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Taxometric analyses are performed to deter-
mine whether individuals differ from one
another in a categorical or dimensional
manner. Paul Meehl (1920–2003) and his col-
leagues developed a family of taxometric data
analytic procedures that provide nonredun-
dant evidence bearing on the latent structure
of a target construct. For example, Meehl’s
taxometric method can be used to determine
whether distinct groups of psychopaths and
nonpsychopaths exist, or whether individuals
differ along one or more psychopathic latent
traits. The method addresses the latent struc-
ture of a target construct, not the manifest
structure of a data set that depends criti-
cally on how one chooses to conceptualize
and measure the construct. In many clinical,
forensic, research, or administrative contexts,
one might wish to classify individuals as psy-
chopaths or nonpsychopaths. This goal can
be met regardless of the latent structure of
psychopathy. On the other hand, knowledge
of a construct’s latent structure can be advan-
tageous for basic or applied science. Theories
of psychopathy, assessment instruments, and
diagnostic classification can be developed or
refined using structural information. Distin-
guishing between categorical and dimensional
structure also holds implications for the design
of research and the statistical power of data
analyses.

Because latent structure is important for
so many reasons, the taxometric method
was designed expressly to “carve nature at its
joints.” The fundamental goal is to establish
where categorical boundaries can be drawn in
a nonarbitrary manner and where individual
differences are dimensional in nature. As with
other latent variable modeling techniques,
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observed variables serve as indicators of a
latent construct. A taxometric data analytic
procedure examines the relationships among
variables and provides evidence that can be
used to assess the relative fit of two competing
structural models. Individuals may differ along
one or more dimensions (continua, traits,
latent factors) or there may be a categorical
separation between two groups (taxa, types,
latent classes); in the latter case, variables may
be correlated along one or more dimensions
within either or both groups. In the taxometric
literature, the groups are labeled the taxon (the
higher-scoring group) and its complement.

Perhaps because Meehl was a clinical psy-
chologist who developed his taxometric
method to address research questions in clini-
cal psychology, this remains the realm in which
it has been applied most often. Nick Haslam
and his colleagues have published a number of
reviews of taxometric research. The most recent
of these papers (Haslam, Holland, & Kuppens,
2012) not only documents the breadth of con-
structs that have been studied, the conclusions
reached by the original investigators, and the
ways in which the taxometric method has been
implemented, but also incorporates quanti-
tative analyses of factors related to structural
conclusions. Haslam et al. (2012) identified 177
articles published in peer-reviewed journals
that included taxometric analyses, and the
large list of target constructs was classified
into domains such as mood disorder, anxi-
ety disorder, eating disorder, substance use,
externalizing, personality disorder, normal
personality, or other individual differences.
Although the original authors reached a con-
clusion of categorical structure for 39% of the
findings, Haslam et al. (2012) estimated that
the true prevalence of categories was 14% after
they statistically controlled for factors such
as the recency and methodological strength
of the studies. They concluded that “most
latent variables of interest to psychiatrists
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Figure 1 Illustrative MAXCOV analysis showing peaked curve for three indicator variables that distinguish
men and women.

and personality and clinical psychologists are
dimensional” (p. 903).

An Illustrative Procedure

The iconic taxometric procedure is MAXCOV
(maximum covariance), which requires three
indicator variables. Cases are sorted along
one variable, which forms the x axis of the
graph on which results will be plotted. Within
a subsample of cases with the lowest scores on
this variable (e.g., the lowest decile), the covari-
ance between the two remaining variables is
calculated. This covariance is plotted along the
y axis of the graph. Next, a subsample of cases
with slightly higher scores is formed (e.g., the
second-lowest decile), and a new covariance
value is calculated and plotted. This procedure
is repeated until the subsample includes cases
with the highest scores (e.g., the highest decile).
The shape of the resulting MAXCOV curve
provides a clue to the latent structure of the tar-
get construct. Specifically, the curve is expected
to contain a distinct peak for categorical
structure, but not for dimensional structure.

For example, consider the analysis of the
three variables height, voice pitch, and non-
verbal sensitivity in a sample that contains

equal numbers of men and women. Despite
considerable overlap on all three variables,
there are systematic group differences: Men
tend to be taller and women tend to score
higher on the other two variables. Sorting
cases by height and calculating the covariance
between voice pitch and nonverbal sensitiv-
ity within each decile should yield a peaked
MAXCOV curve (see Figure 1). The lowest
deciles will contain mostly women, among
whom there is no association between voice
pitch and nonverbal sensitivity. Likewise, the
highest deciles will contain mostly men, among
whom there is no association between these
variables. Within the middle decile, corre-
sponding to the average height in the sample,
there will be a mixture of men and women and
a positive association between voice pitch and
nonverbal sensitivity. The positive association
occurs because women tend to score higher on
both variables. A scatterplot would reveal two
clouds of points, one toward the lower-left rep-
resenting men’s paired scores and one toward
the upper-right representing women’s paired
scores, and therefore the covariance would be
positive. In each decile near the middle, the
covariance will still be positive. Its magnitude
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is a function of how evenly mixed the groups
are, with the maximum covariance occurring
for the subsample that contains the most nearly
equal numbers of men and women. It is this
mixture of groups that differ systematically
on the indicator variables that gives rise to a
pattern of results indicative of categorical struc-
ture. One need not have an infallible classifica-
tion of cases into groups (i.e., men and women)
to identify the fact that a categorical structure
underlies these data. In contrast, in the absence
of a categorical distinction there is no reason
to expect a peak in the MAXCOV curve.

Consistency Testing

Many other quantitative methods exist to
differentiate data with categorical and dimen-
sional latent structures. What makes the
taxometric method unique is its emphasis on
consistency testing. Rather than performing a
single analysis and drawing a conclusion based
on a test of statistical significance or an index
of absolute or relative model fit, taxometric
analysis requires that multiple nonredundant
sources of evidence be obtained. To the extent
that the evidence consistently supports a
categorical or a dimensional structural model,
one can draw a conclusion with a degree of
confidence corresponding to the strength of the
evidence. In some cases, the data will afford a
powerful test and the results will clearly differ-
entiate between these two competing structural
models. In other cases, the results will not be so
clear, perhaps even highly ambiguous. As with
any data analytic technique, conclusive results
are not guaranteed. Although ambiguous
results may be disappointing to the investiga-
tors, the fact that taxometric methodology itself
provides an indication of when strong conclu-
sions are unwarranted is an invaluable asset.

A handful of taxometric procedures have
emerged as the most popular tools for
obtaining evidence whose consistency can be
checked. MAXCOV has been used most often.
One variant of MAXCOV that can be per-
formed using only two variables is MAXSLOPE

(maximum slope), and another that can be per-
formed with three or more variables is the mul-
tivariate generalization MAXEIG (maximum
eigenvalue). Because MAXCOV, MAXSLOPE,
and MAXEIG operate in very similar ways,
they would not be expected to yield nonre-
dundant evidence suitable for consistency
testing.

Two other taxometric procedures are more
distinct and have often served as consis-
tency tests in studies that include MAXCOV,
MAXSLOPE, or MAXEIG. The MAMBAC
(mean above minus below a cut) procedure
requires two variables, one of which is used to
sort cases and serves as the x axis of a graph as
in MAXCOV. A cutting score is located near
the lower end on this variable, and the mean
difference on the second variable is calculated
for subsamples scoring above and below the
cut. This mean difference is plotted along the
y axis of a MAMBAC graph. The cutting score
is then moved upward to form a new pair of
subsamples and then calculate and plot their
mean difference. This procedure is repeated
until the cutting sore has moved near the
upper end of the first variable’s range. If the
data are categorical, a peak in the MAMBAC
curve is expected to emerge near the cutting
score that best distinguishes the two groups
from one another. For dimensional data, no
peak is expected. The L-Mode (latent mode)
procedure requires at least three variables. A
factor analysis of all variables is performed,
and scores are estimated for the first principal
factor. For categorical data a bimodal distribu-
tion of factor scores is expected, whereas for
dimensional data a unimodal distribution is
expected.

Some of these procedures (e.g., MAXCOV
and MAMBAC) can be run multiple times to
obtain a panel of curves. For example, with
three variables—X, Y, and Z—MAXCOV
can be performed three times (once using
each variable on the x axis of a new graph)
and MAMBAC can be performed six times
(each of the three variable pairs XY, XZ, and
YZ is used twice, once with each variable on
the x axis of a new graph). With even more
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variables, considerably more curves can be
generated and examined for consistency. In
addition to providing curves whose shapes can
be inspected for clues to the target construct’s
latent structure, each curve can be used to
calculate an estimate of the relative size of the
higher-scoring group within the sample, or
what is known as the taxon base rate. These
estimates can be calculated even if the data
are dimensional, but they are not expected
to cohere around a single value unless there
is in fact a taxon whose relative size is being
estimated. In other words, it has been pro-
posed that one can examine the variability of
the taxon base rate estimates as a consistency
test, with smaller values more indicative of
categorical structure. Other parameters of a
categorical structural model (e.g., the validity
with which each variable distinguishes two
groups) can also be estimated and used for
consistency testing.

Although many consistency tests have been
proposed, considerable research remains to be
done to determine which are worth includ-
ing in a taxometric analysis. Ruscio, Walters,
Marcus, and Kaczetow (2010) outlined criteria
that a candidate consistency test should meet
to warrant inclusion. The candidate test should
differentiate categorical and dimensional data.
Regardless of how plausible the rationale, a test
should be demonstrably valid. If it meets this
criterion, the candidate test should provide
incremental validity. The test should provide
evidence that is not redundant with other
results already being used. If it meets these
criteria, there should be an objective decision
rule for reaching conclusions on the basis of
the candidate test. This prevents confirmation
bias from compromising the utility of a test
that requires a subjective judgment. Relatively
few of the many proposed consistency tests
have been examined rigorously to determine
whether they meet any, let alone all, of these
criteria. One approach to consistency testing
that appears to meet these criteria will be
discussed in a later section.

Inferential Framework

Beginning with many of the seminal research
reports dating back to the 1960s (e.g., Meehl,
1965), there has been some ambiguity
regarding the inferential framework for taxo-
metrics. Historically, it was not uncommon for
authors to describe the purpose of taxometric
analysis as the detection of a taxon. Under a
taxon-detection framework, if nonredundant
sources of evidence consistently supported
the existence of a taxon, one would reach a
categorical conclusion. On the other hand, the
failure to detect a taxon is analogous to the
failure to reject a null hypothesis, and no firm
conclusion can be drawn. From this perspec-
tive, dimensional structure is analogous to a
null hypothesis that one cannot accept.

A conceptual problem with the taxon-
detection framework is that if one adopts it
the taxometric method is no longer a tool for
distinguishing categorical and dimensional
data because one can seldom, if ever, reach the
latter conclusion with much confidence (as one
can seldom, if ever, accept a null hypothesis
with much confidence). Even those authors
who appear to adopt the taxon-detection
framework have not always been consistent
in adhering to this perspective. At best, there
is mixed evidence in the taxometric literature
suggesting that authors implicitly endorse
the taxon-detection framework; there is little
explicit support for it.

When the results of taxometric procedures
are interpreted in the conventional fashion
described above (e.g., inspecting a MAXCOV
curve for the presence of a peak indicative
of categorical structure), it is in fact difficult
to differentiate between results supportive of
dimensional structure and merely ambiguous
results that afford no firm conclusion. For
example, even for a truly categorical construct
the available data may be insufficiently valid
for peaks to emerge in MAXCOV curves. This
outcome is analogous to low statistical power
in conventional significance testing. Until
recently there was no compelling alternative to
this inferential framework.
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The introduction of methods involving the
generation and parallel analysis of categorical
and dimensional comparison data provided
an alternative; these methods are described
below. The careful use of comparison data
affords a fruitful interpretive aid for taxometric
results and, more importantly, enables the
adoption of an inferential framework in which
two competing structural models are put to a
test. Under this competing-models framework,
the goal is to determine whether the evidence
provides better support for a categorical or a
dimensional structural model. Thus, unlike
under the taxon-detection framework, one
can obtain evidence that supports a dimen-
sional conclusion. Not only is the distinction
between dimensional structure and ambiguous
evidence formally acknowledged, but also the
methodology affords a basis for differenti-
ating between these possibilities. Since the
use of comparison data was introduced, most
taxometric reports have implicitly adopted
the competing-models framework and many
reports have done so explicitly.

Interpreting Taxometric Results

Taxometric procedures provide a wealth of
output, including curves whose shapes can
be inspected and parameter estimates whose
coherence can be evaluated. Meehl’s emphasis
on consistency testing continues as a bedrock
principle of taxometrics. However, the inter-
pretation of taxometric results remained a
fairly subjective task for a long time. Conven-
tionally, findings were interpreted relative to
the prototypical results expected for categorical
and dimensional data, which were presented
when a procedure was introduced into the
literature. For example, one examined each
MAXCOV curve and judged whether or not
it appeared to be peaked. If all or most of the
MAXCOV curves were judged to be peaked,
this evidence was interpreted as supporting a
categorical structural model.

From the beginning, the influences of some
complicating factors were recognized. For

example, the location of a peak within a MAX-
COV curve depends on the taxon base rate
in the sample of data. When the taxon and its
complement are of approximately equal size,
the peak is expected to emerge near the center
of the curve. If the taxon is smaller than its
complement, however, the peak is expected
to shift toward the right along the curve. The
reason is that one must reach higher-scoring
subsamples of data to find the one in which the
groups are mixed in approximately equal pro-
portions. In a sample that contains 10% men
and 90% women, the maximum covariance
between voice pitch and nonverbal sensitivity
will not occur in the middle decile on height,
which will still contain far more women than
men. The peak may occur in the ninth or
even the tenth decile, wherever the number
of men most closely matches the number of
women within that subsample. Thus, it was
understood that a peaked MAXCOV curve
need not be symmetric. A peak could take
the form of a cusp at the upper end of the
curve, where a cusp refers to a maximum value
that is approached through rising values on
one side but not followed by falling values
on the other because it occurs at the end of a
curve.

The taxometric literature is replete with dis-
cussions of ways that various data conditions
can influence the shape of curves for each
data analytic procedure. Two particular mono-
graphs catalog and illustrate such influences
especially extensively. Meehl and Yonce (1994,
1996) show prototypical MAMBAC and
MAXCOV curves across a number of data
conditions. They demonstrate not only the
extent of random fluctuations that one should
expect due to sampling error with several
different sample sizes, but also the system-
atic variations in curve shapes produced by
changing the levels of parameters such as the
taxon base rate, within-group correlations, and
between-group validities. Publications such as
these provided a great service to investigators
attempting to interpret their own taxometric
results.



6 TAXOMETRICS

Even with these guides available, two sub-
stantial interpretational challenges remained.
First, there was not always strong agreement on
how well a particular empirical result matched
any of the prototypes. Reaching a judgment
still contained a considerable amount of
subjectivity. In part, this challenge can be
attributed to the fact that prototypes cannot
be produced for all possible data conditions.
Novel configurations would be expected with
each new empirical application of the taxomet-
ric method. To the extent that an investigator
understood the ways that data conditions are
expected to influence taxometric results, he or
she could reach an informed judgment about
how to interpret empirical results that do not
match any of the prototypes appearing in the
literature.

A second challenge is that the prototypes
were based on idealized data conditions
that may not be approximated well in many
empirical samples, particularly those studied
by clinical psychologists. For example, the
data used to generate prototypical taxometric
results for categorical data were normally dis-
tributed within groups, and groups possessed
equal variances. These are common parametric
assumptions, and an eminently reasonable
starting point for developing an understanding
of taxometric results across data conditions.
Because empirical data often deviate substan-
tially from normality and/or equal variances
(Micceri, 1989; Ruscio & Roche, 2012), though,
one might expect empirical results to deviate
from the prototypical taxometric curves based
on idealized data.

One particularly vexing problem involves the
analysis of skewed data. Asymmetric score dis-
tributions on important variables are common
in clinical research. On the one hand, even if
data are distributed normally and with equal
variances across two groups, the full-sample
score distribution would be skewed if the
groups are of unequal size. If psychopathy were
categorical, for example, scores for a small
number of psychopaths would elongate the
upper tail of an indicator variable’s distribution
when combined with the scores for a large

number of nonpsychopaths. On the other
hand, there is no reason that data need be nor-
mally distributed even in the absence of group
mixture. As Micceri (1989) documented, even
measures expressly designed to yield normal
score distributions in specific populations often
provide skewed data. The results for categorical
data with a small taxon can be very difficult
to distinguish from those for dimensional
data with skewed indicator variables (Ruscio,
Ruscio, & Keane, 2004). In both of these data
conditions, for example, MAXCOV curves can
rise to an upper-end cusp. A small taxon shifts
the peak toward the upper end for reasons
described above. Skewed indicator variables
can have a similar effect through a differential
restriction of range across subsamples. As one
moves from lower-scoring to higher-scoring
subsamples, the range of values increases for
the two variables whose covariance is being
calculated. The end result can be a rise in
covariances that mimics the expectation for
categorical data with a low taxon base rate.
Such a cusped curve shape is therefore inter-
pretationally ambiguous. Because these data
conditions occur fairly frequently in clinical
research, it could be challenging to justify a
conclusion by making reference to prototypical
taxometric results obtained under idealized
data conditions.

Comparison Data

As computing power increased, a solution to
these interpretational challenges became pos-
sible that would not have been feasible when
the methodology was developed originally.
Rather than relying on an extensive, but still
limited, set of prototypes, one can obtain ref-
erence curves for categorical and dimensional
data tailored to the data conditions in one’s
empirical sample. The keys to this approach are
to generate both categorical and dimensional
data sets that share the important features of a
unique sample of empirical data and to submit
these comparison data to the same taxomet-
ric analyses as the empirical data. There was
strong precedent for this approach in more



TAXOMETRICS 7

mainstream statistical applications, namely the
resampling strategies by which empirical data
are treated as an unbiased sample from the
relevant population and the parallel analysis
technique used to determine the number of fac-
tors to retain in an exploratory factor analysis.

Consider first that the usual parametric
assumptions of normality and equal variances
were introduced when testing statistical sig-
nificance of mean differences across groups to
simplify an otherwise overwhelming calcula-
tion problem (Rodgers, 1999). Sophisticated
tests that did not require these assumptions
were available, but it was not feasible to do
the necessary resampling of observations and
repetitive calculations for all but the smallest
of data sets. Deriving tables of critical values
for different degrees of freedom, one-tailed vs.
two-tailed tests, and commonly used 𝛼 levels
made it feasible for investigators to perform
statistical tests for a much wider range of
applications. Many decades later, advances
in computing power made it possible to do
the resampling and calculation required for a
cleaner test rather than imposing parametric
assumptions.

Ruscio, Ruscio, and Meron (2007) adapted
a common resampling technique known as
the bootstrap for use in taxometric analysis.
They introduced a method for generating
artificial comparison data that reproduced
important characteristics of an empirical
sample, including its sample size, the number
of variables, and these variables’ marginal
distributions and correlations. The itera-
tive algorithm that carries out this work is
grounded in standard bootstrap methods. It
can be applied to a full sample of empirical
data to reproduce its characteristics in an
artificial data set with purely dimensional
structure. It can also be applied to subsamples
of the empirical data provisionally assigned
to groups in order to reproduce these data
characteristics within groups. By merging the
artificial data generated for these subsamples,
an artificial data set with categorical structure
is obtained. Rather than relying on prototypical
taxometric results based on idealized data, one

could generate both categorical and dimen-
sional comparison data that approximate the
important characteristics of a unique sample
of empirical data.

Ruscio and Kaczetow (2008) later improved
the programming efficiency of the data-
generation algorithm and showed how it could
be used to create very large, but still finite,
populations of artificial comparison data from
which random samples could be drawn for
analysis. By submitting each of these to the
same taxometric analyses as the empirical data,
the results would provide a helpful interpretive
aid. This method is analogous to submitting
artificial data to parallel analysis to determine
how many factors to retain in an exploratory
factor analysis. Results for the empirical data
can be compared to those for the comparison
data rather than applying a more idealized,
hypothetical standard. In the case of tax-
ometrics, one can determine whether the
empirical results are more similar to those for
categorical or dimensional comparison data.
It is also possible to identify results that are
interpretationally ambiguous. The results for
the comparison data may not differ across
structures, which suggests that the empirical
data are not up to the task of differentiating
between these structural models when ana-
lyzed in this way, or the empirical results may
resemble—or fail to resemble—those of both
kinds of comparison data to a similar extent. In
the case of ambiguous results, no conclusion is
warranted. The ability to differentiate between
results that support a dimensional structural
model and ambiguous results enables the
adoption of the competing-models inferential
framework.

In addition to providing an aid to the sub-
jective interpretation of taxometric results, the
generation and parallel analysis of comparison
data affords an opportunity to quantify the
fit of empirical results to those obtained for
each structural model. Ruscio et al. (2007)
introduced the comparison curve fit index
(CCFI), which ranges from 0 (strongest possi-
ble support for dimensional structure) through
.50 (ambiguous results) to 1 (strongest possible
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support for categorical structure). One way
to use the CCFI would be to interpret any
value below .50 as supportive of dimensional
structure and any value above .50 as supportive
of categorical structure. This single-threshold
standard, however, does not recognize any
results as ambiguous. Another way to use the
CCFI would make reference to two thresholds.
For example, any value below .40 would be
interpreted as supportive of dimensional struc-
ture, any value above .60 as supportive of cate-
gorical structure, and any value from .40 to .60
as ambiguous. These thresholds can be located
closer to .50 (e.g., .45 and .55) if one is willing to
draw some conclusions on the basis of weaker
evidence. The choice of how far from .50 a
CCFI value must fall to warrant a structural
conclusion is analogous to choosing an 𝛼 level
when testing a null hypothesis; there are two
types of error one might make, and the thresh-
old one adopts apportions the likelihood of
making each type of error. Whether one prefers
a single-threshold or dual-thresholds standard,
either is consistent with the adoption of the
competing-models framework in that it places
categorical and dimensional models on equal
footing and examines the strength with which
one model is supported relative to the other.

The CCFI has been helpful in at least two
ways. First, because it is an objective index, it
constrains observer subjectivity. The CCFI has
never been recommended as a replacement for
an investigator’s informed judgments, but it
can be a useful supplement. If the CCFI and
a subjective judgment disagree, it becomes
important to reconcile them in a persuasive
manner. Second, because the calculation of
the CCFI can be automated, it paved the way
for extensive, rigorous simulations studies of
taxometric methodology. By removing the
requirement that taxometric experts subjec-
tively interpret all of the results, simulation
studies could produce voluminous output for a
wide range of data conditions and procedural
implementations. Simulation studies using the
CCFI have already helped to establish the data
conditions under which taxometric analysis
is more (and less) likely to yield informative

results as well as the most appropriate ways to
implement each taxometric procedure (Ruscio,
Ruscio, & Carney, 2011).

The CCFI also forms the basis for the first
operationalization of consistency testing in
taxometric research that meets the criteria
described above. Like a number of prior
studies, Ruscio et al. (2010) found that CCFI
values calculated from MAXCOV, MAMBAC,
and L-Mode results validly differentiated
categorical and dimensional data. Each of
these procedures’ CCFI values also provided
incremental validity. There are a number of
ways that one can reach a conclusion on the
basis of three CCFI values, and the choice
among these options involves a trade-off
between the accuracy of the conclusions and
the proportion of instances in which results
are classified as ambiguous. A good approach
would yield relatively high accuracy with rel-
atively few results classified as ambiguous. On
the basis of their empirical examination of the
trade-offs, Ruscio et al. (2010) recommended
that the mean of the three procedures’ CCFI
values be calculated and then this mean CCFI
be interpreted using dual thresholds of .45 and
.55. For the 100,000 categorical and dimen-
sional samples that varied across a wide range
of data conditions in their study, this opera-
tionalization of consistency testing attained an
accuracy of 99.4% after setting aside only 5.2%
of the results as ambiguous.

SEE ALSO: Approaches to Diagnostic Validity;
Construct Validity; Dimensional versus Categorical
Models of Psychopathology; Distinguishing Cate-
gories from Continua; Meehl, Paul E. (1920–2003);
Null Hypothesis Significance-Testing Debate
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