research data and simulated taxonic data, and
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Fic. 4. Analyses of the three composite indicators constructed through a facton: analysis of
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MAMBAC and 3 MAXEIG analyses. For the simulated comparison data, the solid line repre-
sents the average of the 10 individual curves (dotted lines).

less consistent for the simulated dimensional data (see Table 3). In co_ntrast,
base rate estimates yielded by MAMBAC were once again markt?dly discrep-
ant for the research data and the simulated taxonic data, yet consistent for the
simulated dimensional data. This underscored the value of interpreting bas-e
rate estimates within the context of a comparison with both taxonic and di-
mensional simulated data. GFI values again failed to discriminate between
taxonic and dimensional structures (see Table 4), whereas the curve-fit indi-
ces were clearly consistent with a taxonic solution (see Table 5).
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Posttraumatic Stress Disorder (PTSD)

Our second example examined the latent structure of a construct — PTSD —
whose structure was unknown. We chose this data set to illustrate the perfot-
mance of taxometrics with data whose parameters are generally well-suited
for this analytic approach. We also present this example to demonstrate the
ability of taxometric analysis, when used with simulated comparison data, to
support a dimensional structural solution.

Sample and indicators. The data set for this example included 1,063 male
combat veterans who completed an outpatient psychological assessment at
the Boston Veterans Administration Medical Center between 1985 and 2000
(see A. M. Ruscio, Ruscio, & Keane, 2002, for further details). Veterans reported
a wide range of PTSD symptom severity, and 68% qualified for a DSM-IV
diagnosis of PTSD by the symptom-calibrated scoring rule of the Clinician-
Administered PTSD Scale (Weathers, Ruscio, & Keane, 1999), making this a
highly appropriate sample for evaluating the latent structure of PTSD.

Indicators for taxometric analysis were drawn from the Mississippi Scale
for Combat-Related PTSD (Keane, Caddell, & Taylor, 1988), a reliable and
valid measure of the diagnostic criteria and associated symptoms of combat-
related PTSD. The 35 items of the measure, each rated on a 5-point Likert
scale, were summed to create four composite indicators, each corresponding
to one of the four factors of PTSD uncovered in prior confirmatory factor
analyses of the measure. Thus, this indicator set was constructed through a
blend of theoretical and empirical approaches, with attention to the relevant
facets of the latent construct as well as the empirical relations among the
items in previous research. Distributions and estimated validities of the four
indicators appear in Table 1 and inter-indicator correlations appear in Table 2.
Indicator validity appeared to be quite strong, though within-group correla-
tions were somewhat high among cases assigned to the putative taxon.

Taxometric analysis. To generate taxonic comparison data, we assigned
the 68% of cases scoring highest on the sum of all indicators into the taxon
and the remaining cases into the complement and provided this fallible crite-
rion to the simulation program; we constructed a criterion variable in this way
because PTSD diagnoses were missing for some cases and we wished to per-
form analyses using the full sample of data. MAMBAC was performed using
composite input indicators to enhance reliability and power, whereas MAXEIG
(which already includes all indicators in each analysis to enhance power) was
performed using each indicator as the input and all other indicators as the
output. L-Mode was performed in the usual manner with all four indicators.

The MAMBAC, MAXEIG, and L-Mode results for all data sets are shown in
Figure 5. Each procedure yielded markedly different curve shapes for the tax-
onic versus dimensional comparison data, indicating that the PTSD indicators
were suitable for analysis with all three procedures. Hence, while the esti-
mated within-group correlations initially seemed to be potentially problem-
atic, suitability testing based on the simultaneous consideration of all data
parameters was satisfactorily passed. Subsequent analysis of the research
data yielded results that were far more consistent with those of the simulated
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dimensional data than with those of the simulated taxonic data, providing
support for the dimensionality of PTSD. .
Across all three taxometric procedures, taxon base rate estimates yielded
by the research data and the simulated dimensional data were similarly
inconsistent, and estimates by both were less consistent than those yielded by
the simulated taxonic data (see Table 3). Within procedures, however, these
estimates were not always as informative. As it did for both MMPI indicator
sets, MAMBAC once again generated consistent base rate estimates for the
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research, dimensional, and taxonic data sets. Although these illustrations
are limited in scope, they are consistent with our general observation that
MAMBAC often produces coherent base rate estimates even for dimensional
data, suggesting that such a finding provides only weak evidence of taxonic-
ity. In the present example, MAXEIG also yielded consistent base rate esti-
mates for both of the simulated data sets. Only the estimates generated by
L-Mode provided a useful consistency test in this data set.

In contrast to the previous example, the GFI nicely distinguished the tax-
onic and dimensional simulated data, signifying its suitability as a consis-
tency test for the PTSD indicator set. Subsequent computation of GFI values
for the research data revealed them to closely approximate those for the sim-
ulated dimensional data, and to differ from those for the simulated taxonic
data, across all three taxometric procedures (see Table 4). Finally, the curve-
fit indices provided additional support for dimensional structure (see Table 5).

In sum, all procedures and consistency tests passed the suitability test and
pointed toward the dimensional structure of PTSD, a conclusion that was fur-
ther supported by a broader range of taxometric analyses performed on addi-
tional indicator sets in this sample (see A. M. Ruscio et al., 2002). Because
the parallel analysis of simulated data helped to rule out the alternative expla-
nation that nontaxonic findings were due to unsuitable data parameters, we
could more confidently reach a dimensional conclusion.

Generalized Anxiety Disorder (GAD)

Our final example evaluated the latent structure of GAD, another construct
with unknown latent structure. This illustration demonstrates the perfor-
mance of taxometrics with data whose suitability for analysis is questionable,
ultimately resulting in ambiguous results and suspended judgment about latent
structure,

Sample and indicators. The sample consisted of 4,824 unselected under-
graduate students enrolled at a large, northeastern university. Students reported
a range of anxiety symptom severity, with 8% of the sample qualifying for a
DSM-1V diagnosis of GAD by the Generalized Anxiety Disorder Question-
naire (GAD-Q-IV; Newman et al., 2002). Indicators were constructed from
the items of two questionnaires: the GAD-Q-IV, a self-report diagnostic mea-
sure assessing each symptom of GAD, and the Penn State Worry Question-
naire (Meyer, Miller, Metzger, & Borkovec, 1990), a measure of the trait
worry characteristic of individuals with GAD. Initially, four composite indi-
cators were constructed by summing items assessing DSM-IV criteria A, B,
C, and E. However, because the Criterion A (excessive, pervasive, chronic
worry) and Criterion B (uncontrollable worry) indicators were so highly cor-
related (» > .80 in the full sample and within the GAD and non-GAD
groups), they were combined into a single indicator, yielding three composite
indicators that provided good content icoverage of the construct while en-
deavoring to attain adequate data pa.rallneters for analysis. Descriptive data.
for the GAD indicator set appear in Tables 1 and 2. Although the estimated
indicator validities were very high, so were the correlations within the puta-
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tive complement. Combined with a moderate amount of indicator skew and a
small putative taxon, the suitability of these data for taxometrics appeared
uncertain.

Taxometric analysis. To generate taxonic comparison data, GAD-Q-IV
diagnostic status was provided to the simulation program as a fallible crite-
rion. To maximize statistical power under these challenging data conditions,
MAMBAC analyses were performed using composite input indicators. How-
ever, because only three indicators were available, there was no choice but to
perform MAXEIG with indicators in the three possible input-output-output
configurations. One series of MAXEIG analyses was performed with 50 win-
dows, whereas a second series was performed with 100 windows to imple-
ment the inchworm consistency test. L-Mode was conducted in the usual
manner with all three indicators.

Results for all of these analyses are shown in Figure 6. MAXEIG results
based on 50 windows were only slightly different for the simulated taxonic
and dimensional data, but this difference grew clearer with 100 windows,
thereby passing the suitability test. L-Mode results also appeared to pass the
suitability test, though perhaps more marginally. However, the MAMBAC
results were virtually indistinguishable across taxonic and dimensjonal struc-
tures, arguably failing the suitability test. Under these circumstances, it would
not be advisable to perform MAMBAC on the research data; the research re-
sults are provided in Figure 6 only for illustrative purposes, and this MAMBAC
curve is indeed very difficult to interpret. The MAXEIG curves of both the
research data and the simulated taxonic data evidenced a slight peak with 50
windows that grew more pronounced with 100 windows, whereas the curve
for the simulated dimensional data did not peak in either analysis. Finally, the
L-Mode research curve exhibited a hint of an upper mode that was more sim-
ilar to the simulated taxonic curve than to the simulated dimensional curve,
but that was less pronounced and located in a slightly different position along
the x axis.

Quantitative indices also yielded mixed results. Estimates of the taxon base
rate (see Table 3) yielded by MAMBAC and MAXEIG analyses were low
and consistent for all three data sets. This finding was interesting for two
reasons. First, the fact that taxonic data simulated using a base rate of .08
yielded base rate estimates as high as .32 (MAMBAC) and .18 (MAXEIG)
suggests that these procedures can substantially overestimate small base rates.
This upward bias may be attributable to indicator skew, within-group correla-
tions, or other factors. Second, the fact that each procedure yielded consistent
base rate estimates for the dimensional data — and that consistency between
the estimates of these two procedures was greatest for the dimensional data —

once again advises caution in drawing a taxonic inference from coherent base
rate estimates. As was noted earlier, skewed indicators can easily produce such
coherence regardless of latent structure. Notably, although the MAMBAC and
MAXEIG base rate estimates did not lend support to either a taxonic or a
dimensional inference, the L-Mode estimates provided support for taxonic
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structure, with the research data and the simulated taxonic data evidencing
similar levels of consistency that were much higher than those evident for the
simulated dimensional data.

Whereas the GFI values derived from the MAMBAC analyses were uni-
formly high and therefore uninformative, clear differences emerged for the
GFI values derived from the MAXEIG and L-Mode analyses, with the pat-
tern of results suggesting a dimensional inference for MAXEIG and a taxonic
inference for L-Mode (see Table 4). Both of the curve-fit indices favored a
dimensional inference for both procedures, though the magnitude of the Fiz,
values for the MAMBAC analysis and the MAXEIG analysis with 100 win-
dows were not as large as in the previous analyses.

In sum, taxometric results for the GAD indicators were inconclusive. The
suitability tests were barely passed by some procedures and consistency tests,
and not passed by others. Those tests that did pass the suitability test did not
yield strong or consistent results, suggesting that neither a taxonic nor a di-
mensional conclusion is warranted. For a structural conclusion to be possible,
follow-up taxometric analyses are needed using other indicator sets that are
drawn from additional measures of GAD, constructed in different ways, and
analyzed in different samples of data — ideally, samples with stronger repre-
sentation of putative taxon members. It is important to emphasize that had the
research data been analyzed without the parallel analysis of simulated com-
parison data, these results may have been interpreted in support of a small
GAD taxon. However, because comparisons with simulated data revealed in-
consistent support for taxonic structure, we would argue that no conclusion
is justified at this time and that judgment should be withheld pending further
research. '

Conclusions

This overview was designed to introduce the major considerations involved
in conducting a taxometric investigation and to stimulate interested readers to
apply the taxometric method to constructs in their areas of specialization.
Rigorous taxometric investigations have much to offer the science of clinical
psychology, and careful attention to the checklist of conceptual and method-
ological issues presented here should maximize the informativeness of such
research. In addition, as we emphasized throughout the paper, the informativ-
ness of taxometric research is particularly likely to be enhanced when thought-
ful analyses are accompanied by the simulation and parallel analysis of taxonic
and dimensional comparison data. We hope that our empirical illustrations
provide a sense for how taxometric analysis may be implemented in practice,
and hence promote its use by new investigators. Finally, we offer up our taxo-
metrics program code — available with detailed documentation at http://
www.etown.edu/psychology/faculty/ruscio.htm — with the hope that it will
facilitate the sound application of the taxometric method to valuable new
questions about latent structure.
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Appendix A
Annotated Command Lines for all Taxometric Analyses
Biological Sex Analyses— Dichotomous Indicators

The data set is called “MMPI1,” and it contains the 8 dichotomous items
selected to serve as indicators plus a 9th column denoting each participant’s
actual sex (1 = male, 2 = female). Because the data were dichotomous, com-
posite indicators had to be used for MAMBAC and MAXEIG, and L-Mode
was not conducted. Prior to analysis, taxonic and dimensional comparison
data were simulated.

MMPIlt <- SimTax(MMPI1)
MMPIld <- SimDim(MMPI1[,1:8])

1. Perform MAMBAC with composite input indicators. Request parallel
analyses of simulated comparison data to generate estimates of curve fit. To
simulate taxonic data, use the supplied criterion variable. Note that the 9th
column will not be submitted to MAMBAC analyses, it will only be used to
simulated taxonic comparison data.

MAMBAC(MMPI1,Sim.Data=T, Supplied.Class=T,N.Samples=10,Ind. Comp=T)

2. To perform full analyses of the simulated comparison data and to generate
estimates of latent parameters, submit these data sets to parallel MAMBAC
analyses:

MAMBAC(MMPI1t[,1:8],Ind.Comp=T)
MAMBAC (MMPI1d[,1:8],Ind.Comp=T)

3. Perform MAXEIG with composite indicators and curve fitting via paral-
lel analyses of simulated comparison data.

MAXEIG(MMPI1,Sim.Data=T, Supplied.Class=T,N.Samples=10, Ind.Comp=T)

4. To perform full analyses of the simulated comparison data and to gener-
ate estimates of latent parameters, submit these data sets to parallel MAXEIG
analyses:

MAXEIG(MMPI1t[,1:8],Ind.Comp=T)
MAXEIG(MMPI1d{[,1:8],Ind.Comp=T)

Biological Sex Analyses— Factor Score Indicators

The data set is called “MMPI2,” and it contains a patient ID number (an
arbitrary code added to the Hathaway Data Bank to denote multiple MMPIs
completed by the same patient but that contains no identifying information),
the 3 composite indicators generated through a factor analysis of the 24 most
valid Mf items, and a 5th column denoting each participant’s actual sex (1 =
male, 2 = female). Before performing any analyses, taxonic and dimensional
comparison data were simulated.

MMPI2t <- SimTax(MMPI2[,2:5])
MMPI2d <- SimDim(MMPI2[,2:4])
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1. Perform MAMBAC with curve fitting via parallel analyses of simulated
comparison data. To simulate taxonic data, use the supplied classification
codes. '

MAMBAC (MMPI2[,2:5],Sim.Data=T,Supplied.Class=T,N.Samples=10)

2. To perform full analyses of the simulated comparison data and to generate
estimates of latent parameters, submit these data sets to parallel MAMBAC
analyses:

MAMBAC (MMPI2t[,1:3])
MAMBAC (MMPI2d[,1:31)

3. Perform MAXEFIG with curve fitting via parallel analyses of simulated
comparison data.

MAXEIG(MMPI2[,2:5],Sim.Data=T,Supplied.Class=T,N.Samples=10)

4. To perform full analyses of the simulated comparison data and to gener-
ate estimates of latent parameters, submit these data sets to paralle]l MAXEIG
analyses:

MAXEIG (MMPI2t[,1:3])
MAXEIG(MMPI2d[,1:3])

5. Perform L-Mode with parallel analyses of simulated comparison data;
note that curve fitting is not performed for L-Mode. Note that because the
height of the visually apparent lower mode was less than the height of the
curve at x = 0, the location of the lower mode was set manually.

LMode (MMPI2[,2:4],Mode.L=-1,N.Samples=10)

6. To perform full analyses of the simulated comparison data and to generate
sstimates of latent parameters, submit these data sets to parallel L-Mode
analyses, locating visually apparent modes manually as needed:

“Mode (MMPI2t[,1:3],Mode.L=~1.2)
“Mode (MMPI2d{,1:3})

PTSD Analyses

The data set is called “Miss,” and it contains just the 4 composite indica-
‘ors. Before performing any analyses, taxonic and dimensional comparison
lata were simulated. Whereas the simulation of dimensional comparison data
'equired just a single command (a), the simulation of taxonic comparison
lata required the creation of a criterion variable. This was done in several
steps: (b) an additional column representing the total score on the 4 indicators
was created, (c) the data were sorted by total scores, (d) a vector of classifica-
ion codes (1 = complement, 2 = taxon) was created, and (e) the classification
sodes were appended to the data set. Finally, the taxonic comparison data
~ere simulated (f).
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(a) Missd <- SimDim(Miss[,1:4])

(b) Miss <-cbind(Miss, (Miss[,1]+Miss[,2]+Miss[,3]+Miss[,4]))
(c) Miss <- Miss[sort.list(Miss[,5]),]

(d) Class <- c(rep(1,340),rep(2,723))

(e) Miss <~ cbind(Miss,Class)

(f) Misst <- SimTax(Miss[,c(l:4,6)])

1. Perform MAMBAC with composite input indicators and curve fitting
via parallel analyses of simulated comparison data. To simulate taxonic data,
assign the 68% of cases scoring the highest on the sum of the 4 indicators to
the taxon and the remaining 32% of cases to the complement.

MAMBAC(Miss[,1:4],5im.Data=T,Supplied.P=.68,N.Samples=10, Ind.Comp=T)

2.To perform full analyses of the simulated comparison data and to generate
estimates of latent parameters, submit these data sets to parallel MAMBAC
analyses:

MAMBAC(Misst[,1:4],Ind.Comp=T)
MAMBAC (Missd[,1:4],Ind.Comp=T)

3. Perform MAXEIG with curve fitting via parallel analyses of simulated
comparison data. For the estimation of latent parameters, assign cases using
the base-rate classification method. This was done because in an initial analy-
sis, several of the curves reached their maximum eigenvalue in the first win-
dow, yielding nonsensical estimates of the valid and false positive rates for 3
of the 4 indicators (1.00 in each case). Thus, the default classification method
(Bayes’ Theorem) would have been inappropriate.

MAXEIG(Miss[,1:4],Sim.Data=T,Supplied.P=.68,N.Samples=10,Classify=1)
4. To perform full analyses of the simulated comparison data and to gener-

ate estimates of latent parameters, submit these data sets to parallel MAXEIG
analyses:

MAXEIG(Misst[,1:4],Classify=1)
MAXEIG(Missd[,1:4],Classify=1)

5. Perform L-Mode with parallel analyses of simulated comparison data.
LMode(Miss[,1:4],Sim.Data=T,Supplied.P=.68,N.Samples=10)
6. To perform full analyses of the simulated comparison data and to gener-

ate estimates of latent parameters, submit these data sets to parallel L-Mode
analyses, locating visually apparent modes manually if necessary:

LMode (Misst[,1:4],Mode.L=-1)
LMode (Missd[,1:4])
GAD Analyses

The data set is called “GAD,” and it contains an arbitrary participant ID
number; 4 composite indicators created according to DSM-IV criteria A, B,
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C, and E; an additional composite indicator created by collapsing across cri-
teria A and B; and GAD diagnostic status (1 = complement or non-GAD, 2 =
taxon or GAD). Thus, columns 4 — 6 comprise the 3 composite indicators
representing criteria C, E, and A/B. Before performing any analyses, taxonic
and dimensional comparison data were simulated.
GADt <- SimTax(GAD{,4:7])
GADd <- SimDim({GAD[,4:6])

1. Perform MAMBAC with composite input indicators and curve fitting
via parallel analyses of simulated comparison data. To simulate taxonic data,
use the supplied classification codes.

MAMBAC (GAD[,4:7],Sim.Data=T, Supplied.Class=T,N.Samples=10,Ind.Comp=T)
2. To perform full analyses of the simulated comparison data and to generate

estimates of latent parameters, submit these data sets to parallel MAMBAC
analyses:

MAMBAC(GADt[,1:3],Ind.Comp=T)
MAMBAC (GADd{,1:37],Ind.Comp=T)

3. Perform MAXEIG with curve fitting via parallel analyses of simulated
comparison data. Analyses were repeated with twice as many yvinc_lows (100,
rather than the default of 50) to implement the inchworm consistency test.

MAXEIG(GAD[,4:7],Sim.Data=T,Supplied.Class=T,N.Samples=10) ‘
MAXEIG(GAD[,4:7],Sim.Data=T,Supplied.Class=T,Windows=100,N.Samples=10)

4.To perform full analyses of the simulated comparison data and to gener-
ate estimates of latent parameters, submit these data sets to parallel MAXEIG

analyses:

MAXEIG(GADt[,1:3],Windows=100)
MAXEIG(GADA[,1:3],Windows=100)

5. Perform L-Mode with parallel analyses of simulated comparison data.

LMode(GAD[,4:7],Sim.Data=T,Supplied.Class=T,N.Samples=10,Mode.R=1.3)

6. To perform full analyses of the simulated comparison data and to gener-
ate estimates of latent parameters, submit these data sets to paralle] L-Mode
analyses, locating visually apparent modes manually if necessary:

LMode(GADt[,1:3],Mode.R=1.5)
IMode (GADA([,1:3])
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Appendix B
Sample Output: MAXEIG Analysis of MMPI#2

> MAXEIG(HMPIZ[,2:5],Sim.Data=T,Supplied.Class=T,N.Samp1es=10)
SUMMARY OF MAXEIG ANALYTIC SPECIFICATIONS

Sample size: 13580

Number of indicator variables: 3

Calculation method: Eigenvalues

Replications: 1

Inchworm consistency test: No

Subsamples: 50 windows with 0.9 overlap

n per window at 50 windows: 2302

Indicators: Each variable serves once as input, with all other variables as outputs
Total number of curves: 3

Y values smoothed for graphing and estimation: No

Base rate estimation: Adapted general covariance mixture theorem
Classification of cases: Bayes' Theorem

SUMMARY OF MAXEIG PARAMETER ESTIMATES
Estimated hitmax values and taxon base rates for each curve:

Hitmax P
Curve 1 -0.430 0.629
Curve 2 -0.259 0.612
Curve 3 -1.065 0.698

Summary of base rate estimates across curves:
M 0.646
sD 0.045

o

Estimated VP, FP values at each indicator’s hitmax cut:

VP Fp
Indicator 1 0.879 0.341
Indicator 2 0.861 0.292
Indicator 3 0.952 0.781

' Base rate estimate for averaged curve = 0.626

Estimated latent group M, SD, validity on each indicator:
Taxon M Taxon SD Comp M Comp SD Validity (Ra&) validity (SD)

Indicator 1 0.368 0.853 -0.957 0.671 1.326 1.643
Indicator 2 0.352 0.879 -0.933 0.642 1.284 1.565
Indicator 3 0.270 0.929 -0.698 0.823 0.968 1.075
Summary of estimated indicator validities (in SD units):

M = 1.428

SD = 0.308

Indicator correlations:
Full Sample ( N = 13580 ):
Indicator 1 Indicator 2 Indicator 3

Indicator 1 1.000 0.298 0.251
Indicator 2 0.298 1.000 0.264
Indicator 3 0.251 0.264 1.000
Taxon ( n = 9829 ):

Indicator 1 Indicator 2 Indicator 3
Indicator 1 1.000 -0.087 0.074
Indicator 2 -0.087 1.000 0.079
Indicator 3 0.074 0.079 1.000

Complement ( n = 3751 ):

Indicator 1 Indicator 2 Indicator 3
Indicator 1 1.000 0.048 -0.313
Indicator 2 0.048 1.000 -0.213
Indicator 3 -0.313 -0.213 1.000
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Summary of indicator correlations:

Full Sample
Taxon
Complement

M

SD

0.271 0.024
0.022 0.094
-0.159 0.186

Average indicator validity (in SD units)
* Estimated using the Meehl & Yonce (1996, p. 1146)

Goodness of Fit Index (GFI) = 1

SUMMARY OF SIMULATED DATA CURVE FITTING

Taxonic
Dimensional
Dimensional
Dimensional
Dimensional
Dimensional
Dimensional
Dimensional
Dimensional
Dimensional

Dimensional

Fit(RMSR) of averaged

Taxon:
Complement:
Taxonic data set:

Taxon:
Complement :
Taxonic data set:

Taxon:
Complement:
Taxonic- data set:

Taxon:
Complement :
Taxonic data set:

Taxon:
Complement:
Taxonic data set:

Taxon:
Complement:
Taxonic data set:

Taxon:
Complement:
Taxonic data set:

Taxon:
Complement:
Taxonic data set:

Taxon:
Complement:
Taxonic data set:

Taxon:
Complement:
set:

data
data
data
data
data
data
data
data
data
data
data

set:
set:
set:
set:
set:
set:
set:
set:
set:

set:

N = 7994 , Largest
N = 5586 , Largest
Largest residuval r

N 7994 , Largest
N 5586 , Largest
Largest residuwal r

N 7994 , Largest
N 5586 , Largest
Largest residual r

N 7994 , Largest
N 5586 , Largest
Largest residual r
N 7994 , Largest
N 5586 , Largest
Largest residual r
N 7994 , Largest
N 5586 , Largest
Largest residual ¢
N 7994 , Largest
N 5586 , Largest
Largest residual r

o

N 7994 , Largest
N 5586 , Largest
Largest residual r

N 7994 , Largest
N = 5586 , Largest
Largest residual r

N 7994 , Largest
N 5586 , Largest
Largest residual r

o

N

2 2 =z % =2 =2 2 K
I

curves:

Simulated taxonic data: 0.041
Simulated dimensional data: 0.086

= 1.308

residual r
residual r
= 0 , RMSR

residual r
residual r
= 0 , RMSR

residual r
residual r
= 0 , RMSR

residual r
residual r
= 0 , RMSR

residual r
residual r
= 0 , RMSR

residual r
residual r
= 0 , RMSR

residual r
residual r
= 0 , RMSR

residual r
residual r
= 0 , RMSR

residual r
residual r
= 0 , RMSR

residual r
residual r
= 0 , RMSR

13580 , Largest residual
= 13580 , Largest residual
= 13580 , Largest residual
= 13580 , Largest residual
= 13580 , Largest residual
13580 , Largest residual
= 13580 , Largest residual
= 13580 , Largest residual
= 13580 , Largest residual
= 13580 , Largest residual

formula.

loo loo loo oo oo oo oo oo

oo

Fit(d) of 10 simulated curves for each structure: -9.145
* Negative values are more supportive of taxonic structure.

Il oo
=)

o O O 0O O 0O O o O o

RMSR r
RMSR r

RMSR r
RMSR r

RMSR r
RMSR r

RMSR r
RMSR r

RMSR r
RMSR r

RMSR r
RMSR r

RMSR r
RMSR r

RMSR r
RMSR r

RMSR r
RMSR r

RMSR r
RMSR r

RMSR
RMSR
RMSR
RMSR
RMSR
RMSR
RMSR

RMSR
RMSR

H

La ]

o O O & O o O O O o
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