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Abstract. Parametric assumptions for statistical tests include normality and equal variances. Micceri (1989) found that data frequently violate the
normality assumption; variances have received less attention. We recorded within-group variances of dependent variables for 455 studies
published in leading psychology journals. Sample variances differed, often substantially, suggesting frequent violation of the assumption of equal
population variances. Parallel analyses of equal-variance artificial data otherwise matched to the characteristics of the empirical data show that
unequal sample variances in the empirical data exceed expectations from normal sampling error and can adversely affect Type I error rates of
parametric statistical tests. Variance heterogeneity was unrelated to relative group sizes or total sample size and observed across subdisciplines of
psychology in experimental and correlational research. These results underscore the value of examining variances and, when appropriate, using
data-analytic methods robust to unequal variances. We provide a standardized index for examining and reporting variance heterogeneity.
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When comparing means across groups using conventional
parametric statistical tests such as t and F, two of the
required assumptions are that population distributions are
normal and that population variances are equal. These statis-
tical assumptions are made for various reasons, not the least
of which is to allow researchers to compare the results of
hand calculations for an empirical sample to a tabled critical
value based on a hypothetical sampling distribution. Com-
puter-intensive resampling techniques such as randomiza-
tion tests (Edgington, 1980) or bootstrap methods (Efron
& Tibshirani, 1993) now enable investigators to generate
empirical sampling distributions based on the data at hand,
rather than assuming normality and equal variances to gen-
erate hypothetical sampling distributions. In addition, a sub-
stantial literature has introduced and urged the use of
modern data-analytic methods that improve robustness to
violations of parametric assumptions (e.g., Wilcox, 2001,
2003; Wilcox & Keselman, 2003). For example, comparing
trimmed means using Winsorized variances (Keselman,
Othman, Wilcox, & Fradette, 2004) or using an approximate
degrees of freedom test (Keselman, Algina, Lix, Wilcox, &
Deering, 2008; Lix & Keselman, 1995) can be robust alter-
natives to comparing means using the standard t-test. Gener-
ating empirical sampling distributions and performing more
robust analyses are not mutually exclusive options. These
approaches can complement one another effectively.

Despite methodological advances that can improve infer-
ential accuracy under certain conditions, for the most part
popular statistical software packages (e.g., SPSS, SAS)
continue to implement classic tests in conventional ways.
An investigator would need to create or obtain specialized

programs to take advantage of modern data-analytic
techniques (e.g., many are available for SAS, S-Plus, R,
or Matlab). Until widely used statistical software enables
(via options) or encourages (via default settings) the use
of such techniques, it seems unlikely that many investigators
will do so. In the meantime, mainstream research will
continue to rely on the assumptions of normality and equal
variances. How often might these be violated in potentially
problematic ways?

Micceri (1989) published a landmark study pertinent to
the normality assumption. He obtained 440 large samples
of achievement and psychometric measures, chosen because
one might expect distributions to approximate normality bet-
ter for these measures than for many others (e.g., laboratory
measures such as reaction time or demographic measures
such as household income). Micceri found that each sample
failed at least one test of normality at the a = .01 signifi-
cance level. Asymmetry, excess tail weight, multimodality,
and digit preferences constituted common features of these
data, raising questions about the soundness of assuming nor-
mality when performing statistical tests.

Whereas Micceri (1989) provided an extensive evalua-
tion of the normality assumption, the literature on the
equal-variance assumption provides only glimpses. There
are reasons to expect variance heterogeneity in some, per-
haps many, research areas. Grissom (2000) explains that
one might expect a relatively large variance ratio (VR, cal-
culated as the largest within-group variance divided by the
smallest within-group variance) when comparing treatment
to control groups (see also Grissom & Kim, 2005). For
example, an effective treatment might yield floor or ceiling
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effects (depending on the direction of coding) on the
outcome measure, and therefore less variance in the treat-
ment than the control group. Alternatively, there might be
individual differences in the size of a treatment effect, which
can increase variance within that group only. As Grissom
(2000, p. 156) puts it, ‘‘variance is more than just a nuisance
parameter.’’

Variance heterogeneity has been studied in nonexperi-
mental contexts, too. For example, Johnson, Carothers,
and Deary (2008) review a long-standing debate about
whether sex differences in the variability of intelligence
might help to explain why there is no mean difference,
yet males are overrepresented at both the top and bottom
of the distribution. Differences in variance across experi-
mental conditions or intact groups can be interesting and
important in their own right. Because the same statistical
tests, with the same parametric assumptions, typically are
used in experimental and correlational research that
compares group means, it seems worthwhile examining
whether variance heterogeneity is more common in one or
the other of these types of research.

A number of papers have commented on the extent of
variance heterogeneity observed in a relatively small sample
of studies in a particular journal or research area. Wilcox
(1987) examined sample variances for 14 studies with
one-way ANOVA designs that were published over the
course of a few years in the American Educational Research
Journal. Among these studies, three exhibited VR > 16. In
a review that included 86 dependent variables in educational
research articles, Keselman et al. (1998) found a mean VR
of 2.0 (SD = 2.6), with extreme VRs ranging up to 23.8.
Grissom (2000) reported that VRs for 10 studies in an issue
of the Journal of Consulting and Clinical Psychology all
exceeded 3.2. The modal VR was 4 and the largest values
ranged as high as 281.8. Each of these studies suggests that
there may be a nontrivial number of violations of the equal-
variance assumption.

These studies suggest that assuming equal variances may
be unwise, but they are limited to relatively few samples and
research areas. Characteristics of data from clinical or educa-
tional research may or may not be representative of the
broader research domain. In the present study, we examine
a fairly large number of samples spanning a diverse array
of subdisciplines of psychological science. In addition, we
compare variance heterogeneity observed in samples to what
would be expected due to normal sampling error when pop-
ulation variances are equal. At present, it is not clear
whether a representative sample of VRs exceeds 1 by more
than would be expected by sampling error alone.

In addition to documenting the extent of variance heter-
ogeneity, we compare this to the levels that are considered
problematic for the use of conventional parametric statistics,
such as t and F. Some of the earliest research on the robust-
ness of these tests to unequal variances suggested that there
was little cause for concern. Boneau (1960) and Box (1954)
reported that observed Type I error rates remained accept-
ably close to nominal levels under most or all of the condi-
tions that they studied. The results of subsequent research
have not always been as reassuring. For example, whereas

Box assumed that VR would seldom exceed 3 and therefore
did not study the effects of values greater than 3, Tomarken
and Serlin (1986) studied VRs of 6 and 12 and found that
this can either inflate or deflate Type I error rates relative
to the nominal level as well as reduce statistical power.
How often are VRs greater than 3 observed in empirical
data? Is the extent of variance heterogeneity typically
observed in published research sufficient to affect Type I
error rates?

Research on robustness to unequal variances also has
shown that the nature and extent of its influence depends
on other factors (for reviews, see Grissom, 2000; Maxwell
& Delaney, 2004; Wilcox, 2001, 2003). Unequal variances
tend to be more problematic when the number of groups
is large, when groups are of unequal size, or when the total
sample size is small. Statistical power tends to be weakened
and Type I error rates become conservative when larger vari-
ances are paired positively (directly) with larger group sizes,
and power tends to be strengthened (with liberal Type I error
rates) when variances are paired negatively (inversely) with
group sizes. When combined with violations of the normal-
ity assumption, even fairly small violations of the equal-
variance assumption can affect Type I error rates and
statistical power substantially. The wisdom of investigators’
routine reliance on conventional parametric tests for differ-
ences in group means would be called into question if var-
iance heterogeneity turned out to be the norm. On the other
hand, if variance homogeneity were the norm, or if variance
heterogeneity tended to occur only under otherwise favor-
able conditions (e.g., with a small number of equally large
groups), then the criticisms of standard statistical practices
would lose much of their force and implementing alterna-
tives might not be necessary.

To address these issues, we reviewed articles published
in leading psychological journals spanning a wide range
of subdisciplines. Data reported for between-group compar-
isons were coded such that we could calculate several
indices of variance heterogeneity: The traditional VR, a
coefficient of variance variation (CVV) proposed by
Box (1954), and a new index. The CVV and our new index
are calculated using the variances of all groups, rather than
only those with the largest and smallest variances, and we
demonstrate empirically that the new index in particular is
less sensitive than the usual VR (or the CVV) to the number
of groups. Because each of these indices is based on sample
variances, we generated artificial comparison data matched
to the number and sizes of groups in the empirical data to
examine the expected variance heterogeneity due to normal
sampling error. Using this as a baseline for comparison, we
were able to determine whether variance heterogeneity in
published research exceeds what would be expected by sam-
pling error alone. We examined levels of variance heteroge-
neity across a number of factors, including experimental
versus correlational research, subdisciplines of psychology,
numbers of groups, relative group sizes, and total sam-
ple sizes. Finally, we performed analyses of artificial
comparison data to assess the extent to which the observed
levels of variance heterogeneity would affect Type I error
rates.
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Method

Data Source

Articles appearing in nine journals published by the
American Psychological Association were retrieved using
the PsycArticles database. To represent a wide variety of
subfields within psychology, issues from the following jour-
nals were examined: Behavioral Neuroscience, Develop-
mental Psychology, Health Psychology, Journal of
Abnormal Psychology, Journal of Applied Psychology, Jour-
nal of Educational Psychology, Journal of Experimental
Psychology (though we refer to this as a single entity, it is
operated and published as five separate journals), Journal
of Consulting and Clinical Psychology, and Journal of Per-
sonality and Social Psychology. Because there were too few
studies reporting descriptive statistics for between-group
comparisons in Behavioral Neuroscience, Journal of
Applied Psychology, and the Animal Behavior Processes
volumes of the Journal of Experimental Psychology, these
were dropped. For each of the remaining seven journals,
issues were selected at random from recent volumes and
articles were examined until a total of 65 was obtained for
each journal.

To qualify for inclusion, an article had to report the M,
SD (or variance, or SE of the M), and n for each of at least
two groups in a study. For papers presenting multiple stud-
ies, the first study that reported the necessary descriptive sta-
tistics was coded, with the exception that data were not
drawn from research identified as a pilot study. For studies
with multiple dependent measures, the first one mentioned
in the text of the results was used; if multiple measures were
included in a table, one was chosen at random. Meta-
analyses were not considered because the unit of analysis
differs from primary studies.

The number of volumes and issues per year varied across
journals, as did the proportion of articles that qualified for
inclusion in this study. As a result, the sample of 455 articles
spans issues from late 2002 through late 2007.

Coding

Several variables were coded for each of the 455 articles.
Identifying information included the journal title, year, vol-
ume number, issue number, and article title. The total sam-
ple size N and the number of groups k were recorded along
with the SD and n for each group. For factorial designs that
met the reporting requirements for inclusion in the study,
k was recorded as the number of levels of the factor for
which data were recorded (e.g., if SD and n were reported
for all four levels of one factor in a 4 · 2 design, k = 4).
If variances or SEs of the M were reported, these were con-
verted to SD units (SD = sqrt[variance], SD = sqrt[N] · SE
of the M). Finally, a study was coded as experimental if
group membership was manipulated via random assign-
ment, otherwise it was coded as correlational. This classifi-
cation refers only to the variable used to form the groups
whose variances were compared in the present study – other

aspects of the study may or may not have involved experi-
mental manipulations.

Data were checked for accuracy in two ways. First, var-
ious calculations were performed to check for coding errors.
For example, group ns were summed to ensure that the total
matched the recorded total sample size N for each article, the
number of groups for which data were recorded was
checked against the recorded value of k, and original sources
were revisited to confirm data for studies with unusually
large VRs (i.e., VR > 20). Next, coding reliability was eval-
uated. The second author coded all articles in the study, and
the first author randomly selected 10% of articles for coding
and did so blind to values recorded by the second author. No
coding discrepancies were observed.

Measures of Variance Homogeneity

To quantify the extent to which variances were homoge-
neous, three measures were calculated for each study. First,
VR was calculated as the ratio of the largest variance to the
smallest variance. Second, the CVV developed by
Box (1954) and used by Rogan, Keselman, and Breen
(1977) was calculated as follows:

CVV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
dfk � s2k � s2p

� �2� �
N � k

vuuut ,
s2p;

where s2p ¼
P

dfk � s2
kð ÞP

dfk
, N is the total sample size, k is the

number of groups, and dfk ¼ nk � 1.
Due to normal sampling error, these measures tend to

increase with the number of groups even when population
variances are homogeneous. To facilitate comparisons
across studies with different numbers of groups we created
a third measure, referred to as the standardized variance het-
erogeneity (SVH). The calculation of the SVH was accom-
plished in three steps:

1. Convert the variance for each group i into an adjusted
proportion of the sum of all groups’ variance: ai ¼ ks2i

s2
T
,

where s2i is the sample variance for group i,
s2T ¼

P
s2i , and k is the number of groups. Because

the sum of these adjusted proportions equals k, the final
index is less sensitive to the number of groups than is
the usual VR.

2. Calculate the standard deviation of the ai values, using
k rather than k � 1 in the denominator.

3. Divide the value from step 2 by the square root of
k � 1, which represents the maximum value obtainable
in step 2 for a given k.

The resulting SVH can range from 0, which represents
perfectly equal sample variances, to 1, which represents
maximally heterogeneous sample variances. Table 1 pro-
vides illustrative SDs for varying numbers of groups that
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yield specified values of SVH. The first k entries in a given
column represent the SDs for k groups that yield the SVH
in the column heading. For example, the first three entries
in the column labeled ‘‘.20’’ (10.00, 8.16, and 7.13) repre-
sent the SDs for three groups that would yield SVH = 0.20.
The minimum SVH of 0 is always obtained when all SDs
are equal, and the maximum SVH of 1 is always obtained
when all SDs but one are 0.

A final note on the calculation and reporting of variance
heterogeneity measures involves the possibility of erroneous
reporting. Though we checked our own coding and data
entry carefully, we do not assume error-free reporting in
the original articles. Rather than attempting to identify and
remove errors by censoring samples with extremely hetero-
geneous variances, we chose to take the reported values at
face value rather than knowingly introduce a bias. We see
no reason to expect reporting errors to inflate variance het-
erogeneity (e.g., mistakenly reporting a group’s SD as a
much smaller or larger value) more often than they deflate
it (e.g., mistakenly reporting the same SD for more than
one group), and if anything we would expect errors involv-
ing highly discrepant SDs to be corrected more readily than
errors involving highly similar SDs. Identifying and remov-
ing scores from the upper tails of the distributions of VR,
CVV, or SVH values would introduce a bias tending to
underestimate the extent and consequences of variance het-
erogeneity. In any case, none of our conclusions rest on find-
ings for a small number of samples that may represent
reporting errors.

Artificial Comparison Data

In any sample of data, the VR will exceed 1, CVV will
exceed 0, and the SVH will exceed 0 due to normal sam-
pling error. To simulate the amount of sample variance het-
erogeneity expected when population variances are equal,
artificial comparison data sets were generated. Using these
comparison data, variance heterogeneity statistics could be
calculated in data tailored to the characteristics of the empir-
ical samples under study. For each empirical sample, com-
parison data were generated by drawing independent
random values from populations with equal variances. The

number of groups and sample size of each group were
matched in the comparison data, and a number of such
replications were performed for each empirical data set;
100 replications were used when comparing observed values
to those expected by chance, and 10,000 replications were
used when estimating Type I error rates. Because research
reports seldom provide full score distributions, scores for
comparison data sets were drawn from normally distributed
populations. This itself has been shown to be an unrealistic
assumption (Micceri, 1989), but generating comparison data
required the specification of a population distribution and
normality seemed a more reasonable choice than any partic-
ular nonnormal distribution. Moreover, using normal popu-
lation distributions allowed us to examine the influence of
variance heterogeneity in isolation rather than confounding
it with the violation of another parametric assumption.
Artificial data were generated using programs written for
the R computing environment (available on request).

Results

The left portion of Table 2 summarizes the distribution of
VR values for all articles. The table also breaks the results
down by the number of groups, combining the relatively
few studies with k > 4 into a single category. All distribu-
tions were positively skewed. Summary statistics include
the minimum and maximum values, several percentile
points in between, the M, and the percent of samples yield-
ing VR > 3. Whereas in his pioneering work on variance
heterogeneity, Box (1954) assumed that VRs would seldom
exceed 3, the present results show that VRs exceeded 3
nearly one-quarter of the time (23.18%), with much larger
values also fairly common. In contrast, among comparison
data sets in which the number of groups and size of each
group were matched to the values in the empirical samples,
but scores were drawn from populations with homogeneous
variances, sampling error alone yielded VR > 3 only 6.20%
of the time. Across all 455 empirical samples, VR spanned
values from 1.00 to 20,264.36; VR was undefined for two
samples in which the smallest variance was 0. Despite the
enormous range, the Mdn value was 1.64 and the middle
50% of values ranged from 1.23 to 2.76. VR values

Table 1. Illustrative standard deviations for a range of standardized variance heterogeneity (SVH) values

SVH

SD .00 .05 .10 .20 .30 .50 .90 1.00

1 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
2 10.00 9.51 9.05 8.16 7.34 5.77 2.29 0.00
3 10.00 9.18 8.43 7.13 6.02 4.23 1.39 0.00
4 10.00 8.92 7.97 6.40 5.17 3.37 0.99 0.00
5 10.00 8.69 7.59 5.85 4.56 2.81 0.78 0.00

Note. The first k entries in a given column represent the SDs for k groups that yield the SVH in the column heading. For example, the
first three entries in the column labeled ‘‘.20’’ (10.00, 8.16, and 7.13) represent the SDs for three groups that would yield SVH = 0.20.
The minimum SVH of .00 is always obtained when all SDs are equal, and the maximum SVH of 1.00 is always obtained when all SDs
but one are 0.
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increased substantially with the number of groups, with a
Mdn of 1.33 for k = 2 and a Mdn of 2.74 for k > 4.
Across samples with k = 2, k = 3, k = 4, and k > 4, there
was a statistically significant difference in VR values,
F(3, 449) = 4.38, p = .001. Because the assumption of var-
iance homogeneity was violated for these data, p was calcu-
lated using a randomization test (Edgington, 1980) with
10,000 random permutations; the same was done for each
F-test that follows. Naturally, some portion of the increase
in VR with larger k can be attributed to normal sampling
error: The more groups, the more the extreme sample vari-
ances are likely to differ even if population variances are
homogeneous.

The middle portion of Table 2 summarizes the distribu-
tions of CVV values. Across all samples, CVV values ran-
ged from 0.00 to 1.56. The distributions of CVV values
were skewed, but less so than for the VR. Like VR values,
CVV values increased substantially with the number of
groups, with a Mdn of 0.14 for k = 2 and a Mdn of 0.44
for k > 4. Across samples with k = 2, k = 3, k = 4, and
k > 4, there was a statistically significant difference in
CVV values, F(3, 451) = 11.43, p < .001.

The right portion of Table 2 summarizes the distributions
of SVH values. Across all samples, SVH values extended
from the smallest possible value of .00 nearly all the way
to the largest possible value of 1.00; the observed maximum
was .98. The distributions were positively skewed, but
mildly. The Mdn value was 0.16, and the middle 50% of
values ranged from .08 to .29. As intended, this standardized
index was insensitive to differing numbers of groups. There
was no statistically significant difference in the mean SVH
across samples with k = 2, k = 3, k = 4, and k > 4,
F(3, 451) = 0.86, p = .413.

Because the SVH is calculated using sample variances,
due to normal sampling error it will deviate .00 even with
population homogeneity. The analysis of artificial compari-
son data provides an interpretive benchmark that takes into
account the number and sizes of groups for each empirical
sample. Figure 1 shows the distributions of SVH values
for the empirical data (solid curve) and the comparison data
(dotted curve), along with summary statistics for each distri-
bution. There is a substantial difference between these distri-
butions, with larger SVHs more common among empirical
samples than comparison data. To quantify the magnitude
of this effect, the nonparametric effect size Awas calculated
(Ruscio, 2008). This is equivalent to the area under a recei-
ver operating characteristic curve, or the probability that a
value drawn at random from the distribution of empirical
data SVHs is greater than a value drawn at random from
the distribution of comparison data SVHs. Across all 455
samples, A = .64, and a 95% confidence interval (CI) con-
structed using the bias-corrected and accelerated bootstrap
method (Efron & Tibshirani, 1993) ranged from .61 to
.67. To help interpret these results, one can convert Cohen’s
d values of .20, .50, and .80 – which correspond to small,
medium, and large effects according to Cohen’s (1992) rule
of thumb – to A values of .56, .64, and .71 (also note that
A = .50 corresponds to d = .00). Thus, the SVHs for empir-
ical data differ from those for comparison data to a statisti-
cally significant extent with an effect size considered
medium by conventional standards. This suggests that in
many of the studies reviewed here the homogeneity of var-
iance assumption may not be satisfied, with violations of
nontrivial magnitude.

Figure 2 presents the distribution of SVHs for empirical
samples at each level of k, again accompanied by the

Table 2. Summary of variance heterogeneity values

Variance ratio Coefficient of variance variation Standardized variance heterogeneity

k = 2 k = 3 k = 4 k � 4 All k = 2 k = 3 k = 4 k � 4 All k = 2 k = 3 k = 4 k � 4 All

N 234 90a 93 36a,b 453 234 91 93 37b 455 234 91 93 37b 455
Min 1.00 1.09 1.08 1.13 1.00 0.00 0.04 0.02 0.04 0.00 0.00 0.03 0.02 0.02 0.00
10th percentile 1.02 1.18 1.37 1.35 1.08 0.01 0.07 0.10 0.12 0.04 0.01 0.05 0.07 0.05 0.03
25th percentile 1.12 1.36 1.53 1.82 1.12 0.05 0.13 0.17 0.20 0.10 0.06 0.10 0.10 0.11 0.08
50th percentile 1.33 1.92 2.03 2.74 1.64 0.14 0.27 0.28 0.33 0.20 0.14 0.19 0.16 0.16 0.16
75th percentile 1.84 3.11 3.15 5.10 2.76 0.28 0.45 0.42 0.44 0.40 0.30 0.32 0.25 0.20 0.29
90th percentile 3.72 5.90 5.75 9.43 5.10 0.56 0.57 0.54 0.64 0.57 0.58 0.43 0.34 0.33 0.51
Max 101.54 85.09 406.93 > 20K > 20K 0.98 1.29 1.56 1.40 1.56 0.98 0.92 0.90 0.53 0.98
M 2.51 3.95 8.84 597.66 51.39 0.21 0.32 0.35 0.39 0.28 0.22 0.24 0.20 0.18 0.22
Percent > 3.00 15.38 27.78 30.11 44.44 23.18
% positive pairings 31.62 37.36 30.11 45.95 33.63
% negative pairings 29.91 42.86 40.86 37.84 35.38
% unpaired 38.46 19.78 29.03 16.22 30.99

Note. k = number of groups; N = number of studies; ‘‘Percent > 3.00’’ is the percentage of studies with variance ratio (VR) > 3.00;
‘‘% positive pairings’’ is the percentage of studies for which there was a positive correlation between group sizes and variances; ‘‘%
negative pairings’’ is the percentage of studies for which there was a negative correlation between group sizes and variances; ‘‘%
unpaired’’ is the percentage of studies for which group sizes and/or variances were equal. Each distribution of VRs was positively
skewed.
aThe VR was undefined for one sample with k = 3 and one sample with k = 6 because the smallest variance was 0.
bThere were 9 samples with k = 5, 19 samples with k = 6, 2 samples with k = 7, 6 samples with k = 8, and 1 sample with k = 10.
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distribution for comparison data and summary statistics. In
each case, larger values are more common for empirical
samples than for comparison data. The magnitude of the
effect was closest to medium or large at each level of k, with
A ranging from .60 to .70 across these four analyses; 95%
CIs did not include the null value of .50. Table 3 extends
these results across journals and type of study, classified
as experimental versus correlational. SVHs were larger for
the 283 experimental studies (Mdn = 0.17) than the 172 cor-
relational studies (Mdn = 0.15), t(453) = 2.43, p = .015,
though the effect size was relatively small, A = .56, and
may be due to the fact that experimental studies had smaller
group sizes (median n = 28) than correlational studies
(median n = 53). Despite this difference in SVHs across
type of study, SVHs tended to be larger for the empirical
samples than for comparison data regardless of the type of
study or the journal in which it was published. Some of
the within-journal comparisons did not reach statistical sig-
nificance owing to the relatively low statistical power of
those analyses. Nonetheless, the homogeneity of variance
assumption appears to be comparably tenuous in experimen-
tal and correlational studies published in a wide range of
journals (Figure 3).

As noted earlier, it is well known that parametric statis-
tical tests are more robust to unequal variances when there
are fewer groups, groups are of equal size, and the total sam-
ple size is large. If unequal variances tended to occur under
these conditions, the present findings would provide less
cause for concern. Our database allowed us to examine these
possibilities. Results bearing on the first issue have already
been presented: There was no statistically significant differ-
ence in SVH values across the number of groups.

Is there a relationship between variance heterogeneity
and relative group sizes? This can be tested most straightfor-
wardly among the 234 samples with k = 2 groups by using
the proportion of cases in the larger group as an index of
group size heterogeneity. This ranges from .50 for equal

group sizes to values approaching 1 for increasingly unequal
group sizes. There was no statistically significant rank-order
correlation between the proportion of cases in the larger
group and the SVH, rS(232) = �.03, p = .597. As shown
in Figure 4 (top graph), even though the distributions of
these variables were not normal, a scatterplot smoother did
not suggest a nontrivial relationship between them. To
include all 455 samples in a similar analysis, we constructed
a measure of group size heterogeneity as 1 � nH/nM, where
nH is the harmonic mean group size and nM is the arithmetic
mean group size. This index ranges from 0 to 1, with 0 rep-
resenting equal group sizes and larger values representing
unequal group sizes. This index, too, was uncorrelated with
the SVH, rS(453) = �.03, p = .478, and the bottom graph
in Figure 4 shows that a scatterplot smoother did not suggest
a nontrivial relationship. It appears that the equality of group
sizes, by itself, is unrelated to equality of variances.

Next, is there a relationship between variance heteroge-
neity and total sample sizes? The answer here also appears
to be ‘‘no,’’ but the results leading to this conclusion are a
bit more complex. As shown in Figure 5, there is a statisti-
cally significant rank-order correlation such that as sample
size increases, SVH decreases, rS(453) = �.31, p < .001.
However, purely on the basis of sampling error one would
expect sample variance heterogeneity to decrease with sam-
ple size. Therefore, the important question is whether the
observed inverse relationship is stronger than what one
would expect due to sampling error alone. In other words,
controlling for the predictable influence of normal sampling
error, did studies with larger samples tend to be the ones
with more homogeneous variances? To address this ques-
tion, we turned once again to results for artificial comparison
data. The solid curve in Figure 5 shows the monotonic
decreasing relationship between sample size and SVH for
the empirical samples, generated using a locally weighted
scatterplot smoother. When the same technique was applied
to comparison data, the dashed curve in Figure 5 emerged.
These curves parallel one another closely throughout their
ranges, suggesting that the downward slope over sample
size can be attributed to normal sampling error. The differ-
ence in elevation (or intercept) between these curves reflects
the fact that SVHs were higher for empirical data than com-
parison data, which has been established already. As with
the results for analyses based on the number of groups
and relative group sizes, the results for total sample sizes
provide no evidence that variance heterogeneity tends to
occur under circumstances when its influence would be less
problematic for parametric statistical tests.

Finally, and perhaps most important, does variance het-
erogeneity have consequences for parametric statistical
tests? To examine this question, 10,000 replication samples
of artificial comparison data were generated for each empir-
ical sample and submitted to F tests. For each empirical
sample, the observed Type I error rate was calculated as
the proportion of the p values for the 10,000 analyses that
fell below a nominal Type I error rate of a = .05. To deter-
mine whether an observed Type I error rate differed from the
nominal rate, 95% control limits were calculated. Across all
455 empirical samples, observed Type I error rates ranged
from .001 to .259 (M = 0.055, Mdn = 0.052). A total of
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Figure 1. Standardized variance heterogeneity (SVH)
values for all samples. The solid curve shows the results
for empirical samples, and the dotted curve shows the
results for artificial comparison data, with 100 replications
per empirical sample. IQR, interquartile range.
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45% of these values fell outside of the 95% control limits,
31% on the liberal side plus 14% on the conservative side.
Generally, the conservative Type I error rates occurred when
there were positive pairings between group sizes and vari-
ances and the liberal Type I error rates occurred when there

were negative pairings. For the 314 samples with unequal
group sizes and unequal variances, the sign of their correla-
tion across groups was placed on the SVH to incorporate the
direction of group size and variance pairings. Approximately
equal numbers of samples had positive pairings (n = 153)
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Table 3. Median standardized variance heterogeneity (SVH) by journal and type of research

Journal Experimental n Correlational n Total

Developmental Psychology .16 (.11) 32 .14 (.08)a 33 .14 (.09)a

Health Psychology .13 (.08) 34 .11 (.06)a 31 .13 (.07)a

Journal of Abnormal Psychology .22 (.11)a 41 .21 (.09)a 24 .22 (.10)a

Journal of Consulting and Clinical Psychology .12 (.09)a 47 .12 (.07) 18 .12 (.09)a

Journal of Educational Psychology .16 (.12)a 36 .16 (.08)a 29 .16 (.10)a

Journal of Experimental Psychology .22 (.17) 55 .17 (.17) 10 .19 (.17)
Journal of Personality and Social Psychology .20 (.13)a 37 .18 (.10)a 28 .19 (.12)a

All journals .17 (.12)a 283 .15 (.08)a 172 .16 (.10)a

Note. Each Mdn SVH for empirical samples is followed in parentheses by the Mdn SVH for artificial comparison data, with 100
replications per empirical sample.
a95% CI for the difference between SVHs for empirical samples and artificial data does not include the null value of A = .50.
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and negative pairings (n = 161); further details on pairings
are summarized in Table 2. The rank-order correlation
between this signed variant of the SVH and the observed
Type I error rate was rS(312) = �.71, p < .001. Thus, even
though assumptions of independence and population nor-
mality were satisfied in these simulations, the variance het-
erogeneity observed in these empirical samples was
sufficient to yield discrepancies between nominal and
observed Type I error rates beyond what one would expect
by chance. Whether the discrepancies were of a conservative
or liberal nature was somewhat predictable when there was
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either a positive or negative pairing between group sizes and
variances.

Discussion

In general, sample variance heterogeneity appears to exceed
what can be attributed to normal sampling error, and this can
affect the Type I error rates of conventional parametric statis-
tical tests for differences between group means. When com-
paring variance heterogeneity for all empirical samples and
matched comparison data, the effect size of A = .64 means
that there was a 64% chance that the SVH for a randomly
selected empirical sample would exceed the SVH for a ran-
domly selected comparison data set. This is elevated above
the 50% chance that one would expect when population vari-
ances are homogeneous, suggesting that this assumption is
violated in a nontrivial number of published studies. Compa-
rable levels of variance heterogeneity were observed for stud-
ies with more or fewer groups, with equal and unequal group
sizes, and with larger or smaller sample sizes. Experimental
studies exhibited greater variance heterogeneity than correla-
tional studies, though all or most of this apparent difference
can be attributed to the smaller sample sizes in experimental
research. Variance heterogeneity exceeded what would be
expected by sampling error to a comparable extent in research
published in the leading journals for developmental, health,
abnormal, consulting/clinical, educational, experimental,
and social/personality psychology.

Even when independent observations were drawn at
random from normally distributed populations, analyses of
artificial comparison data suggest that the variance heteroge-
neity observed in these 455 samples would be sufficient to
affect Type I error rates quite often. The resulting bias can
be either conservative or liberal, depending in part on
whether group sizes and variances are paired positively or
negatively. Variance heterogeneity does not appear to be
more common under circumstances when its influence
would be less problematic (e.g., a small number of equally
large groups) than when it would be more problematic (e.g.,
a larger number of unevenly sized groups with a small total
N). Our findings may provide a conservative estimate of the
extent to which variance heterogeneity affects Type I error
rates because our comparison data were drawn exclusively
from normally distributed populations and allowed to vary
along true ratio scales, whereas empirical data seldom
approximate these ideals closely.

Data for this study were drawn from articles published in
leading psychology journals, so it remains unknown
whether comparable levels of variance heterogeneity would
be observed in research published in less selective journals
or appearing in other sources (e.g., books, conferences,
unpublished manuscripts). We are not aware of any evidence
that variance heterogeneity is detected or criticized in the
peer-review process at top-tier (or other) journals. While
acknowledging that this remains an empirical question, we
predict that satisfaction of the equal-variance assumption
is unlikely to differ much at lower-tier journals, in other
sources, or in older or more recent research.

Like Micceri’s (1989) work pertaining to normality, the
present study found that data routinely violate a key assump-
tion of conventional parametric statistical tests. What can
researchers do about the possibility that variance heteroge-
neity will affect the Type I error rate or statistical power
of tests between group means? At a minimum, we encour-
age investigators to examine the variances in their samples
and either report them or provide a statistical summary.
Whereas the usual VR is simple to calculate and easy to
understand, Box’s (1954) CVV fares more poorly on both
counts and cannot be recommended for routine reporting.
Though the SVH that we introduced is cumbersome to cal-
culate, it does offer a few advantages relative to the VR.
First, whereas there is no theoretical upper limit to the
VR, the SVH is standardized in the sense that it is bounded
by 0 (equal variances) and 1 (maximally heterogeneous vari-
ances). Second, when the smallest within-group variance is
0, the VR is undefined but the SVH can be calculated. For
example, with sample SDs (or variances) of 0 and 1, the
VR = 1/0, which is undefined, whereas the SVH = 1.00.
With sample SDs of 0, 1, and 1, the VR is once again unde-
fined and the SVH = 0.50. This hints at the third advantage,
that for studies with more than two groups the SVH is a suf-
ficient statistic whereas the VR is not. Because the VR is
based on just two groups’ variances (the largest and the
smallest), it is insensitive to any other groups’ variances;
the SVH is calculated using each group’s variance. Table 4
shows that the SVH can reflect important differences among
samples that yield identical VR values. For example,
whereas VR = 3 for samples whose group variances are
{1, 1, 1, 3} or {1, 3, 3, 3}, their SVH values are .33 and
.20, respectively. Finally, as demonstrated empirically, the
SVH is less sensitive than the VR to the number of groups
in a study. For each of these reasons, we suggest that the
SVH may be a useful index of variance heterogeneity. At
the same time, we developed this index in the context of a
relatively simple research design, independent groups
assessed using a single measure at a single time point.
Whether this index or a variant on this theme will prove use-
ful for more complex designs requires further study.

Of course, quantifying and reporting the extent of vari-
ance heterogeneity does not solve the potential problems
that it can cause. Researchers can perform statistical tests
of the null hypothesis of equal population variances to deter-
mine whether the conventional data-analytic method for
comparing group means is a reasonable choice. For exam-
ple, one can perform O’Brien’s (1981) or Levene’s (1960)
test. Unfortunately, these and other available tests often have
poor statistical power. Even with normal distributions, test-
ing the equal-variance assumption can yield Type II errors,
which provides unwarranted reassurance (Maxwell &
Delaney, 2004; Wilcox, Charlin, & Thompson, 1986).
Wilcox and Keselman (2003, p. 262) conclude that ‘‘tests
for equal variances rarely have enough power to detect dif-
ferences in variances of a magnitude that can adversely
affect conventional methods.’’ Even increasing a to unusu-
ally high levels for these tests yields poor statistical power.
Keselman, Wilcox, Algina, Othman, and Fradette (2008)
compared more than 600 procedures to test for variance het-
erogeneity between groups and recommend methods based
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on asymmetric trimming strategies – trimming different
amounts of data from the upper and lower tails of distribu-
tions based on measures of skewness or tail length – to con-
trol Type I error rates; statistical power was not addressed in
this study. As described in the note to Table 4, one can gen-
erate artificial comparison data to provide a sampling distri-
bution under the null hypothesis of equal variances to
calculate a p value for an index of variance heterogeneity
such as the SVH. We doubt that this would provide a more
powerful test than existing alternatives because the funda-
mental challenge involves the large sampling error for sam-
ple variances, but that might be worthy of empirical
examination. In any case, calculating a p value for the
SVH rather than performing another test has the virtue of
being simpler to report. Rather than introducing an addi-
tional test statistic, one can append a p value to the existing
presentation of an SVH value. A program written in R to
calculate the SVH and its associated p value given only
the size and variance (or SD) of each group in a study is
available from the first author.

For any number of reasons, investigators might prefer not
to rely on a conventional parametric statistical test to compare
group means. Perhaps a test of the null hypothesis of equal
variances yielded a statistically significant result. Even in
the absence of such a result, in recognition of the poor statis-
tical power of such a test and the fact that variance heteroge-
neity is common, researchers might choose to use alternative
data-analytic techniques to compare scores across groups.
The options include checking for and removing outliers
(Wilcox & Keselman, 2003), performing nonlinear data
transformations (Budescu & Appelbaum, 1981; Games,
1983; but note that this can affect the interpretation of inter-
action terms in a factorial model), using more robust mea-
sures of central tendency and variability (Wilcox &
Keselman, 2003), using adjusted degrees of freedom tests
(Keselman, Algina, et al., 2008; Lix & Keselman, 1995),
and generating empirical sampling distributions rather than
relying on hypothetical sampling distributions that necessi-
tate more stringent parametric assumptions (Edgington,
1980; Efron & Tibshirani, 1993). Each of these approaches
has its own strengths and weaknesses, and some can be used
in complementary fashion. Though we did not specifically

code for this when reviewing published research, we cannot
recall any instances in which authors commented on variance
heterogeneity or used statistical methods designed to handle
it. The number of forgotten instances, if any, would still be
very small.

Though we believe the present findings underscore the
importance of considering one or more of the alternative
approaches to conventional statistical tests, we do not
believe that these findings have implications for how to
make the wisest decisions. Having found that variance het-
erogeneity appears to be routine in psychological research,
capable of affecting Type I error rates even if other assump-
tions are satisfied, we recommend that investigators learn
about and implement data-analytic techniques that do not
require – or are robust to violations of – the assumption
of equal variances. Because the publications that we
reviewed did not report raw data and it would not be feasible
to obtain and perform secondary analyses of these data, we
cannot empirically compare the available data-analytic alter-
natives to offer more specific guidance. Instead, we refer
interested readers to the references cited above as starting
points for exploring these approaches. The paper by
Keselman, Algina, et al. (2008) provides an especially com-
prehensive treatment of a unified, robust approach, and an
online supplement to that article contains program code
for implementing it. Texts that provide excellent overviews
of the pertinent issues include Grissom and Kim (2005),
Maxwell and Delaney (2004), and Wilcox (2001, 2003).
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