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The present article sets forth the argument that psychological assessment should be based on
a construct’s latent structure. The authors differentiate dimensional (continuous) and
taxonic (categorical) structures at the latent and manifest levels and describe the advantages
of matching the assessment approach to the latent structure of a construct. A proper match
will decrease measurement error, increase statistical power, clarify statistical relationships,
and facilitate the location of an efficient cutting score when applicable. Thus, individuals
will be placed along a continuum or assigned to classes more accurately. The authors briefly
review the methods by which latent structure can be determined and outline a structure-
based approach to assessment that builds on dimensional scaling models, such as item re-
sponse theory, while incorporating classification methods as appropriate. Finally, the au-
thors empirically demonstrate the utility of their approach and discuss its compatibility with

traditional assessment methods and with computerized adaptive testing.
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The latent structure of a psychological construct may
be either taxonic (categorical, discrete, qualitative, latent
class), dimensional (continuous, quantitative, latent fac-
tor, latent trait), or some combination of both. Although
the importance of latent structure for measurement has
been noted in the assessment literature (e.g., Meehl, 1992;
Smith & McCarthy, 1995), there has not yet been a system-
atic effort to present the full range of possible latent struc-
tures, discuss how latent structure can inform the choice of
measurement models, or articulate the implications of this
choice for assessment. In the present article, we assert that
the match—or mismatch——between the latent structure of
a construct and the model by which that construct is mea-

sured affects the accuracy with which individuals are
placed along a continuum or assigned to classes, We ex-
plore the consequences of this structure-model match for
measurement error, statistical power, the search for an
efficient cutting score, and statistical relations among
constructs.

In what follows, we develop and illustrate the value of a
comprehensive, structure-based approach to assessment
by highlighting the critical role of latent structure in mea-
surement. First, we explore differences between the latent
and manifest levels of analysis and describe the possible
types of latent structures. Next, we describe why it is im-
portant to match one’s measurement approach to the latent
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structure of the construct under investigation. We then
briefly review various methods for empirically evaluating
latent structure and suggest a generalized strategy for ap-
plying these methods. Finally, we outline a structure-
based approach to assessment that builds on knowledge of
latent structure by incorporating dimensional scaling and
categorical classification methods as appropriate.

DISTINGUISHING MANIFEST
AND LATENT STRUCTURE

The critical distinction between latent and manifestlev-
els of analysis is seldom discussed in the assessment litera-
ture. Latent structure refers to the fundamental nature of a
construct, the underlying structure that exists regardless of
how one might choose to conceptualize or measure it.
Manifest structure, in contrast, refers to characteristics as-
sociated with observable indicators of a construct, the sur-
face structure that depends—among other things—on how
one chooses to conceptualize and assess the construct. For
a given construct, latent and manifest structure can differ
(Grayson, 1987; Murphy, 1964). Meehl’s (1962, 1990)
theory of schizophrenia provides one example of how a la-
tent category can give rise to manifest continua. The the-
ory posits the existence of a single dominant gene that
causes central nervous system deficits specific to schizo-
phrenia. Those who inherit this gene develop schizotypy, a
condition characterized by psychological and behavioral
features such as cognitive slippage, social aversiveness,
anhedonia, and ambivalence. Though signs such as these
are distributed continuously at the manifest level, they
have been found to correspond to a class of schizotypes at
the latent level (Golden & Meehl, 1979; Korfine &
Lenzenweger, 1995; Lenzenweger, 1999; Lenzenweger &
Korfine, 1992; Tyrka et al., 1995).

In contrast, any construct that is continuous at the latent
level can be made to appear categorical at the manifest
level. One way in which this is often done is by applying a
median split to a distribution of scores for the purpose of
analytic convenience. For example, the continuous scores
yielded by Rotter’s (1966) Internal-External Locus of
Control Scale are typically divided at the median to create
groups with aninternal or external locus of control, despite
the possibility that this construct is continuous at the latent
level. Another approach to categorization is demonstrated
by the Diagnostic and Statistical Manual of Mental Disor-
ders (American Psychiatric Association, 1994), which de-
picts all psychological disorders as latent taxa. The DSM-
IV organizes mental disorders within diagnostic catego-
ries, each associated with a specific set of criteria that de-
termine whether an individual is. or is not. disordered.
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Although these diagnostic categories may accurately
reflect the taxonic structure of some psychological disor-
ders, there is evidence that at least some of these categories
mask underlying continua (A. M. Ruscio, Ruscio, &
Keane, 2001; J. Ruscio & Ruscio, 2000). Thus, both statis-
tical and conceptual categorization at the manifest level
may correspond to continua at the latent level.

As these examples illustrate, a given manifest structure
need not match the underlying latent structure of a con-
struct—Ilatent categories may give rise to an observed con-
tinuum, and a latent continuum may give rise to
categorical measurements. We focus on the latent level of
analysis in the present article due to the importance of un-
derstanding the true nature of a construct, regardless of
how people have chosen to measure it.

For clarity and consistency with the literature on latent
structure, we use the term taxonic to refer to a construct in
which individuals or objects are separated into
nonarbitrary classes, or taxa, at the latent level. That is, one
or more qualitative boundaries “carve nature at its joints™:
Objects either do or do not belong to these taxa regardless
of an observer’s beliefs or preferences. By contrast, we use
the term dimensional to refer to a construct along which in-
dividuals or objects differ only quantitatively, such that
any classes that might be formed are arbitrary. Incontro-
vertible examples of latent taxa and dimensions exist in
many sciences, though comparatively little research has
explored the latent structure of psychological variables.
Clear-cut examples of taxonic constructs include biologi-
cal species, chemical elements, and subatomic particles,
with representative taxa being the blue-ring octopus, mag-
nesium, and the proton, respectively. Definitive examples
of dimensional constructs include body mass, barometric
pressure, and temperature, which are scaled along the con-
tinua of kilograms, millimeters of mercury, and degrees
centigrade, respectively. “Obese” people, “high-pressure”
weather, and “hot” objects are not naturally occurring cat-
egories but rather distinctions superimposed on dimen-
sions for pragmatic purposes. Within psychology,
preliminary evidence suggests that constructs such as psy-
chopathy (Harris, Rice, & Quinsey, 1994), pathological
dissociation (Waller, Putnam, & Carlson, 1996; Waller &
Ross, 1997), and Type A personality (Strube, 1989) may
be taxonic, whereas constructs such as adult attachment
(Fraley & Waller, 1998), depression (A. M. Ruscio &
Ruscio, 2001; I. Ruscio & Ruscio, 2000), and worry (A. M.
Ruscio, Borkovec, & Ruscio, 2001) may be dimensional.
Although this is only a partial listing of psychological con-
structs whose latent structure has been investigated, the
overwhelming majority of variables of interest to psychol-
ogists have not been studied. Thus, there is an acute need
for research that empirically evaluates latent structure us-
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ing powerful analytic techniques designed expressly for
this purpose.

Although our definitions of taxa and dimensions are
standard, it is misleading to imply that a construct must be
either taxonic or dimensional because structural combina-
tions are possible. This point has been alluded to elsewhere
(e.g., Waller & Meehl, 1998) but not elaborated in a rigor-
ous way. In addition to the relatively simple latent struc-
tures of pure taxa (latent classes containing individuals
whose manifest scores differ only due to measurement er-
ror) and pure dimensions (latent continua along which
there are no qualitative boundaries), many hybrid latent
structures are theoretically possible. This occurs in cases
where a latent class or dimension can itself be broken
down into additional latent classes and/or dimensions.
Thus, the assessment of latent structure can be conceived
as a hierarchical, iterative process in which constituent
taxa or dimensions are sought until no further subdivisions
of any kind are possible. Ultimately, stopping points will
be reached whenever a pure dimension (one that is indivis-
ible into constituents) or a pure taxon (one with no reliable
residual variation) is uncovered.

To illustrate some of the possibilities, several hypothet-
ical latent structures for the construct of depression are de-
picted in Figure 1. Panel A depicts depression as having no
qualitative boundaries whatsoever, a pure dimension.
Panel B shows depression divided into two latent classes,
with no reliable residual variation within either latent
class. Panel C shows a simple combination: There is one
pure latent class, whereas the other class contains reliable

residual variation and is thus a dimension. Panel D depicts

a more complex combination: One latent class consists of
three subtypes, and the other is a dimension. There are, of
course, far more possibilities than the small sampling pre-
sented here.

Although a recent literature review (Flett,
Vrendenburg, & Krames, 1997) and empirical investiga-
tions (A. M. Ruscio & Ruscio, 2001; J. Ruscio & Ruscio,
2000) suggest that depression may best be represented by a
single dimension, the nature and complexity of most psy-
chological constructs remain an unexplored empirical
question. Waller et al. (1996) noted that as psychologists,
“we too often presuppose that our data are unquestionably
scaleable along latent dimensions or latent traits (factors or
continua)” (p. 317). Dahlstrom (1995), Gangestad and
Snyder (1985), and Meehl (1992, 1995) also discussed
strong biases against latent taxa. Although structure is of-
ten presumed to match the manifest measurement scale
employed or the presupposition of the researchers, the de-
termination of a construct’s true latent structure poses an
empirical question that can be addressed using appropriate
methods.

LATENT STRUCTURE AND
PSYCHOLOGICAL ASSESSMENT

Understanding latent structure has significant implica-
tions for psychological assessment. A measurement
model based on dimensional scaling will best locate an in-
dividual’s position along a continuum, whereas a measure-
ment mode] based on classification into taxa will best
assign individuals to groups. As Meehl (1992) has noted,
these disparate measurement goals lead to considerably
different assessment guidelines and approaches, making
an appropriate match between latent structure and mea-
surement model particularly important.

When assessing a latent dimension, the goal of mea-
surement is to most precisely determine the value of each
individual’s true score (in classical test theory) (Guilford,
1954; Gulliksen, 1950) or latent trait (in item response the-
ory [IRT]) (Embretson, 1996; Hambleton, Swaminathan,
& Rogers, 1991; Lord, 1980). In this context, any model
that classifies individuals into groups is inappropriate. Di-
mensional measurement of adimensional construct results
in maximal measurement precision and statistical power,
whereas spurious classification may have devastating con-
sequences. Cohen (1983) has shown that when computing
the statistical association between two continuous vari-
ables, dichotomizing one of them throws away 36% of the
systematic variance, whereas dichotomizing both of them
throws away nearly 60% of the systematic variance. In this
way, research employing categorical diagnoses to study

~ the comorbidity among psychological disorders may dra-
- matically underestimate the co-occurrence of conditions

that exist along a latent continuum. Indeed, preliminary

" evidence of dimensional structure for several depressive

and anxiety disorders (A. M. Ruscio, Ruscio, & Keana, in
press; J. Ruscio & Ruscio, 2000) suggests that this weak-
ening of statistical power may systematically distort our
understanding of the controversial relationship between
these constructs (e.g., Clark & Watson, 1991; Foa & Foa,
1982; Maser & Cloninger, 1990). The rise in Type Il errors
associated with decreased power led Fraley and Waller
(1998) to argue that spurious classification can cripple a
field of research in the long run.

Another deleterious effect of spurious classification is
that it may alter—not just weaken—statistical relations
and inferred theoretical links between constructs. For ex-
ample, the common practice of measuring adult attach-
ment styles by the popular three-group scheme (secure,
insecure-avoidant, and anxious-ambivalent) (Ainsworth,
Blehar, Waters, & Wall, 1978), rather than by the two di-
mensions suggested by an examination of latent structure
(anxiety and avoidance) (Fraley & Waller, 1998), may ac-
count for the alleged temporal instability of attachment
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FIGURE 1 :
Four Hypothetical Ways in Which the Construct of Depression Might Be Broken Down Into
Its Latent Structure (with scrolls representing dimensions and boxes representing taxa)
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NOTE: Panel A shows depression as one dimension. Panel B shows depression as two latent classes. Panel C shows depression as one dimension plus a la-
tent class. Panel D shows depression as one dimension plus a latent class with three subtypes.

styles (Baldwin & Fehr, 1995). That is, the standard error
of difference scores will cause some individuals to be clas-
sified differently over time. Moreover, forcing latent di-
mensions into taxa will greatly increase error by throwing
away meaningful variation in scores. Because a majority
of published studies on adult attachment have superim-
posed a typological measurement scheme on the data, this
literature may be in need of both reanalysis and
reconceptualization (Fraley & Waller, 1998). Similarly,
arbitrary categorization of data guided by communicative
convenience or preference for a particular analytic strategy
(e.g., ANOVA rather than regression) has likely weakened
the strength and even distorted the form of statistical rela-
tions in many other domains of psychological research.
Whereas the classification of latent dimensions into
groups results in a considerable loss of information, proper
classification of latent taxa has been suggested (Meehl,
1992) and twice demonstrated (Gangestad & Snyder,
1985; Strube, 1989) to yield stronger relationships be-
tween taxa and other variables than measurement using di-
mensional scaling. This is because, for pure taxa, any
variance in observed scores around the true scores of the
taxa must be measurement error. Thus, applying a dimen-
sional measurement model can increase error when taxa
exist. The general conditions under which categorical

classifications outpredict dimensional scales in the pres-
ence of latent taxa remain an important open question (see
Grove, 1991b).

Finally, there is an additional advantage to classifica-
tion models that is seldom addressed in the assessment lit-
erature: They assist users in locating an efficient cutting
score for classifying cases into taxa. Even in the presence
of latent taxa, dimensional scaling models typically yield
unimodal distributions of manifest scores. Without any
natural breaks in such a distribution, it is quite challenging
to determine an appropriate cutting score for separating in-
dividuals into groups, and the efficiency of classification
drops off rapidly with suboptimal choices. Classification
models, on the other hand, yield a strongly bimodal distri-
bution of manifest scores for latent taxa. With such a distri-
bution, one can clearly identify an efficient cutting score
by locating the low point toward the center of the distribu-
tion, Moreover, with so few cases in nearby regions of the
distribution, the efficiency of classification is highly ro-
bust to the selection of suboptimal cutting scores.

In sum, there are a number of practical advantages asso-
ciated with a structure-based approach to psychological
assessment. Therefore, we turn now to the first step of such
an approach: determining the latent structure of the con-
struct of interest.
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METHOD FOR DETERMINING
LATENT STRUCTURE

Because measurement models presume a latent struc-
ture that is not directly observable at the manifest level, itis
critical that latent structure be evaluated using methods ex-
pressly designed for this purpose. Among the presently
available techniques, we believe that Meehl’s (1995, 1999)
taxometric method is the most promising. Below, we
briefly outline the logic of this taxometric method, provide
an overview of several procedures that constitute the
method, and compare the method to the available alterna-
tive approaches.

Logic of the Taxometric Method

Meehl (1973, 1995, 1999) and his colleagues (Golden
& Meehl, 1979; Grove & Meehl, 1993; Meehl & Golden,
1982; Meehl & Yonce, 1994, 1996; Waller & Meehl,
1998) have pioneered the development of a family of
taxometric procedures based on the principles of coherent
cut kinetics. Most procedures within the method search for
orderly statistical relations between one or more variables
along sliding intervals, or cuts, of another. Each procedure
uses manifest indicators to search for a qualitative bound-
ary between two latent taxa, traditionally referred to as the
“taxon” and “complement.” Meehl’s taxometric method
relies on the convergence of evidence obtained from multi-
ple, quasi-independent analytic procedures—rather than
on traditional null hypothesis significance tests—to pro-
vide clues to latent structure. Each procedure serves as a
consistency check for the results provided by the others,
with confidence in a structural solution increasing as each
additional consistency test is passed.

Although procedures in the taxometric method directly
test only a two-group latent class model, investigators can
resolve more complex latent structures by combining
these procedures with psychometric analyses (e.g., evalu-
ating unidimensionality, homogeneity, and internal con-
sistency) and applying them in an iterative fashion. For
example, consider the latent structure depicted in Panel D
of Figure 1. With the proper selection of indicator vari-
ables, an initial taxometric analysis would indicate that
there was a qualitative boundary between the taxon (major
depression) and the complement (normal to subclinical
depression). Subsequent taxometric analyses within the
complement class would fail to reveal any additional taxa;
psychometric analyses would reveal the reliable residual
variation of a single dimension. However, a series of sub-
sequent taxometric analyses within the taxon, using new
sets of indicators specific to the conjectured subtypes,
would uncover three subtypes of major depression, and
psychometrics would show no reliable residual variation

within them. Taken together, these steps represent an
idealization of a careful program of systematic research
essential for the comprehensive understanding and appro-
priate assessment of any psychological construct.

Procedures in the Taxometric Method

Although many taxometric procedures have been de-
veloped and validated, only a few of the conceptually sim-
plest techniques will be presented here in the interest of
conserving space. Whereas each of the procedures de-
scribed below can be used alone to provide a structural so-
lution, they are more appropriately used in tandem, with
each procedure serving as a consistency test that checks
the conclusions of the others. We focus on a conceptual
presentation of the method so that it can be compared to
better known alternatives, and we illustrate each
taxometric procedure using three continuously distributed
indicator variables—competitiveness, time urgency, and
hostility—that have been suggested to distinguish individ-
uals with Type A personality from those with Type B per-
sonality (Friedman & Rosenman, 1974), which research
suggests is taxonic (Strube, 1989). Readers interested in
more detailed treatments of Meehl’s taxometrics, includ-
ing descriptions of powerful multivariate procedures in the
method, should consult Meehl and Golden (1982), J.
Ruscio and Ruscio (2001), Waller and Meehl (1998), and
the references cited below.

Maximum slope (MAXSLOPE). MAXSLOPE (Grove
& Meehl, 1993) examines the slope of a local regression
across a scatterplot of two indicators of the conjectured la-
tent taxa. For example, suppose that two manifest indica-
tors, such as time urgency and hostility, were plotted for a
sample containing 50% Type A and 50% Type B individu-
als. Because these indicators are unrelated to one another
within personality types, the local regression will be fairly
flat in both regions dominated by one particular type—the
upper right (composed mostly of Type A individuals) and
the lower left (composed mostly of Type B individuals).
There will be a positive slope toward the center of the
scatterplot due to the mixture of personality types in that
region. This slope will reach a maximum where the groups
intersect. Hence, taxonic latent structure yields a steplike
or S-shaped curve. For dimensional latent structure, there
would be a fairly constant positive slope across the entire
scatterplot, yielding a comparably straight line. Panel A of
Figure 2 presents sample MAXSLOPE plots for both la-
tent structures.

Maximum covariance (MAXCOV). MAXCOV (Meehl,
1973; Meehl & Yonce, 1996) is also based on the statistical
behavior of indicators in the vicinity of group mixture.'
Suppose that a sample of Type A and Type B individuals is
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FIGURE 2
Sample Curves
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divided into successive intervals according to their level of
competitiveness (referred to as the input indicator) and
that the covariance of the two remaining indicators—time
urgency and hostility (referred to as output indicators)—is
calculated within each interval. Intervals demarcating rel-
atively low levels of competitiveness will contain mostly
Type B individuals, whereas those demarcating relatively
high levels of competitiveness will contain mostly Type A
individuals. Thus, at either extreme of the input scale, the
covariance between time urgency and hostility will ap-
proach zero. Covariance values will be higher within more
centrally located input intervals that correspond to moder-
ate competitiveness, reaching a maximum in the input in-
terval containing an equal mixture of Type A and Type B
individuals. Hence, in the MAXCOV procedure, taxonic
latent structure yields a peaked curve. For dimensional
structure, relatively constant positive covariances would
be observed across all intervals of the input indicator,
yielding a comparably flat line. Panel B of Figure 2 pres-
ents sample MAXCOV curves.

Mean above minus below a cut (MAMBAC). MAMBAC
(Meehl & Yonce, 1994) is based on the fact that if latent
taxa exist, there will be an optimal cutting score on any
valid indicator for classifying individuals into these taxa.
Suppose that cases are sorted along an input indicator,
such as competitiveness, and that the efficiency of all pos-
sible cutting scores on this indicator is examined. To do
this, means are computed on an output indicator, such as
hostility, separately for cases falling above and below each
cut. AMAMBAC curve is constructed by plotting the dif-
ference between hostility means above and below each cut
on the competitiveness indicator. Latent taxa generate a
curve that is peaked near the cutting score that best distin-
guishes the classes (e.g., with Type A individuals falling
above the cut and Type B individuals falling below the
cut), whereas latent dimensions generate comparably dish-
shaped curves. Panel C of Figure 2 presents sample
MAMBAC curves.

Two additional features of taxometric procedures are
worthy of note. First, each procedure can be conducted us-
ing available indicators in all possible input and output
combinations, permitting examination of the consistency
of results across combinations. For example, if four indi-
cators are available, each of these taxometric procedures
can be performed |2 times, and a panel of graphs can be
plotted for interpretation.? Second, each procedure can be
used to estimate latent parameters such as the base rate of
taxon membership (e.g., the proportion of Type A individ-
uals) in the sample under investigation. These estimates
can then be compared for consistency within and between
procedures as further tests of the existence of taxa.

Comparison With Alternative Procedures

There exist other procedures for examining latent struc-
ture, most notably distributional analyses (e.g., inspection
for bimodality or negative kurtosis, admixture analysis,
commingling analysis), cluster analysis, and approaches
that model the relationship between manifest and latent
variables (latent class analysis, latent profile analysis, la-
tent trait analysis, and factor analysis). A number of im-
portant limitations, however, render each of these proce-
dure less effective than Meehl’s taxometric method for
empirically distinguishing latent taxa from dimensions.

Distributional analysis. There is a variety of ways in
which a manifest distribution can be examined for clues to
latent structure. One method is to look for bimodal or
multimodal distributions (e.g., Harding, 1949), which are
suggestive of latent taxa. However, even in the clearest
case (two equal-sized groups), the individual distributions
must differ by at least two within-group standard devia-
tions before a visible dip emerges toward the center of the
joint distribution and two modes become apparent (Murphy,
1964). Groups that are separated by lesser amounts might
instead form a unimodal distribution that is flattened rela-
tive to the normal curve, yielding a negative kurtosis.
Other methods, such as admixture or commingling analy-
ses (e.g., MacLean, Morton, Elston, & Yee, 1976), use trial
and error to determine the parameters of hypothetical sub-
group distributions that, when combined, would generate
the observed distribution.

The primary difficuity with each of these procedures is
that as noted earlier, manifest structure need not—and of-
ten does not—correspond to latent structure. For example,
a scale containing items of equal difficulty and steep dis-
crimination will tend to yield a manifest bimodal distribu-
tion, regardless of the latent structure of the construct
being assessed. By contrast, a scale containing items of
widely varying difficulties will tend to yield a unimodal
distribution regardless of latent structure (Grayson, 1987).
Many other factors can also alter the relationship between
latent and manifest structure, thereby undermining the re-
sults of any procedure that simply analyzes a manifest dis-
tribution (see Grayson, 1987, and Murphy, 1964, for
extended discussions of these limitations). Finally, these
approaches do not provide an independent means of
checking the structural conclusions that they produce, as
do the consistency tests of the taxometric method.

Cluster analvsis. The procedures in this large analytical
family seek to determine whether cases tend to cluster to-
gether in a multidimensional hyperspace (e.g., Sneath &
Sokal, 1973; Sokal & Sneath, 1963). There are a tremen-
dous number of clustering algorithms available, all shar-



ing two common characteristics. First, some measure of
similarity (or distance) is chosen to quantify the relations
between all cases in a sample. Second, some mathematical
rule is applied to parse these similarity values into clusters.

Several factors limit the ability of cluster analysis to
distinguish taxonic from dimensional latent structure. For
example, there is often no reliable way to determine the ap-
propriate number of clusters (Grove, 1991a). This problem
is compounded by an even greater concern: Most algo-
rithms will always uncover clusters in the data, even if the
latent structure is dimensional (see Grove & Andreasen,
1989; Meehl, 1979, 1992:; and references contained therein
for more detailed treatments of these and related issues).
Even simply rearranging the rows in a data set can substan-
tially alter the clusters produced by the many algorithms in
which the order of cases determines how clusters are ini-
tialized. Moreover, in contrast to the role of independently
derived consistency tests in the taxometric method, re-
searchers seldom employ multiple clustering algorithms,
and the handful of algorithms that predominate in psycho-
logical research (see Blashfield, 1976, 1984) seldom yield
results that are consistent with one another (Golden &
Meehl, 1980). Thus, although cluster analyses may be use-
ful for classifying cases within a validated taxonomy, there
is insufficient support for their use as tools to determine la-
tent structure.

Latent class analysis and related approaches. A final
family of four conceptually related analytic techniques
models the association between manifest and latent vari-
ables: latent class analysis (e.g., Green, 1951; Lazarsfeld
& Henry, 1968), latent profile analysis, latent trait analysis
(e.g., IRT) (Embretson, 1996; Hambleton et al., 1991;
Lord, 1980), and factor analysis (e.g., Gorsuch, 1983;
Thurstone, 1935, 1947). These procedures differ accord-
ing to the structure of the manifest variables that they ana-
lyze and the presumed structure of the inferred latent
variable(s). Factor analysis, for example, is typically used
to reduce a large number of continuously distributed items
to a smaller number of latent factors that are nearly always
presumed to be dimensional in nature. Latent class analy-
sis is a categorical analogue of factor analysis, reducing a
large number of manifest categories to a smaller set of la-
tent categories. Latent profile analysis and latent trait anal-
ysis are, in a sense, hybrid procedures: The former uses
manifest continua to infer latent categories, whereas the
latter uses manifest categories to infer latent continua.

Although each of these procedures can provide valu-
able information when used for either exploratory (datare-
duction) or confirmatory (testing a conjectured latent
structure) purposes, none is ordinarily employed to test the
competing hypotheses of taxonic and dimensional latent
structure. For example. Waller and Meehl (1998) noted
that despite passages in Thurstone’s (1935, 1947) classic
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treatises on factor analysis dealing with the possibility of
categorical factors, it is usually presumed that factors rep-
resent latent dimensions.> Moreover, none of these meth-
ods makes use of multiple consistency tests to help
identify faulty conclusions. Thus, like cluster analysis,
these four procedures may be of greater value once latent
structure has been established as either taxonic or dimen-
sional in nature.

Conclusions

Each of the procedures described above has character-
istics that limit its ability to distinguish taxa from dimen-
sions at the latent level. The real test of any method,
however, lies in empirical evaluations of its efficacy. A
considerable body of research using Monte Carlo simula-
tions (Cleland & Haslam, 1996; Cleland, Rothschild, &
Haslam, 2000; Haslam & Cleland, 1996; Meehl, 1973;
Meehl & Golden, 1982; Meehl & Yonce, 1994, 1996; J.
Ruscio, 2000) and “pseudo problems” (e.g., evaluating
known latent structures such as that of biological sex using
empirical data) (Gangestad & Snyder, 1985; Korfine &
Lenzenweger, 1995; Meehl & Golden, 1982; Trull,
‘Widiger, & Guthrie, 1990) has demonstrated the ability of
taxometric procedures to accurately distinguish taxonic
from dimensional latent structure. Despite decades of re-
search, none of the alternative methods developed for eval-
uating latent structure has achieved this level of success in
Monte Carlo or pseudoproblem trials (cf. Meehl &
Golden, 1982).

CLASSIFICATION USING BAYESIAN
PROBABILITIES OF TAXON MEMBERSHIP

Once the latent structure of a construct has been estab-
lished, the next step is to use this knowledge to determine
which measurement model is most appropriate for the
construct. The most widely used measurement models in
psychological assessment, particularly the sophisticated
IRT models of recent vintage, are premised on the exis-
tence of latent dimensions. However, if a construct is
taxonic, it makes little sense to plot item characteristic
curves along the values of a latent dimension. Instead,
methods are needed to classify individuals into taxa, a task
for which classification models such as Bayes’s theorem
are eminently well suited.

Armed with an estimate of the taxon base rate in one’s
sample, as well as the valid and false positive rates of avail-
able indicators, one can calculate the probability that an in-
dividual belongs to a taxon given his or her response
pattern—~Pr(fiIRP)—using the following formula (Waller
& Meehl, 1998, p. 29):
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where IT is the cumulative product operator, P is the base
rate of taxon membership in the relevant population, O = 1
— P, v is the number of indicators, pt, is the valid positive
rate achieved by each indicator, gt, = 1 — pt, pc, is the false
positive rate achieved by each indicator, gc,= 1 — pc,, and
6 = 1 for a positively keyed response on an indicator, 0
otherwise.

To illustrate the power of this Bayesian model, consider
its application to the pseudo problem of classifying the
sexes. We use this as our example because the latent struc-
ture of biological sex is indisputable: It consists of two la-
tent taxa, men and women. At the same time, the avail-
ability of a large data set with multiple indicators of bio-
logical sex allowed us to compare the efficacy of IRT and
Bayesian models for classification. Using data from the
Hathaway Data Bank (see J. Ruscio & Ruscio, 2000, or
Waller, 1999, for descriptions of this database), 14 Minne-
sota Multiphasic Personality Inventory (MMPI) items from
the Masculinity-Femininity Scale (Mf) having high cor-
rected item-total correlations and varying difficulty levels
were used to classify 13,684 adults—38,056 women (keyed
as the taxon) and 5,628 men (keyed as the complement)—
according to their sex. The MMPI Mf items were summed
to yield a 15-point (O to 14) dimensional scale on which
each individual received a score. In addition, each individ-
nal’s probability of taxon membership was calculated ac-
cording to Bayes’s theorem using the formula above.
Thus, the traditional approach of dimensional scaling was
compared to a classification model using the same set of
indicator variables (MMPI items) in handling a construct
with taxonic latent structure.

As can be seen in Figure 3, dimensional scale scores
were unimodally distributed, with ]atent taxonicity almost
completely obscured at the manifest level. The distribution
of Bayesian probabilities, on the other hand, displayed a
striking bimodality. To examine the efficiency with which
individuals’ sex could be classified by various cutting
scores along the distributions, receiver operating charac-
teristic (ROC) curves were plotted (see Figure 4). Bayesian
probabilities achieved slightly greater accuracy (area un-
der ROC curve = .897, confidence interval [CI] [95%] =
.891 t0 .902) than did the dimensional scale (area = .879, CI
[95%] = .873 to .885). Expressed as hit rates, the optimal
cutting score along the distribution of Bayesian probabili-
ties correcily classified 84.3% of all cases, whereas the op-
timal cut along the dimensional scale correctly classified
82.5% of all cases.

FIGURE 3
Frequency Distributions for the Dimensional
Scale and Bayesian Probabilities
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Although Bayesian classification yielded slightly better
accuracy, the primary advantage of this approach was the
extent to whichit facilitated the location of an efficient cut-
ting score to separate the latent classes. The pileup of cases
at intermediate values along the dimensional scale made it
difficult to choose an efficient cutting score. Moreover,
this scale offered little tolerance for a suboptimal choice,
as is evidenced by the wide spacing of successive cuts
(open circles) on the ROC curve. In sharp contrast, it made
relatively little difference where the bimodal distribution
of Bayesian probabilities was cut. Cuts made anywhere
from .10to .90 (large dark circles) resulted in closely adja-
cent points on the ROC curve. In fact, all cutting scores be-
tween .30 and .70 on the Bayesian distribution achieved
greater hit rates than did the optimal cut along the dimen-
sional scale. This clearly illustrates that the selection of a
cutting score is greatly simplified by use of a classification
model when latent taxa exist.



FIGURE 4
ROC Curves for the Dimensional Scale
and Bayesian Probabilities

1.0
0.9 Jo i
0.8 1
0.7 et

0.6

0.5 7

Sensitivity

0.2

04 doerioneei

0.0 T : T T T : T T
00 01 02 03 04 05 06 07 0.8 09 1.0

1 - Specificity

NOTE: ROC = receiver operating characteristic. Open circles (dashed
lines) represent the accuracy achieved through all cutting scores along the
dimensional scale. Solid circles (solid lines) represent the accuracy
achieved through cutting the distribution of Bayesian probabilities, with
the nine cutting scores of .10 through .90 plotted as large points and cut-
ting scores in increments of .01 out to the extremes of 0 and 1 plotted as
small points.

The above demonstration indicates that when taxa are
present, calculating Bayesian probabilities of taxon mem-
bership affords the simultaneous advantages of distribu-
tional continuity and bimodality. Continuity is useful in
the event that situational demands call for the optimization
of an index other than the overall hit rate of classification,
allowing the selection ratio to be altered as desired to trade
sensitivity for specificity or vice versa (see Meehl &
Rosen, 1955). In this case, the Bayesian model provided
much finer discriminations than did the summed scale
scores, which yielded only 15 unique scores (0, 1,2, ...,
14). At the same time, bimodality simplifies the selection
of an efficient cutting score and protects against a
suboptimal choice.

Thus, we contend that the conventional preference for
dimensional measurement in psychological research and
the oft-heard claim that dimensions “retain more informa-
tion” may be overly simplistic. An accurate classification
of cases is much harder to achieve when items are com-
bined using a dimensional scaling technique than when
they are combined using a categorical measurement model.
In the absence of empirical evidence regarding the latent
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structure of a given construct, it remains an open question
whether a dimensional scaling or a classification approach
would afford greater utility for psychological assessment,
making the evaluation of latent structure particularly
important. '

IMPLEMENTATION OF A
STRUCTURE-BASED APPROACH TO
PSYCHOLOGICAL ASSESSMENT

Because latent structure is so important, we envision
the rigorous development of psychological assessment de-
vices beginning with a careful examination of the latent
structure of each construct to be assessed. This would in-
clude delineation of all taxa (types and subtypes) through
iterative applications of the taxometric method and evalua-
tion of all dimensions through more conventional
psychometric methods. We encourage readers to combine
measurement models as suggested by empirical analysis
of their constructs’ latent structures, incorporating dimen-
sional scaling and classification models as appropriate
into a comprehensive assessment package. Whenever a
distinction between taxa must be made, the relevant Bayesian
probabilities can be calculated and used for classification.
Whenever a continuum is encountered, a dimensional
scaling model can be used to estimate individuals’ scores
along the continuum. This approach avoids the pitfalls
stemming from the mismatch of latent structures and mea-
surement models.

Inrecent years, technological developments have facil-
itated the computerized administration and scoring of psy-
chological tests. Especially noteworthy is the rapidly ex-
panding area of computerized adaptive testing (CAT), a
highly desirable assessment method for reasons of brevity,
reduced fatigue, elimination of hand-scoring errors, and
immediacy of results (Embretson & Herschberger, 1999;
Wainer et al,, 1990). As has often been noted (e.g.,
Embretson & Herschberger, 1999), IRT models for dimen-
sional scaling lend themselves well to implementation via
CAT. Using CAT to implement an IRT model allows all
scores on the latent trait to be estimated with equal preci-
sion through the administration of a custom-tajlored sub-
set of available items to each individual. However, although
they are frequently paired in the literature (e.g., Embretson,
1996), IRT models and CAT interfaces are separable:
Many measurement models can be implemented using the
general strategies of CAT. Unfortunately, in keeping with
psychologists’ pervasive presumption of latent
dimensionality, the use of CAT for classification is seldom
discussed in the psychological assessment literature.’

Despite any apparent dissimilarity, there is a straight-
forward conceptual analogy between Bayesian classifica-
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tion and IRT models. To calculate an individual’s score
along a latent trait, an IRT model begins with an initial esti-
mate of the trait score and refines it through responses to a
set of items with known item characteristic curves. Bayesian
classification begins by using the taxon base rate as an ini-
tial estimate of the probability of taxon membership and
updates it through responses to a set of items with known
valid and false positive rates. When IRT models are imple-
mented using CAT, programmed algorithms guide item se-
lection according to criteria such as content coverage,
often involving the administration of a minimal number of
items and/or the achievement of a certain standard error of
measurement. Using a CAT interface, Bayesian classifica-
tion could also proceed by selecting items according to
content coverage, administering items of minimal redun-
dancy until a threshold of high or low probability of taxon
membership is crossed. At this point, the individual case
would be classified into the taxon or complement, respec-
tively. Thus, although our structure-based approach to as-
sessment can be implemented using traditional paper-and-
pencil methods, as can IRT or Bayesian models alone,
CAT can be used to perform both scaling and classification
functions. Regardless of the mode of implementation that
is judged most feasible in any given assessment context,
we suggest that measurement models should be chosen to
best match the latent structure of the psychological con-
struct being assessed.

NOTES

1. This procedure is conceptually quite similar to maximum slope
(MAXSLOPE), which has been recommended as a “MAXCOV [maxi-
mum covariance] surrogate” when only two indicators are available (P. E.
Meehl, personal communication, October 26, 1998). Another similar
procedure is maximum eigenvalue (MAXEIG) (Waller & Meehl, 1998),
a multivariate extension of the MAXCOV procedure.

2. MAXSLOPE and mean above minus below a cut (MAMBAC) can
be performed twice using each pairwise combination of indicators by
swapping each pair of indicators on the x and y axis for MAXSLOPE and
switching the input and output for MAMBAC. For & 2 2 indicators, one
can calculate (k- 1) MAXSLOPE or MAMBAC curves. MAXCQV can
be performed thrice using each three-way combination of indicators by
treating each member of the triplet as the input in turn. For & > 3 indica-
tors, one can calculate k(k — 1)(k — 2) / 2 MAXCOV curves.

3. Waller and Meehl (1998) have developed L-Mode. a taxometric
procedure that uses elements of factor analysis to distinguish taxonic
from dimensional latent structure. The procedure works by examining
the number of latent modes in the distribution of true scores on the first
principal factor derived from a factor analysis of all available indicator
variables. Unimodality is suggestive of dimensionality, whereas bimodality
is suggestive of latent taxa.

4. Forexample. Embretson (2000) described |0 methodological fron-
tiers in current research on psychological testing. all of which involved
refinements of computerized adaptive testing and/or item response the-
ory (IRT) models. Only 1 of the 10 refinements touched on qualitative
distinctions between individuals: IRT models are being developed to in-
corporate categorical data as input. Nonetheless. even these models pre-
sume that the underlying construct is structured as a latent dimension.
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