Psychological Reports, 2000, 87, 929-939.  © Psychological Reports 2000

TAXOMETRIC ANALYSIS WITH DICHOTOMOUS
INDICATORS: THE MODIFIED MAXCOV PROCEDURE
AND A CASE-REMOVAL CONSISTENCY TEST"*

JOHN RUSCIO
Elizabethtown College

Summary—Previous Monte Carlo simulations and empitical trials have demon-
strated the power with which taxometric procedures distinguish between taxonic (cate-
gorical) and dimensional {continuous) latent structures. However, questions have been
raised about results obtained using procedures modified to accommodate dichoto-
mous indicators. The present investigation shows that the most widely used taxometric
procedure (MAXCOV) can distinguish between latent structures when adapted for
use with dichotomous indicators, although particularly large samples and substantially
valid indicators are required. This study also illustrates the value of including a case
removal consistency test as one component of a taxometric investigation.

Taxometric procedures are designed to help assess whether the latent
structure of a given psychological construct is taxonic (categorical) or dimen-
sional (continuous). This analytic approach was developed by Meehl and
colleagues (e.g., Meehl, 1973, 1995, 1999; Meehl & Golden, 1982; Meehl &
Yonce, 1994, 1996; Waller & Meehl, 1998) to test a conjectured two-group
latent class model. Meehl (1995) reviewed a considerable body of research
using empirical data as well as Monte Carlo simulations that demonstrates
the efficacy of the taxometric method. Although most of the available proce-
dures were designed for use with continuous indicators, a number of taxo-
metric investigations have been conducted with indicators that are either in-
herently dichotomous or formed from items that have been dichotomized.
In the absence of a study of the robustness of taxometric procedures with
dichotomous indicators, questions have been raised about the interpretability
of these results (Meehl, 1995; Meehl & Yonce, 1996; Miller, 1996). This
paper presents the results of a Monte Carlo investigation which addresses
these questions and evaluates a consistency test.

Locic oF THE MAXCOV PROCEDURE .
The most widely used procedure within Meehl’s coherent cut kinetics
approach to taxometrics is MAXCOV, short for “MAXimum COVariance”
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(Meehl, 1973; Meehl & Yonce, 1996). MAXCOV utilizes three indicators,
each of which is hypothesized to differentiate between (or “separate”) two
conjectured latent classes (the “taxon” and “complement”). One of the indi-
cators (the “input”) is divided into a series of distinct intervals. The covari-
ance of the remaining two indicators is then computed within each succes-
sive interval. The shape of the curve formed by plotting each covariance
above its corresponding input interval on the abscissa indicates the latent
structure. Taxonic data yield curves that are markedly peaked whereas di-
mensional data yield curves that are relatively flat.

Using dichotomous—rather than continuous—indicators requires modi-
fying the MAXCOV procedure (Gangestad & Snyder, 1985). Two indicators
are set aside for the calculation of covariances, and those that remain are
summed to form an input variable. A series of MAXCOV curves is gener-
ated by graphing the covariance plot for each possible pair of indicators.
Previous research has often used eight dichotomous indicators to strike a bal-
ance between the number of input intervals and the stability of the covari-
ance values within these intervals. With too few intervals, it would be diffi-
cult to discern the shape of the MAXCOV curve, whereas with too many in-
tervals, the stability of within-interval covariances would be compromised.
The resultant curves have not been presented in a panel but averaged to sta-
bilize further the covariance estimates and thereby aid interpretation.’

To date, researchers have drawn dichotomous indicators primarily from
items on self-report questionnaires, on the assumption that total scores on a
valid scale should distinguish between a conjectured taxon and complement.
An initial pool of potential indicators is formed by selecting items with the
highest corrected item-total correlations. Item content is then examined to
retain qualitatively distinct indicators from the initial pool, thereby minimiz-
ing nuisance covariation within the conjectured groups.

Monte CarLo TesTs OF THE MopiriEp MAXCOV PROCEDURE
Three critical questions can be raised regarding the use of dichotomous
indicators in the MAXCOV procedure. First, can the obtained curves be in-
terpreted in the same manner as curves derived from continuous indicators?
In a Monte Carlo demonstration, Miller (1996) showed that dichotomous in-
dicator MAXCOV curves calculated from dimensional data are not flat, The

>The present study diverges from the tradition of smoothing MAXCOV curves. Whereas con-
tinuous indicator curves may contain many covariance points, dichotomous indicator curves
contain few. With few points, any smoothing procedure begins to flatten severely—rather than
simply smooth—a curve, weighting endpoints too heavily into more central covariance values
and potentially masking a taxonic peak. This is particularly problematic with iterative smooth-
ing procedures, such as Tukey’s “3RH, twice” method, whicﬁ) has been used extensively in pre-
vious taxometric research. Especially when curves are averaged, there remains little need for
smoothing. Therefore, only “raw” curves are used in this study.
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troubling implication is that these curves could be misinterpreted as evi-
dence of taxonic structure. However, Miller did not provide a correspond-
ing set of curves for taxonic data, making it difficult to judge whether a reli-
able difference in curve shape exists across latent structures. Compounding
this problem, Miller—like researchers who have conducted taxometric inves-
tigations—did not provide a rationale for his scaling of the ordinate axis.
The rounded hump that Miller obtained would be stretched into a tall, peak-
ed curve if an inappropriately small ordinate scale was chosen. Whereas Mil-
let’s note raises the possibility of pseudotaxonic results, there is one series of
studies in which a taxonic solution uncovered in MAXCOV analyses using
dichotomous indicators (Lenzenweger & Korfine, 1992; Korfine & Lenzen-
weger, 1995) was corroborated using continuous indicators (Lenzenweger,
1999). Although this provides no general assurance of the trustworthiness of
the modified MAXCOV procedure, that modification may be useful when
the procedure is carried out—and the results are interpreted—by an inform-
ed taxometrician exercising due caution.

Second, how does the modified MAXCOV procedure perform under a
variety of conditions? Given the loss of information inherent in dichotomiza-
tion and the instability of covariance estimates based on dichotomous vari-
ables, it is imperative that we understand the effects of factors such as sam-
ple size, base rate, and indicator separation on dichotomous indicator MAX-
COV cutves.

Third, what additional tests may be used to evaluate conjectures of tax-
onicity with dichotomous indicators? Taxometric investigations depend
heavily on the convergence of results, and consistency tests provide essential
tools for the corroboration or refutation of latent structures.

The Monte Carlo Procedure

The guiding questions outlined above were addressed via a Monte
Carlo investigation by matching the variance-covariance matrices of taxonic
and dimensional samples that each contained eight continuously distributed
variables, following the procedure described by Meehl and Yonce (1994,
1996), dichotomizing these variables,” and performing the modified MAX-
COV procedure on the manifestly dichotomous indicators.

*To dichotomize the indicators, cases were sorted and cut according to an average endorsement
rate which, to simulate research data, was pulled from .50 toward tﬁe base rate. For all analyses
presented here, the average endorsement rate was set at .80 times the size of the taxon plus .20
times the size of the complement, e.g., for a base rate of .10, average endorsement rate=
.80 x.10+.20 % .90, or .26. For dimensional samples, the base-rate equivalent of the latent in-
teritem correlation was used for this calculation. (In previous analyses, different methods of di-
chotomizing the indicators yielded qualitatively similar results.) To avoid the possibility of de-
tecting pseudotaxa based on a “bunching” of endorsement rates (Grayson, 1987), they were
spread using increments of —.10, —.07, —.04, -.01, +.01, +.04, +.07, and +.10, e.g., for a base
rate of .10, the eight indicators were dichotomized such that endorsement rates equaled .16,
19, .22, .25, .27, .30, 33, and .36.

N
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To generate MAXCOV curves, each possible pair of indicators was re-
moved, in turn, and the remaining six indicators were summed to create a
7-point input scale ranging in value from 0 to 6. The covariance of the two
output indicators was calculated at each value of the input but set to zero
when too few cases (<12) were present to permit reliable estimation.’ This
procedure was repeated for each pair of output indicators. The results were
combined to produce one MAXCOV curve by plotting the median covari-
ance value at each point, thereby minimizing the influence of outliers. This
MAXCOV curve was used to compute an estimate of the base rate of taxon
members in the sample (see formulae in Meehl & Yonce, 1996).

The final step was to carry out a case removal consistency test, the logic
of which is simply that, if an estimate of the base rate of taxon membership
denotes a latent parameter, it should be altered in a predictable manner by
the systematic removal of cases. To maximize the expected change in base-
rate estimates between the full and the reduced sample, cases were removed
{(on the basis of their total scores on all indicators) from that end of the dis-
tribution containing the smaller putative latent class (taxon or complement).
Removing cases from the larger latent class would effect less change in the
expected base rates of the reduced sample. Trial and error indicated that the
removal of one quartile of cases balanced two competing demands reason-
ably well. It removed a sufficient proportion of cases such that a significant
change in base rate was expected but did not remove so many cases that the
remaining sample size prohibited subsequent taxometric analysis.

A reasonable expected value for a reduced-sample base-rate estimate
can readily be calculated. Suppose that the full-sample base-rate estimate
was .40 (40 taxon members out of every 100 cases). Removal of the upper
quartile {mostly taxon members) would result in a new sample containing
about 15 (40 - 25) taxon members out of every 75 (100 - 25) cases, yielding
a new base rate of 20.° In the event that the removal of a full quartile of

*Setting covariances to zero—rather than omitting them—when too few cases were available for
reliable estimation prevented severe errors when later estimating the taxon base rate from the
COV curve. By simply omitting covariances within small-# intervals, the median covari-
ance would have been based on a handful of estimates whose sample sizes barely exceeded the
allowed minimum. In early testing, this frequently caused spurious spikes to emerge at the ends
of the MAXCOV curves. Particulatly in the case of positive spikes, this dramatically affected
the estimate of the taxon base rate, which is a cruciaf parameter for drawing inferences of la-
tent structure. In contrast, setting the unstable covariances to zero removed these spikes
without otherwise compromising the interpretability of the MAXCOV curves. A low covariance
value in one interval cannot create a spurious peaﬂ in another interval. Moreover, when there
are so few cases in an interval, its covariance will have a negligible effect on the estimation of
the taxon base rate. ~
“To the extent that the latent classes are poorly separated, this expected base rate will be too
extreme because some of the 25 cases in the upper quartile would be complement members.
Unfortunately, in the context of a taxometric investigation one does not know for certain that
there are in fact latent classes, much less the precise extent of their separation. Thus, one
should Sear in mind the potential for bias in this estimate even if its magnitude cannot be de-
termined.
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cases would have pushed the expected base rate of the reduced sample be-
low .10 or above .90, a smaller number of cases was removed such that the
expected base rate would equal .10 or .90.

The design of this Monte Carlo study was factorial, systematically vary-
ing three parameters: sample size, base rate, and the separation between
latent classes. The levels of each factor were chosen to afford comparisons
with the Monte Carlo work of Meehl and Yonce (1994, 1996} and to explore
the boundary conditions under which dichotomous indicator MAXCOV
analyses are effective. The simulations therefore included sample sizes of
200, 300, 600, 1,000, and 1,500 cases; taxon base rates of .50, .25, and .10;
and separations of 2.00, 1.75, 1.50, 1.25, and 1.00 within-group standard de-
viations. Within each factorial combination, 100 taxonic and 100 dimen-
sional samples were generated and analyzed.

Monte Carlo Results

With regard to the first of the three critical questions raised above, it
appears that MAXCOV results can help to differentiate taxonic and dimen-
sional latent structures when dichotomous indicators are used. Fig. 1 displays
the MAXCOV curves and base-rate estimates for the first three taxonic sam-
ples of N=1,500, base rate=.50, and 2.006 separation and the first three
corresponding dimensional samples (N=1,500, 7,=.50). Even at a glance,
one can readily see the striking difference between the MAXCOV curves for
taxonic and dimensional samples. Consistent with continuous indicator anal-
yses, taxonic samples yielded centrally located peaks that tapered toward
zero at the endpoints. Consistent with Miller’s (1996) findings, dimensional
data tended to yield low, smooth, humped curves whose endpoints did not
reach zero.

Two quantitative indices of taxonicity were further evaluated, (a) cova-
riance peaks and (b) discrepancies between expected and: observed reduced-
sample base-rate estimates. The average covariance peak of all 100 taxonic
samples with the parameters of those shown in Fig. 1 was quite high (M=
.11, $D=.01), and reduced-sample base-rate estimates were in good accord
with expectations, as all 100 reduced-sample base-rate estimates fell within
.01 of the expected value. The average covariance peak of all 100 dimen-
sional comparison samples was fairly low (M=.03, SD=.01), and there was
not a single case of impressive agreement between expected and observed re-
duced-sample base-rate estimates; discrepancies ranged from .06 to 44 (M=
23).

These analyses suggest that the MAXCOV procedure can be effectively
adapted for use with dichotomous indicators. Because the number of sam-
ples generated across all cells in the factorial design prohibits a comprehen-

sive display of MAXCOV curves, results are presented solely in terms of the

N,
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Fic. 1. MAXCOV curves for the first three taxonic samples (left; N=1,500, base rate=

50, 2.000 separation) and the first three corresponding dimensional samples (right; N=1,500,
#p=-50). Below each graph, the full-sample and reduced-sample base-rate estimates are listed.

quantitative indices of covariance peak and reduced-sample base-rate esti-
mate consistency. Covariance peaks in excess of .05 were scored as consis-
tent with taxonicity, as were agreements within .05 between expected and
observed base-rate estimates. These cutoff values—identical sheerly by coin-
cidence—were determined through an iterative process combining analytical
considerations and a prudent eyeballing of results. Although strict cutoffs
were implemented here to afford quantitative comparisons across study con-
ditions, researchers are encouraged to use these as guidelines flexibly to as-
sist their evaluation of results. In applied taxometric work, a principled argu-
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ment based on the consistency with which all evidence supports one latent
structure over another is far preferable to the reification of arbitrary cutoff
values that mechanize interpretations.

TABLE 1

ProPORTION OF Taxonic (DiMENSIONAL) SampLEs Wit CovARIANCE PEak >.50 AND
REDUCED-SAMPLE BASE-RATE ESTIMATE WiTHIN .05 OF EXPECTED VALUE

Base Rate Separation =~ N=200 N=300 N=600 N=1,000 N=1,500
50 2.000 17 (.33) .83 (.27) .98 (.14) .99 (.04) 1.00 (.00)
50 1.75¢0 .82 (.25) .97 (.12) .98 (.05) .98 (.02) 1.00 (.01)
S0 1.500 .89 (.21) .87 (.07) .88 (.01) .90 (.01) .90 (.00)
50 1.25¢ 57 (.05) .51 (.03) .60 (.03) .60 (.01) .57 (.00)
50 1.00c .30 (.07) 20(.07) . .13 (.03) .09 (.00) 04 {.00)
.25 2.000 15 (.14) 61 (.16) 1.00 (.06) 1.00 (.03) 1.00 (.00)
.25 1.75¢ 46 (.13) .86 (.13) .99 (.06) .98 (.00) .99 (.02)
.25 1.500 50(.19) 69 (.15) .78 (.10) 81 (.04) .80 (.03)
25 1.25¢ 31(.14) 42 (.13) .33 (.06) .19 (.04) 22 (.03)
.25 1.000 23 (.13) 22 (.14) 17 (.14) .08 (.10) .05 (.07)
.10 2.000 .03 (.15) 11 (.19) .95 (31) 1.00 (.21) 1.00 (.05)
.10 1.75¢ .24 (.10) .38 (.21) .98 (.18) 96 (.21) .99 (.14)
.10 1500 .35 (.08) .67 (.24) .91 (.10) .81 (.22) .83 (.16)
.10 1.250 .19 (.01) S1(.11) 71 (.06) 51 (.07) 47 (.03)
.10 1.000 .19 (.07) 31 (.18) .27 (.04) .25 (.04) .13 (.01)

Table 1 shows the proportions of taxonic and dimensional samples pass-
ing both covariance peak and case removal consistency test thresholds.
These results suggest two boundary conditions for acceptable MAXCOV per-
formance. First, regardless of other parameters, MAXCOV performed poor-
ly with indicator separations of 1.256 or less. Second, sample size set a limit
on the extremity of the base rates detected. With samples as small as 300
cases, results with base rates of .50 were arguably quite satisfactory: false
positive and false negative error rates were nearly all below 20%, and most
were below 10%. To achieve comparable results for base rates as extreme as
.10, however, the requisite sample size appeared to be closer to 600 cases.
To provide a sense for what results may look like under suboptimal—but
satisfactory—conditions, Fig. 2 displays the MAXCOV curves and base-rate
estimates for the first three taxonic samples of N=600, base rate=.25, and
1.500 separation and the first three corresponding dimensional samples
(N=600, #,=.30). The contrast between taxonic and dimensional latent
structures is still apparent, although less stark than in Fig. 1. Moreover, by
the quantitative tests of taxonicity used in this study, only two samples of
the three for each latent structure are correctly classified. The middle tax-
onic curve fails a test (its reduced-sample base rate fails to drop sufficiently)
and the middle dimensional curve passes both tests (it exceeds a height of

e
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Fic. 2. MAXCOV curves for the first three taxonic samples (left; N=600, base rate=.25,
1500 separation) and the first three corresponding dimensional samples (right; N=
600, 7=.30). Below each graph, the full-sample and reduced-sample base-rate estimates are
listed.

.05 and, because its base rate was so low to begin with, its reduced sample
base rate is consistent with expectations). This underscores the need for
more flexible interpretation and, especially, for the evaluation of consistency
across multiple tests.

Discussion
The Monte Carlo investigation presented above, based on a wide array
of parameters encountered in research, showed that the modified MAXCOV
procedure—accompanied by a case-removal consistency test—can be used to
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uncover latent structure. Thus, despite skepticism regarding its utility, the
present investigation supports the use of MAXCOV even when only dichot-
omous indicators are available. -

The finding that the modified MAXCOV procedure can be used to dis-
tinguish between taxonic and dimensional latent structures does not, how-
ever, represent an unconditional green light to researchers planning to di-
chotomize items before submitting them to taxonometric analyses. Whenever
data need not be dichotomized, they should not be. If a potential indicator
contains sufficient variation such that it can be divided into intervals and
used as an input indicator, there is no reason to dichotomize it. In cases
where individual items cannot be used continuously, there are many alterna-
tives to dichotomization. For example, items on the Beck Depression Inven-
tory, which range in value from 0 to 3, can be summed in pairs to create
7-point indicators, merged into larger composites, or removed in pairs as out-
put indicators with all remaining items summed to form input indicators
(see Ruscio & Ruscio, in press). The modified MAXCOV procedure out-
lined here is perhaps best viewed as a last-resort approach, useful when only
inherently dichotomous indicators are available for analysis and there are too
few such indicators available to create composites.

There are notable similarities and differences between the present re-
sults, the results of Monte Carlo trials with continuous indicators (Meehl &
Yonce, 1996), and the advice that Meehl (1995) has offered based on de-
cades of work on the taxometric method. The degradation in clarity of re-
sults uncovered in the present study under unfavorable parameter condi-
tions, e.g., smaller sample sizes, more extreme base rates, lower separations,
is predictable from sampling theory and parallels the findings obtained by
Meehl and Yonce (1996). However, whereas Meehl (1995) advocated sam-
ples of no less than 300 cases and at least 1.256 separation, more stringent
requirements seem warranted if dichotomous indicators are employed. A
safer rule of thumb for the modified MAXCOV procedure might be a sam-
ple containing no less than 600 cases and indicators that achieve at least 1.50c
of separation (at the latent level).

The case-removal consistency test presented and evaluated here is simi-
lar to what Meehl and Yonce (1994) proposed and relies on the same logic.
If latent taxa exist, reanalysis following the targeted removal of cases should
yield predictable results. The present consistency test involved removing
cases from the smaller of the putative latent classes to effect the most sizable
change in expected base rates for a given reduction in sample size. Although
this works well when the initial taxon base-rate estimate is moderate, e.g.,
within the .25 to .75 range, it is not feasible when that estimate is more ex-
treme, e.g., closer to 0 or to 1, because one simply cannot remove many
cases from the smaller latent class. Thus, in the event of an extreme base-

N
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rate estimate it seems wise to follow Meehl and Yonce’s advice by removing
a random subset of cases from the larger latent class to construct a sample
whose new base rates are expected to be equal. This approach will require a
particularly large sample.

In light of the results of the present findings, prior taxometric investiga-
tions that have included dichotomous indicator MAXCOV analyses warrant
a careful reconsideration. Given that dimensional data do zot yield the flat
curve expected by researchers using the modified MAXCOV procedure and
that scaling of the ordinate axis (as well as the aspect ratio) has been some-
what haphazard,’ reevaluations of past results should consider both qualita-
tive criteria (curve shape) and the quantitative indices (covariance peak and
case removal) refined here. Although case removal would require a reanaly-
sis, the graphs reported in the literature can easily be inspected. Doing so
suggests many curves have been interpreted as evidence for taxonicity that
actually appear more consistent with the low peaks (covariance <.05) of di-
mensional data [e.g., Gangestad & Snyder, 1985, p. 327; Strube, 1989, p.
982; Haslam & Beck, 1994, p. 689 (top left); Tyrka, Cannon, Haslam, Med-
nick, Schulsinger, Schulsinger, & Parnas, 1995, p. 178; Oakman & Woody,
1996, p. 982 (Fig. 1)1, as well as others that are consistent with the tall
peaks (covariance >.09) of taxonic data [e.g., Lenzenweger & Korfine, 1992,
p. 570; Harris, Rice, & Quinsey, 1994, p. 393 (panel a); Haslam, 19%4, p. 71;
Korfine & Lenzenweger, 1995, p. 29; Oakman & Woody, 1996, p. 982 (Fig.
2)]. Interestingly, one study contained a MAXCOV curve with a dramatic,
right-end covariance peak of about .20 (Trull, Widiger, & Guthrie, 1990, p.
45)—highly consistent with a low base-rate taxon—that was interpreted as
evidence of dimensionality. The reinterpretations offered here do not neces-
sarily challenge the conclusions of studies whose MAXCOV curves might
have been misjudged, as these curves were only part of the evidence on
which conclusions were based in each case. Nonetheless, it should be clear
that dichotomous indicator MAXCOV curves need to be interpreted with
great care and accompanied by additional tests of the latent class model.
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