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Researchers are strongly encouraged to accompany the results of statistical tests

with appropriate estimates of effect size. For 2-group comparisons, a probability-

based effect size estimator (A) has many appealing properties (e.g., it is easy to

understand, robust to violations of parametric assumptions, insensitive to outliers).

We review generalizations of the A statistic to extend its use to applications with

discrete data, with weighted data, with k > 2 groups, and with correlated samples.

These generalizations are illustrated through reanalyses of data from published

studies on sex differences in the acceptance of hypothetical offers of casual sex

and in scores on a measure of economic enlightenment, on age differences in

reported levels of Authentic Pride, and in differences between the numbers of

promises made and kept in romantic relationships. Drawing from research on the

construction of confidence intervals for the A statistic, we recommend a bootstrap

method that can be used for each generalization of A. We provide a suite of

programs that should make it easy to use the A statistic and accompany it with a

confidence interval in a wide variety of research contexts.

An estimator of effect size indicates the magnitude of the relationship among

variables. The inclusion of effect size statistics in research reports can help

readers in several ways, including distinguishing between practical and statistical

significance (Kirk, 1996). As a result, the American Psychological Association

(APA) recommends that researchers accompany tests of statistical significance

with appropriately chosen effect size estimates (APA, 2009).

Correspondence concerning this article should be addressed to John Ruscio, Department of

Psychology, The College of New Jersey, P.O. Box 7718, Ewing, NJ 08628. E-mail: ruscio@tcnj.edu
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EXTENDING A PROBABILITY-BASED EFFECT SIZE ESTIMATOR 209

The comparison of scores across members of two groups is common in

psychological studies, and several effect size estimators are used by researchers.

These include Cohen’s d, the point-biserial correlation (rpb), and a probability-

based statistic that can be calculated in a parametric or nonparametric manner.

Ruscio (2008) discusses the advantages and disadvantages of these estimators

as well as ways to convert between them (given certain assumptions). Cohen’s

d is the standardized mean difference, calculated as the difference between two

groups’ mean scores on the dependent variable divided by the within-group

standard deviation. This statistic is relatively easy to calculate and understand,

but it is sensitive to violations of the normality or equal variances assumptions,

unequal group sizes, and outliers. The point-biserial correlation rpb is calculated

as the correlation between group membership (coded using any two distinct

numerical values) and scores on the dependent variable. This measures how

well one variable predicts another and connects more directly to concepts such

as statistical power and the general linear model, although it is harder to interpret,

less relevant to understanding treatment effects, and sensitive to the same factors

that can influence d.

In this research, we focus on a probability-based effect size statistic that

compares favorably with d or rpb in many ways. McGraw and Wong (1992)

introduced the common-language effect size statistic CL as the probability that

a randomly selected member of one group scores higher than a random selected

member of another group. They calculated CL by making the usual parametric

assumptions of normality and equal variances. Subsequently, many researchers

have calculated a nonparametric variant that has been identified by various names

(Delaney & Vargha, 2002; Grissom, 1994; Grissom & Kim, 2001; Hsu, 2004;

Vargha & Delaney, 2000). Ruscio (2008) reviewed the similarities among these

variations and followed Vargha and Delaney’s (2000) lead by using the label A

to emphasize this statistic’s relationship to the area under a receiver operating

characteristic curve. Specifically, A is calculated as

A D Œ#.Y1 > Y2/ C :5#.Y1 D Y2/�=n1n2; (1)

where # is the count function, Y1 and Y2 refer to scores by members of Groups 1

and 2, and n1 and n2 are the group sizes. In other words, one makes all pairwise

comparisons between members of Group 1 and members of Group 2, tallies the

number of times that the former scores higher than the latter (or credits this

as .5 if they are tied), and divides by the total number of comparisons. Values

can range from .00 (all members of Group 2 score higher than all members

of Group 1) through .50 (equal probability that members of either group score

higher, more formally known as stochastic equality) to 1.00 (all members of

Group 1 score higher than all members of Group 2). A serves as an estimator
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210 RUSCIO AND GERA

of � D Pr.Y1 > Y2/, which Grissom and Kim (2012) called the “probability of

superiority” (p. 149), and its calculation is simple and intuitive.

For example, consider a comparison between the following two groups of

scores: Y1 D f2; 3; 4g and Y2 D f1; 2; 3g. The first member of Y1 outscores

one member of Y2 and ties another, yielding 1.5 points toward the numerator

of A. The second member of Y1 outscores two members of Y2 and ties another,

yielding 2.5 points toward the numerator of A. The third member of Y1 outscores

all three members of Y2, yielding 3 points toward the numerator of A. Summing

across all comparisons yields A D .1:5C2:5C3/=.3�3/ D 7=9 D :78. Allowing

partial credit for ties, this means that there is a 78% chance that a randomly

chosen score from Y1 would exceed a randomly chosen score from Y2.

This probability-based statistic does not offer the same connectivity to other

statistical concepts as rpb , but it does possess a number of advantages relative

to d and rpb. The A statistic does not require parametric assumptions, is highly

robust to the influence of outliers, and is insensitive to unequal group sizes—

which means that it can be more helpful when generalizing findings to other

research contexts. Perhaps most important is that A is easier to understand than

d or rpb , facilitating communication even with those untutored in statistics.

For example, McGraw and Wong (1992) cited data on the sex difference in

height among U.S. adults. Using these data, the standardized mean difference is

d D 2:00 and the point-biserial correlation is rpb D :71. Unless one understands

concepts like means and standard deviations, d would require further explanation,

and it would be even more difficult to explain the correlation between sex and

height. Further, these figures assume that equal-size groups are obtained in one’s

sample. Setting aside the influence of normal sampling error, unequal group size

alone could cause d to range from 1.93 (if nearly all participants are men) to 2.08

(if nearly all participants are women); rpb could range from a high of .71 (with

approximately equal numbers of men and women) to arbitrarily close to .00 (if

nearly all participants are of the same sex). In contrast, A D :92 regardless of

group sizes, and it is fairly easy to understand what this means: Selecting pairs

of men and women at random, there is a 92% chance that the man is taller.

APPLICATIONS IN OTHER RESEARCH CONTEXTS

Based on the many potential advantages of a probability-based effect size statis-

tic, McGraw and Wong (1992) proposed ways to use the CL statistic for use with

discrete-valued variables and in studies with more than two groups or correlated

samples. Vargha and Delaney (2000) expressed their enthusiasm for McGraw and

Wong’s innovative work but also described some weaknesses of the CL statistic

and its generalizations. As noted earlier, the calculation of CL and its offshoots

requires parametric assumptions. The nonparametric A statistic is not constrained
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EXTENDING A PROBABILITY-BASED EFFECT SIZE ESTIMATOR 211

in this way. More important, the proposed extensions differ conceptually from

the original CL statistic and are not generalizations in that they do not contain

it as a special case when there are k D 2 groups. A related limitation is that the

extensions of the CL statistic do not share its interpretation: a value of .50 does

not always correspond to stochastic equality. Expanding in similar directions,

Vargha and Delaney (2000) introduced their own generalizations of the A statistic

that do not share these weaknesses. We review their generalizations and introduce

some of our own to afford researchers even greater flexibility in adapting this

versatile statistic to meet their needs. We begin with a straightforward way

to handle discrete data and then discuss generalizations of A for use with

weighted data, k > 2 groups, and correlated samples. Each of these applications

contains an empirical illustration using published data. Once the full range of

generalizations and extensions has been presented, we describe and illustrate a

method that can be used to construct confidence intervals for each application

of A. All calculations were performed using a suite of programs written in R

that we make available at http://www.tcnj.edu/�ruscio/taxometrics.html

The Discrete Values Case

McGraw and Wong’s (1992) CL statistic was designed for use with continuous,

rather than discrete, data. Although they proposed a way to adapt CL for use

with discrete values (e.g., dichotomous or multinomial data), Vargha and Delaney

(2000) discussed a number of conceptual weaknesses with their approach and, by

way of a better alternative, noted that the A statistic requires no modification for

use with discrete values because it allows for tied scores. Moreover, the A statistic

can be useful in contexts in which the parametric assumptions underlying other

effect size measures, such as d or rpb , would be violated by the discreteness of

the data (e.g., data taking a small number of discrete values cannot approximate

a normal distribution especially well). All of the data that we analyze throughout

this article vary along discrete scales with varying numbers of unique scores.

Empirical illustration. We reanalyzed data from Conley (2011) to illustrate

the use of A as an effect size statistic in the discrete values case. Conley studied

gender differences in the acceptance of casual sex offers. In a hypothetical

scenario, 516 individuals were offered sex by a stranger and asked on a 7-point

scale (1 D not at all likely to 7 D extremely likely) how likely they would be

to accept the offer. Conley classified those who responded with a 1 as definitely

rejecting the offer (which included 82% of women) and those who responded

with 2 through 7 as entertaining the possibility of the offer (which included 74%

of men); no explicit rationale for the decision to cut the scores at 2 was provided.

In the table of gender comparisons, scores on the full 7-point scale were retained

for analysis, and there was a substantial gender difference (M D 3:74, SD D 2:16
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212 RUSCIO AND GERA

for men; M D 1:37, SD D 0:97 for women). Because scores on a 7-point scale

are not continuous, the distributions were nonnormal, and the variances were

unequal to a potentially problematic extent, it is questionable whether Cohen’s

d is an appropriate effect size estimator in this instance. Calculating A instead

yields a value of .82, indicating an 82% chance that a randomly chosen man

would respond more favorably to an offer of casual sex than a randomly chosen

woman. This nonparametric statistic is appropriate for these data and yields a

simple, easy-to-understand estimate of the magnitude of the gender difference.

The Weighted Data Case

Social and behavioral scientists occasionally analyze data with differential

weights assigned to cases. For example, epidemiologists might weight data

across racial or ethnic groups to obtain statistics that can be generalized to a na-

tional population even when some subgroups are over- or underrepresented (e.g.,

by design or due to normal sampling error). The A statistic can be calculated

for weighted data in a straightforward manner: each time a score comparison is

made, weight the credit in the numerator (e.g., 1 if the score for the member of

Y1 is larger than the score for the member of Y2, .5 for a tie) by the product of

these two cases’ weights. Likewise, increment the denominator by the product

of the weights rather than by 1 unit. This gives each comparison the weight

jointly merited by the two cases’ individual weights, and the resulting weighted

version of the A statistic will therefore take all weights into account. Expressed

as an equation, the weighted version of A is calculated as follows:

A D

n1X

iD1

n2X

j D1

w1iw2j .ŒY1i > Y2j � C :5ŒY1i D Y2j �/

n1X

iD1

n2X

j D1

w1iw2j

; (2)

where w1i is the weight for the ith member of group Y1, w2j is the weight

for the jth member of group Y2, Y1i refers to the score for the ith member of

group Y1, Y2j refers to the score for the jth member of group Y2, the expression

ŒY1i > Y2j � is scored as 1 if true and 0 otherwise, and the expression ŒY1i D Y2j �

is scored as 1 if true and 0 otherwise. The A statistic as originally described

can be considered a special case in which all cases of data are assigned equal

weights, in which case Equation 2 simplifies to Equation 1.

Applying weights in this way does not affect the range of values that A can

take (.00 to 1.00). Because the denominator is incremented using the same prod-

uct of case weights as the numerator for each pairwise comparison, multiplying

or dividing all case weights by a constant will not affect the value of A. This
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EXTENDING A PROBABILITY-BASED EFFECT SIZE ESTIMATOR 213

means that it is unnecessary for the weights to sum to 1 (or any other specific

value). This method for applying case weights can be generalized to all variants

of the A statistic described in this article, and each of our computer programs

allows users to provide case weights.

Empirical illustration. We reanalyzed data from Buturovic and Klein (2010)

to illustrate the use of the A statistic with weighted data. Buturovic and Klein

studied economic enlightenment in a nationwide telephone survey of 4,835

American adults. Their primary dependent variable was the number of items

(out of eight) for which each participant’s selected responses were consid-

ered “unenlightened” when evaluated against the consensus of opinion among

economists based on theoretical and empirical scholarship (e.g., disagreeing

with the statement “Rent control leads to housing shortages” was scored as

unenlightened; see Jenkins, 2009). We reverse-scored this measure so that higher

values represented greater economic enlightenment. There was a gender dif-

ference such that men scored a bit higher (M D 5:40, SD D 2:22) than

women (M D 4:42, SD D 2:18), but this may not generalize well to the

U.S. population because (a) there was also a large difference in economic

enlightenment by self-identified political party affiliations (M s D 3.41, 6.39,

and 4.97 for Democrats, Republicans, and Independents, respectively), (b) the

sample was not representative of the U.S. population with respect to party

affiliation (according to Gallup surveys in 2010), and (c) the sample contained

different proportions of women in each party (50%, 35%, 33% for Democrats,

Republicans, and Independents, respectively). To address these concerns, weights

were applied to adjust for discrepancies between party affiliations in the sample

and population. For example, when a score comparison was made between a

Democrat and a Republican, the result was multiplied by 0:853�0:712 D 0:607,

a low value because both parties were overrepresented in the sample; when a

score comparison was made between two Independents, the result was multiplied

by 1:812 � 1:812 D 3:283, a much larger value because Independents were

underrepresented in the sample. Among the 4,519 individuals who reported their

gender and were affiliated with one of these three political parties, adjusting

all pairwise comparisons between men and women using these weights yielded

A D :62. This estimate suggests that in the U.S. population, a randomly selected

man would have a 62% chance of scoring higher on Buturovic and Klein’s

measure of economic enlightenment than a randomly selected woman.

The k-Groups Case

Vargha and Delaney (2000) introduced two generalizations of the A statistic for

use with more than two groups, both of which are analogous to an omnibus F

statistic in that they quantify the extent of differences observed among all groups.
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214 RUSCIO AND GERA

Vargha and Delaney referred to their first generalization of A as an estimator

of stochastic homogeneity. In this first generalization, the A statistic is used to

determine whether scores in one group differ from those in the union of all other

groups, and this procedure is then repeated for each group in turn. The resulting

series of A values are then aggregated into a single statistic by calculating the

average absolute deviation (AAD) from .50 (the value representing stochastic

equality). Because stochastic homogeneity would yield AAD D .00, Vargha and

Delaney noted that one can add .50 to return this measure to the original scale

of the A statistic. We label this variant of A as AAAD because it is based on the

AAD. The population value �AAD is estimated as follows:

AAAD D

kX

iD1

jAik � :50j

k
C :50;

where k is the number of groups and Aik is the value of the A statistic when

comparing group i with the union of all other groups.

Vargha and Delaney (2000) referred to their second generalization of A as

a measure of pairwise stochastic equality. In this second generalization, the A

statistic is calculated for all pairs of groups, and these values are aggregated

by calculating the average absolute pairwise deviation (AAPD) from .50. Once

again, .50 can be added to the resulting value to return it to the scale of A.

We label this variant of A as AAAPD because it is based on the AAPD. The

population value �AAPD is estimated as follows:

AAAPD D

k�1X

iD1

kX

j DiC1

jAij � :50j

k.k � 1/

2

C :50;

where Aij is the value of the A statistic when comparing groups i and j.

Interested readers can consult Vargha and Delaney (2000) for further details

regarding the calculation of AAAD and AAAPD. As noted earlier, both of these

statistics are nonparametric and contain the original formulation of A as a special

case when k D 2 groups are compared. Although they yield values on the

same scale as A (from .50, stochastic equality, to 1.00, no overlap between

any scores), their interpretation is a little more complex. A relatively minor

complication is that neither of these generalizations can fall below .50 because

of the use of absolute deviations to aggregate values. Because neither AAD

nor AAPD can be negative, adding .50 to rescale them into AAAD and AAAPD

ensures a minimum value of .50 for each. The greater difficulty in interpreting
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EXTENDING A PROBABILITY-BASED EFFECT SIZE ESTIMATOR 215

these estimators is analogous to what one encounters with any omnibus statistic:

in this case, specifically, one cannot determine which groups’ distributions differ

from which other groups’ distributions. One potentially helpful adjunct to these

generalizations would be to use the original A statistic to compare specific pairs

of groups in a manner analogous to performing post hoc comparisons of means

following an F test.

In addition to generalizations of A that correspond to omnibus statistics or

specific pairwise comparisons, one can construct variants that impose different

constraints on the group comparisons. First, one can single out a particular group

for comparison with all others, pooling the latter as though drawn from a single

population. The method of calculation is straightforward: treat scores from all

but the reference group as though drawn from a single population, and compare

them with the scores from the reference group using the A statistic as usual. We

label this variant of A as Aik to signify the comparison of one group with all of

the others. The Aik statistic estimates a population value that can be expressed

in this way: �ik D Pr.Yi > Y�i/, where � i denotes the union of all groups

except i. The probability is estimated by calculating A as shown in Equation

1. Second, one can quantify the extent to which scores tend to be rank-ordered

across groups. To calculate this variant, one first calculates A for each pair of

adjacent groups and then takes the mean of these values. We label this as Aord to

signify the generalization of A to an ordinal comparison across multiple groups,

and Aord estimates the population value defined as follows: �ord D ŒPr.Y1 >

Y2/ C Pr.Y2 > Y3/ C : : : C Pr.Y.k�1/ > Yk/�=Œk � 1�. Each probability in this

expression is estimated using the formula for A shown in Equation 1.

Empirical illustration. We reanalyzed data from Orth, Robins, and Soto

(2010) to illustrate each generalization of A as an effect size statistic for com-

parisons among more than two groups. Using cross-sectional data from 2,611

individuals, Orth et al. tracked changes in emotions across the life span. They

found that Authentic Pride exhibited a monotonically increasing trend over the

seven age groups in the study. Because there were so many groups, calculating

an effect size estimator such as d for all pairwise comparisons, or even for all

nearest-neighbor pairs of age groups, would have been unwieldy. Fortunately,

generalizations of A to the k-groups case can be helpful in this context, and all

four options are illustrated here.

Vargha and Delaney’s (2000) versions yielded AAAD D :56 and AAAPD D :58,

both of which suggest fairly small—but not necessarily negligible—differences

among age groups. It remains unclear, however, which groups differ more or

less from others. Singling out the youngest age group for comparison against

all others yielded Aik D :45 (meaning that this age group exhibited a bit less

Authentic Pride than did the composite of all other age groups), whereas singling

out the oldest age group for comparison yielded Aik D :63 (more Authentic
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216 RUSCIO AND GERA

Pride than in other age groups), a larger effect. The monotonic trend across

all age groups was quantified by a value of Aord D :53. Although this result

suggests a rather slight difference, it must be remembered that Aord compares

change across adjacent age groups only. The probability that members of the

oldest age group exhibited greater levels of Authentic Pride than members of

the youngest age group was A D :66, which suggests that a considerably larger

effect accumulates over a longer developmental span.

The Correlated Samples Case

The A statistic can be generalized to applications with correlated samples (e.g.,

repeated measures, matched samples). The key to these variants is to compare

scores across measures for each case rather than making all pairwise score

comparisons across groups. Vargha and Delaney (2000) introduced this approach

for the case of k D 2 correlated samples as follows:

A D Œ#.Y1 > Y2/ C :5#.Y1 D Y2/�=n;

where Y1 and Y2 now refer to scores on two measures and comparisons are made

across n participants. When calculated in this way, A represents the chance that a

randomly chosen participant’s score would be greater on the first than the second

measure, allowing partial credit for ties. Formally, A still serves an estimator of

� D Pr.Y1 > Y2/, with Y1 and Y2 representing correlated samples rather than

discrete groups.

Not only can A be extended for use with k D 2 correlated samples but also

this application can be generalized to k > 2 correlated samples in the same

four ways that were described for k > 2 groups. For Vargha and Delaney’s

(2000) variants AAAD and AAAPD as well as the Aik and Aord variants introduced

here, the key remains making score comparisons across measures within cases

rather than pairwise across groups. For each of our programs that calculates a

k-groups variant of A, there is a parallel program that calculates a variant of A

for k correlated samples.

Empirical illustration. We reanalyzed data from Peetz and Kammrath (2011)

to illustrate the use of the A statistic with correlated samples. Peetz and Kamm-

rath studied the number of promises that were made (M D 2:77, SD D 0:53)

and that were subsequently broken (M D 2:23, SD D 1:02) by 83 individuals

in interpersonal relationships, noting that there was a statistically significant

difference (t Œ82� D 5:18, p D :001) but not including an effect size estimate.

Calculating the correlated-samples variant of A yielded A D :66, indicating a

66% chance that a randomly chosen individual kept fewer promises than he or

she had made. Though Peetz and Kammrath did not choose to report results in
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EXTENDING A PROBABILITY-BASED EFFECT SIZE ESTIMATOR 217

this way, one could also compare the number of promises kept with the number

broken. This yielded A D :83, indicating an 83% chance that a randomly chosen

individual kept more promises than he or she broke.

Constructing Confidence Intervals

In the APA’s (2009) Publication Manual, researchers are asked to report appro-

priate effect size statistics for their analyses. To enhance the utility of the effect

size estimate, the APA recommends accompanying it with a confidence interval

(CI) to indicate the precision of the estimated effect size (APA, 2009). A number

of methods have been proposed for constructing CIs around the A statistic.

Ruscio and Mullen (2012) examined the performance of nine analytic methods

(e.g., estimating a standard error [SE] of a theoretical sampling distribution and

constructing a 95% CI as A ˙ 1:96 � SE) and three bootstrap methods (e.g.,

resampling with replacement to generate an empirical sampling distribution of

the A statistic and constructing a 95% CI such that it spans the middle 95% of

the observed values). Based on a variety of criteria, they recommended using

the bias-corrected and accelerated (BCA) bootstrap method (Efron & Tibshirani,

1993) to construct CIs for A. Our suite of programs allows users to implement

the BCA bootstrap method to construct a CI for any of the generalizations of A

described in this article. In addition, these programs provide an estimate of the

SE calculated as the SD of all bootstrap samples’ values of A.

Empirical illustration. Each of the analyses performed in this article was

updated using B D 1,999 bootstrap samples to construct a 95% CI using the

BCA method. For the discrete data case using Conley’s (2011) data, there was

an 82% chance that a randomly chosen man would be more accepting of an offer

of casual sex than a randomly chosen woman, with the CI for A D .:779; :853/.

The asymmetry of this CI—it extends a little further from .82 on the lower

than the upper end—is not uncommon when A departs from .50 and is part

of the reason that the BCA method of CI construction outperformed many

of the alternatives. Unlike most analytic methods for constructing CIs, certain

bootstrap methods (including the BCA method) can yield asymmetric CIs when

the sampling distribution of a statistic is itself asymmetric. The fact that the

CI does not include .50, which represents stochastic equality, suggests that one

would reject this null hypothesis (for more on hypothesis testing using A and

its generalizations, see Vargha & Delaney, 2000).

For the weighted data case using Buturovic and Klein’s (2010) data, with

sample weights applied to represent party affiliations in the U.S. population, there

was a 62% chance that a randomly selected man would score higher on economic

enlightenment than a randomly selected woman, CI D (.596, .629). Because of

the very large sample size (N D 4,519), this is an especially narrow CI.
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218 RUSCIO AND GERA

For the k-groups case using Orth et al.’s (2010) data, differences in Authentic

Pride across age groups were quantified in many ways. When all groups were

compared, the differences were modest, with AAAD D :56, CI D (.545, .570) and

AAAPD D :58, CI D (.559, .590). Here, too, a large sample size (N D 2,601)

provided excellent precision in estimating the size of the effect. Singling out the

youngest age group for comparison against all others yielded Aik D :45, CI D

(.428, .485), whereas singling out the oldest age group for comparison yielded

Aik D :63, CI D (.590, .673). Quantifying the monotonic trend across all age

groups yielded Aord D :53, CI D (.518, .535), and contrasting members of the

youngest and oldest age groups yielded A D :66, CI D (.615, .708). None of

these CIs includes .50, suggesting that even these values of A that represent very

small effects would be statistically significant with two-tailed tests at ’ D :05.

Finally, for the correlated samples case using Peetz and Kammrath’s (2011)

data, there was a 66% chance that a randomly chosen individual kept fewer

promises than he or she had made, CI D (.596, .711), and an 83% chance that

a randomly chosen individual kept more promises than he or she broke, CI D

(.729, .892). The latter CI, which deviates farther from .50 than any other CI

reported here, demonstrates the greatest degree of asymmetry as well.

CONCLUSIONS

We reviewed generalizations of a probability-based estimator of effect size be-

yond its original application in two-group comparisons. Specifically, we showed

how to use the A statistic with discrete data, weighted data, k > 2 groups,

and correlated samples. The use of each generalization was illustrated through

reanalyses of data from published studies. Following the advice in the APA’s

(2009) Publication Manual to accompany effect size estimates with CIs, we

drew from related research to include a bootstrap method for constructing CIs

for each generalization of the A statistic discussed in this article. All of our

calculations were performed using a suite of free programs that should make

it easy to use the A statistic and accompany it with a CI in a wide variety of

research contexts.
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