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Tutorial

One of the cornerstones of science is replicability. A 
single experiment does not hold the power to prove or 
disprove a particular theory. To be accepted by the sci-
entific community, a theory must pass rigorous tests with 
consistent results. Despite the importance of reproduc-
ibility, many findings in psychology, as in other sciences, 
fail to replicate (Ioannidis, 2005; Maxwell et al., 2015; 
Shrout & Rodgers, 2018; Stroebe & Strack, 2014). Per-
forming replication studies is worthwhile, but it also 
raises an important methodological question: How 
should replication results be evaluated? There are many 
recently developed methods to address this question, 
each with its own strengths and limitations (Maxwell 
et al., 2015; Nosek et al., 2022; Open Science Collabora-
tion [OSC], 2015; Schauer & Hedges, 2021; Simonsohn, 
2015; Stroebe & Strack, 2014).

Simonsohn (2015) proposed an approach known as 
the “small telescopes” method to more effectively evalu-
ate replication results. This method involves performing 
a replication study with a larger sample than the original 
and assessing whether the newly measured effect is 
statistically significant and large enough to have been 
detectable using the original sample size. If both condi-
tions are met, the original results are corroborated 
(Simonsohn, 2015). If not, the results either fail to sup-
port the original findings or are inconclusive. The small-
telescopes method can be used to mitigate the replication 
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Abstract
When new data are collected to check the findings of an original study, it can be challenging to evaluate replication 
results. The small-telescopes method is designed to assess not only whether the effect observed in the replication 
study is statistically significant but also whether this effect is large enough to have been detected in the original study. 
Unless both criteria are met, the replication either fails to support the original findings or the results are mixed. When 
implemented in the conventional manner, this small-telescopes method can be impractical or impossible to conduct, and 
doing so often requires parametric assumptions that may not be satisfied. We present an empirical approach that can be 
used for a variety of study designs and data-analytic techniques. The empirical approach to the small-telescopes method 
is intended to extend its reach as a tool for addressing the replication crisis by evaluating findings in psychological 
science and beyond. In the present tutorial, we demonstrate this approach using a Shiny app and R code and included 
an analysis of most studies (95%) replicated as part of the Open Science Collaboration’s Reproducibility Project in 
Psychology. In addition to its versatility, simulations demonstrate the accuracy and precision of the empirical approach 
to implementing small-telescopes analysis.
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crisis in psychology by directing the evaluation of results 
away from an exclusive reliance on tests of statistical 
significance. This method has gained traction in recent 
years; more than 750 citations were noted by Google 
Scholar as of August 2023. To help reach a more nuanced 
judgment, the small-telescopes method also draws on 
information provided by measures of effect size, confi-
dence intervals (CIs), and statistical power to assess 
whether the original study was adequately powered to 
empirically support its conclusions.

Although the small-telescopes method is a promising 
tool for evaluating reproducibility, it does have some limi-
tations. For instance, as described by Simonsohn (2015), 
using this method requires the calculation of an effect size, 
the construction of a CI for that effect size, and the estima-
tion of statistical power for the lower and upper bounds 
of this CI. Simonsohn employed an analytic approach to 
these calculations, meaning that it requires formulas not 
only for calculating effect size but also for constructing 
CIs and estimating statistical power. This analytic approach 
does not necessarily involve complex math, and the 
required calculations may be performed using statistical 
software. For many common analyses, such as t tests and 
analyses of variance (ANOVAs), these formulas are widely 
available and relatively easy to use (Faul et al., 2007; Lee, 
2016; Lenth, 2007). However, for other types of analyses, 
such as hierarchical regressions that control for covariates 
or assess interactions, multilevel models, focal effects 
obtained via structural equation models, or analyses of 
covariance, formulas to construct a CI and estimate power 
may not exist. Other times, one may wish to forgo formulas 
that require making parametric assumptions (e.g., normal-
ity, homogeneity of variance) that may be untenable for 
the data at hand. These distributional assumptions are 
mainly related to test statistics. Because of this, violations 
of assumptions can influence estimates of statistical power 
when a small-telescopes analysis is performed. When for-
mulas are not available or one would rather not make 
parametric assumptions, one cannot implement the small-
telescopes method as described by Simonsohn. To extend 
the reach of the small-telescopes method, we developed 
an empirical approach to its implementation that uses 
bootstrapping for CI construction and statistical power 
estimation. This versatile approach is available in a Shiny 
app and an R package, both of which are illustrated in the 
present tutorial. Finally, we used simulations to examine 
the accuracy and precision of the empirical approach to 
small-telescopes analysis.

Small-Telescopes Analysis

Background

To help explain this method, Simonsohn (2015) intro-
duced an analogy. Suppose an astronomer observes a 

new planet with a telescope. To verify the existence of 
this planet, a second astronomer with a larger, more 
powerful telescope observes the same area of the sky. 
If the second astronomer can find the new planet, this 
corroborates its existence. On the other hand, if the 
second astronomer is unable to detect this new planet, 
this suggests that the original sighting may have been 
spurious. A planet observable using the small telescope 
should also be observable using the larger, more power-
ful telescope.

The key to using the small-telescopes method in psy-
chological science is to begin with a replication sample 
size at least 2.5 times that of the original study, which 
is analogous to using a larger telescope in astronomy 
(Simonsohn, 2015). Next, the investigator addresses two 
questions. (a) Are the replication results statistically sig-
nificant? (b) Given the effect size estimated in the rep-
lication study, would this have been detectable given 
the sample size of the original study? The four pairs of 
answers to these questions yield different conclusions.

Four possible conclusions

First, if the replication results are statistically significant 
and the original study appears to have been sufficiently 
powered, the original findings are supported. By analogy, 
this is when the use of a larger telescope both confirms 
the existence of a new planet identified using a smaller 
telescope and suggests that a planet of that size would 
have been detectable using the smaller telescope.

Second, if the replication results are not statistically 
significant and the original study appears to have been 
insufficiently powered, the original findings are not sup-
ported. By analogy, this is when the use of a larger 
telescope fails to confirm the existence of a new planet 
identified using a smaller telescope and also suggests 
that a planet of that size would not have been detectable 
using the smaller telescope.

In these first two possibilities, the evidence is consis-
tent in reaching a conclusion. In the former case, the 
evidence supports the original findings. In the latter 
case, the evidence suggests that the original findings 
may have been spurious. However, this is not the only 
possible explanation. Other potential explications 
include a Type I error in the original study, a Type II 
error in the replication study, methodological differences 
between studies, and change in the studied phenomenon 
over time. The final two possibilities involve inconsistent 
evidence.

Third, if the replication results are statistically signifi-
cant and the original study appears to have been insuf-
ficiently powered, the original findings are not supported. 
However, the replication results nonetheless provide 
some measure of support for the original conclusion. By 
analogy, this is when the use of a larger telescope does 
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confirm the existence of a new planet identified using 
a smaller telescope but also suggests that a planet of 
that size would not have been detectable using the 
smaller telescope. The original claim may have rested 
on a questionable foundation, yet it may turn out to be 
correct nonetheless.

Fourth, if the replication results are not statistically 
significant and the original study appears to have been 
sufficiently powered, the evidence is inconclusive, and 
further research is needed to reach a more definitive 
conclusion. The telescope analogy breaks down in this 
instance. If the use of a larger telescope failed to detect 
a new planet, then presumably, it would not have been 
detectable using a smaller telescope. In psychological 
science, however, this pattern of results could emerge  
if the replication study did not follow Simonsohn’s 
(2015) advice of using a sample size 2.5 times larger 
than in the original study. This is analogous to doing 
small-telescopes analysis without having used a larger 
telescope.

Procedural overview

Addressing the question of whether replication results 
are statistically significant involves conventional tests 
that are not new to the small-telescopes method. What 
is new is the technique for addressing the question of 
whether the original study appears to have been suffi-
ciently powered. This is the focus of our attention in 
how to perform a small-telescopes analysis.

The process begins with an estimate of the effect size 
in the replication study (Simonsohn, 2015). Given the 
use of a larger sample size, this is presumed to be a bet-
ter estimate than one calculated from the original study 
results. Next, a CI is constructed around this effect size 
to account for sampling error in its estimation. Finally, 
statistical power at each end of the CI is estimated. This 
power is estimated using the sample size of the original 
research and the effect size (and its associated CI) in the 
replication study. The critical question is whether the CI 
of the replication study contains the smallest effect size 
that the original study would have sufficient power to 
detect. Simonsohn suggested using a 90% CI and opera-
tionalized sufficient power in this context as 33%. There-
fore, if the 90% CI of the replication study contains the 
smallest effect size that the original study would have at 
least 33% power to detect, the original study is judged 
to be sufficiently powered. Otherwise, the original study 
is judged to be insufficiently powered.

An empirical approach

Simonsohn (2015) demonstrated how to implement the 
small-telescopes method analytically, constructing CIs 

and estimating power using available formulas. As noted 
earlier, for some types of data analysis, these formulas 
might not exist, or one might not be willing to make the 
required parametric assumptions. Our empirical 
approach implements the small-telescopes method in a 
four-step process that uses resampling techniques.

Step 1: test for statistical significance in replication 
data.  This step is simple. Perform the appropriate test of 
statistical significance. This depends on the research 
design, but it should be the same type of test as in the 
original study.

Step 2: calculate effect size from replication data.  
This second step is also straightforward. Depending on 
the nature of the data and the type of statistical test, calcu-
late an appropriate measure of effect size. This may or 
may not have been done in the original study, but if so, 
this can help to guide the choice of an appropriate 
measure.

Step 3: construct a 90% CI for the effect size.  This is 
where the empirical approach first diverges from the 
analytic approach because resampling is used instead of 
formulas. Starting with the point estimate of effect size in 
the replication study, a CI is obtained through percentile 
bootstrapping (Efron & Tibshirani, 1993). This involves 
taking a large number of random samples (with replace-
ment) from the data, calculating the effect size in each  
of those samples, and constructing the CI by choosing 
the effect sizes at the appropriate percentiles that form  
its lower and upper limits (Wood, 2004). For example, 
when constructing an interval with 90% confidence, as 
Simonsohn (2015) recommended for small-telescopes 
analysis, the lower bound of the interval will be the effect 
size at the fifth percentile, and the upper bound will be 
the effect size at the 95th percentile. In addition to 
enabling a CI to be constructed when no formulas are 
available to do so or when one simply prefers not to 
make their required assumptions, a bootstrapped CI can-
not extend beyond the theoretically possible range of 
values. For example, whereas an analytic CI for a prob-
ability or a proportion of variance explained can extend 
below 0 or above 1, an empirical CI constructed via boot-
strapping cannot.

Step 4: estimate statistical power for the lower and 
upper bounds of the CI.  The empirical approach also 
uses resampling, rather than formulas, at this step of the 
process. Specifically, statistical power is estimated through 
bootstrapping. Bootstrapping is a widely used method of 
statistical power estimation (Efron & Tibshirani, 1993; 
Zhang, 2014), and we empirically evaluate its utility in the 
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present context below. Using the bootstrap sample that 
yielded the effect size estimate at the fifth percentile (the 
lower bound of the CI), the researcher takes a series of 
random samples (with replacement), and power is  
estimated to be the proportion of times that a test of sta-
tistical significance rejects the null hypothesis in these 
samples. Once power has been estimated at the lower 
bound of the CI, the same thing is done to estimate power 
at the upper bound of the CI (using the bootstrap sample 
that yielded the effect size at the 95th percentile). Once 
again, this empirical approach enables one to proceed 
even when formulas for estimating statistical power are 
unavailable or one prefers not to make the required para-
metric assumptions.

The key to the small-telescopes analysis is that at this 
step in the process, statistical power is estimated using 
the sample size of the original study. This allows one to 
assess whether the original study would have been ade-
quately powered to detect an effect whose size was 
estimated using the replication study, with its larger 
sample. This is what completes the analogy of using a 
larger telescope to evaluate the earlier findings obtained 
using a smaller telescope.

Step 5: interpret the results.  As described earlier, eval-
uating replication results using small-telescopes analysis 
entails asking (a) whether the replication results are statis-
tically significant and (b) whether the smallest effect size 
that the original study would have been adequately pow-
ered to detect is contained in the CI for the replication 
results. For example, suppose the effect of interest in the 
original and replication studies was a difference across 
three experimental conditions. Addressing the first ques-
tion is done on the basis of the test of statistical signifi-
cance performed in Step 1. In this example, one could use 
the F test from an ANOVA. Addressing the second ques-
tion is done using the statistical power estimates from Step 
4. In this example, it would entail estimating an appropri-
ate measure of effect size, such as η2; constructing a 90% 
CI around this point estimate of effect size; and estimating 
statistical power at the lower and upper bounds of the CI. 
The original study is deemed sufficiently powered to 
detect the effect if the power estimate at the upper bound 
is at least 33% (a threshold suggested by Simonsohn, 
2015). In the event that the effect of interest lies in the 
other direction (e.g., a negative correlation), one would 
examine the statistical power estimate at the lower bound, 
rather than the upper bound, of the 90% CI. Users need to 
estimate power at only one bound of the interval, but 
because the bound of interest depends on the research 
context, the present method provides power estimations 
for both bounds.

The five steps in this empirical approach to the small-
telescopes method are displayed in Figure 1.

Tutorial

Shiny app

We begin with a demonstration of empirical small-tele-
scopes analysis using the graphical user interface of the 
RSmallTelescopes Shiny app, and this is followed by 
showing how to use the RSmallTelescopes package in R. 
For both, we first work with a replication study con-
ducted as part of the OSC’s (2015) Reproducibility Proj-
ect in Psychology (RPP). Study 104, as numbered in the 
OSC archives, attempted to replicate an investigation of 
construal-level theory (Alter & Oppenheimer, 2008) that 
found that conceptually fluent objects were perceived 
more concretely and conceptually disfluent objects were 
perceived more abstractly, χ2(1, N = 236) = 3.83, p = .05, 
ϕ = .13. The replication study recruited approximately 
5 times the original sample size, and when the key sta-
tistical test (a χ2 test of independence with Yates’s con-
tinuity correction) was performed, the result was not 
statistically significant, χ2(1, N = 1,146) = 0.387, p = .543, 
ϕ = .018. More information regarding this study is avail-
able at https://osf.io/kegmc/.

To begin, access the RSmallTelescopes Shiny app at 
https://ruscio.shinyapps.io/RSmallTelescopes_app/. 
Once in the app, users will see a welcome message and 
widgets to input the information necessary to conduct 
the analysis. Figure 2 displays the app’s widgets. Users 
will need to upload the data as a comma-separated value 
(CSV) file in which each row contains the data for one 
subject and each column contains the data for one vari-
able. Because the OSC archive for Study 104 provided 
the data in the form of a frequency table, we converted 
this to a CSV file in which there were 1,146 rows (one 
per subject) and two columns (one per variable). We 
confirmed that χ2 analyses of the original frequency table 
and our CSV file yielded identical results. The CSV file 
used for this demonstration is titled “ao.csv” and is avail-
able at https://osf.io/4daw2/.

After uploading their data, users have the option of 
choosing from five built-in functions to perform various 
simple analyses (correlation, independent-groups t test, 
related-samples t test, between-subjects ANOVA, and χ2 
test of independence) or uploading a custom analysis 
function. Choosing a built-in analysis is very straightfor-
ward, and for the present example, one could use the χ2 
test of independence function built into the Shiny app. 
Purely to demonstrate how one can go about creating a 
custom analysis function, we show how to do so here.

To obtain a p value and effect-size measure for this 
study design, one can use R’s chisq.test() function as 
shown below. In this case, the chisq.test() function 
returns the p value, and the effect size (a ϕ coefficient) 
can be calculated as the square root of the test statistic 
(χ2, also provided by the chisq.test() function) divided 

https://osf.io/kegmc/
https://ruscio.shinyapps.io/RSmallTelescopes_app/
https://osf.io/4daw2/
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by N (or the number of rows in the data). Our custom 
analysis() function returns a list object with two ele-
ments, effect.size and p.value:

analysis <- function(data) {
chisq <- chisq.test(data[,1],  
  data[,2])
p.value <- chisq$p.value

effect.size <- sqrt(chisq$statistic 
  [[1]] / dim(data)[1])
return(list(p.value = p.value, effect. 
  size = effect.size))

}

An R script containing this function is available at 
https://osf.io/4daw2/.

Step #2: Calculate Effect Size From Replication Data.

Step #3: Construct a 90% CI for the Effect Size.

Step #4: Estimate Statistical Power for Samples at the Lower and Upper Bounds of the CI.

Upper Bound
(95th percentile)

Lower Bound
(5th percentile)

Sample at 95th
Percentile 

Sample at 5th
Percentile

Step #5: Interpret the Results. (1) Are Results From Step #1 Statistically Significant? (2) Is
Statistical Power at Least 33% at the Appropriate Bound of the CI From Step #4? 

Resample
to Estimate 

Statistical Power

Resample 
to Estimate 

Statistical Power

Power at
Upper Bound 

Power at
Lower Bound 

Step #1: Test for Statistical Significance in Replication Data.

Fig. 1.  Steps in the empirical approach to small-telescopes analysis.

https://osf.io/4daw2/
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For any other type of analysis, the key to building a 
custom analysis() function to use in the Shiny app would 
be to return the same: a list object containing effect.size 
and p.value. Refer to Table 1 for a list of R functions and 
packages that one can draw from to calculate measures 
of effect size and obtain p values for many common 
types of data analysis.

In addition to uploading the data and perhaps a cus-
tom analysis file, users will specify a variety of param-
eters in the remaining widgets. This begins with the 
original sample size. Unlike each of the remaining wid-
gets, there is no default value for the original sample 
size. For the present example, the original study had 236 
subjects. As a default, a 90% CI will be constructed (fol-
lowing the recommendation of Simonsohn, 2015) using 
10,000 bootstrap samples. Using 10,000 bootstrap sam-
ples is sufficient to produce stable estimates of the upper 
and lower bounds of a CI (Efron & Tibshirani, 1993) but 
not so large that it significantly slows analysis run time. 
For the present example, with replication study N = 1,146 
and original study N = 236, the small-telescopes analysis 
ran in less than 1 min. The same was true when we 
tested each of the built-in analysis functions with test 
data. Unless one has a very large sample size or a com-
putationally intensive type of data analysis, run time 
should not be a serious concern.

Statistical power is estimated for both ends of the CI 
despite the fact that the investigator will usually be inter-
ested in power at only one end, depending on the direc-
tion of the effect being investigated. When estimating 
power, a new layer of bootstrap samples is used, once 
again with a default of 10,000 samples. Given that the 
goal is to assess whether power exceeds 33% (following 
the advice of Simonsohn, 2015), estimation using 10,000 

bootstrap samples should provide sufficient precision. 
As discussed later, we set default values conservatively 
to enhance precision; if run time is prohibitive for com-
plex analyses of large data sets, the number of bootstrap 
samples used at one or both stages can be reduced.

Users can change the α level used for statistical sig-
nificance when estimating power (default = .05). Finally, 
a random-number seed is set to make the analyses them-
selves reproducible. As a default, the seed is set to 1. 
Using the same random-number seed for a subsequent 
analysis of the same data would ensure that the bootstrap 
samples themselves would be the same rather than newly 
randomized. Alternatively, anyone curious about the 
impact that random sampling error in the bootstrapping 
process has on small-telescopes results could run  
the analysis multiple times, beginning with different 

Fig. 2.  RSmallTelescopes Shiny app widgets.
Table 1.  List of R Packages and Functions to Calculate 
Effect Sizes and Obtain p Values

Analysis R package Function

Correlation stats cor.test
Regression stats lm
Multilevel model lme4 lmer
Binomial test stats binom.test
Chi-square stats chisq.test
t test stats t.test
Analysis of variance stats aov
Levene’s test car leveneTest

Note: This illustrative list contains many of the types of analysis used 
in the Open Science Collaboration (2015) Reproducibility Project 
in Psychology (RPP). The stats package is available in the default 
R installation. Demonstrations of how to use all of these packages 
(and more) are available in the repository containing all code used to 
perform small-telescopes analyses for the RPP studies: https://osf 
.io/4daw2/.

https://osf.io/4daw2/
https://osf.io/4daw2/
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random-number seeds, to check how consistent the 
results are. Using 10,000 bootstrap samples should pro-
vide good stability (Efron & Tibshirani, 1993), but if run-
time considerations lead to reducing this, one can easily 
check on the stability of results by checking how much 
using other random-number seeds influences them.

Once the parameters of the app have been set, the 
analysis can be conducted by pressing the “Run Analysis” 
button. Notes shown in the app itself guide the user 
through the process and explain how a data file should 
be set up to use one of the built-in analysis functions. 
While the analysis is running, a progress bar will be 
displayed in the app. Figure 3 shows the output for the 
present example using the settings shown in Figure 2. 
The p value at the top of the output (p = .543) reveals 
that the replication results are not statistically significant. 
After constructing the 90% CI for the ϕ coefficient, sta-
tistical power is estimated at each bound using the origi-
nal study’s sample size. The power estimate at the upper 
bound is only .150, which suggests that the original 
study was insufficiently powered. The largest effect that 
the original study would have had at least 33% power 
to detect is not contained within this 90% CI. Given this 
and the statistically nonsignificant replication results, the 
small-telescopes analysis fails to support the original 
findings.

Before proceeding, we note that it is encouraging that 
the statistical power estimate is similar to that obtained 
through an analytic implementation of the small- 
telescopes analysis for these data. Whereas the empirical 
approach yielded a power estimate of .150, the analytic 
approach (performed using the DescTools R package  
to construct the CI and the pwr package to estimate 
statistical power) yielded a power estimate of .181. The 

difference between these values—power estimates of 
15.0% versus 18.1%—is inconsequential for decision-
making because both are well below 33%. The difference 
of 3.1% is likely due to the fact that whereas the analytic 
approach makes assumptions regarding the shape of a 
hypothetical sampling distribution and, when estimating 
power, about its continuity (rather than discreteness in 
the analysis of nominal data), the empirical approach 
generates an observed sampling distribution through 
resampling and, when estimating power, works with 
only the discrete values observable in actual (bootstrap) 
samples of nominal data.

To demonstrate that the small difference in power 
estimates observed in this example are due to differences 
in assumptions regarding how to construct a CI and esti-
mate statistical power and not problems with the code 
we wrote to implement the empirical approach to small-
telescopes analysis, we performed a second analysis in 
which no differences in assumptions between the two 
approaches would be expected to lead to different 
results. The data representing the replication study were 
drawn from a bivariate normal distribution, with r = .135 
in a sample of 1,000. The psychometric R package was 
used to construct an analytic 90% CI = [.083, .185], and 
the pwr R package was used to estimate power at both 
ends of the CI presuming the original study had N = 400: 
90% CI = [.383, .962]. The empirical small-telescopes 
analysis yielded highly similar results: 90% CI = [.084, 
.184] and power estimates of (.384, .969). The bounds of 
the CIs and the power estimates all agreed within ±.01.

R package

In addition to using the RSmallTelescopes Shiny app, 
users have the option of conducting the analysis in R 
through the RSmallTelescopes package (available at 
https://cran.r-project.org/web/packages/RSmallTele 
scopes/index.html). The analysis is conducted in the 
same manner and with the same parameters, but the 
package offers added flexibility in terms of the format 
of a data file and the types of analyses that can be per-
formed. Whereas the Shiny app requires a CSV file, users 
can upload data into R using a wide variety of formats 
(e.g., CSV, tab-delimited, SPSS, Excel). In addition, users 
can work with data for which each case spans more than 
a single row. More importantly, whereas the Shiny app 
has a relatively small number of commonly used types 
of data analysis built in, using the R package allows users 
to perform any type of analysis for which a p value and 
an effect-size measure are available. They can draw from 
an extensive library of other R packages or create their 
own code to perform analyses. Although this can be 
done through the Shiny app, too, by uploading a custom 
analysis() function in a text file, users comfortable 

Estimated Power =    0.148

P value =     0.543

Point Estimate of Effect Size =    0.018

Estimated Power =    0.043

Lower Bound of Cl =    0.000

Estimated Power =    0.038

Upper Bound of CI =    0.066

Fig. 3.  Output from RSmallTelescopes app using Open Science Col-
laboration Study 104. Analysis was conducted on August 25, 2023.

https://cran.r-project.org/web/packages/RSmallTelescopes/index.html
https://cran.r-project.org/web/packages/RSmallTelescopes/index.html
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creating such a file might find it simpler to do the entire 
small-telescopes analysis in R itself.

To begin, users will install the RSmallTelescopes pack-
age to access the SmallTelescopes() function. This con-
ducts the empirical small-telescopes analysis, returning 
the p value from a test of statistical significance plus a 
CI and power estimate for the effect size measured in 
the replication study. To run the function, users specify 
the data to be used, the original sample size, the analysis 
function (which returns effect size and p value), and the 
optional parameters discussed above (e.g., number of 
bootstrap samples, confidence level, significance level). 
To demonstrate, here is how the same analysis shown 
earlier, for OSC Study 104, would be performed. First, 
install the package and upload the data:

install.packages('RSmallTelescopes')
library('RSmallTelescopes')
ao.data <- read.csv('ao.csv')

Next, create an analysis function that returns an 
appropriate measure of effect size and a p value. The 
function for the present example has already been 
shown in the Shiny app section.

Finally, call the SmallTelescopes() function to perform 
the analysis. The arguments of the function correspond 
with the widgets of the app as shown in Table 2.

For this example, the original sample size is 236, and 
the default settings will be used. The code below illus-
trates these parameters:

SmallTelescopes(data = ao.data,
analysis = analysis,
n.original = 236,
B.CI = 10000,
CI.level = .90,

B.power = 10000,
alpha = .05,
n.rows = 1,
seed = 1)

Figure 41 displays the output of the R package, which 
produces results nearly identical to those of the Shiny 
app. In particular, the p value was .543, and statistical 
power estimated at the upper bound of the CI was .148. 
The latter value differs slightly because of differences in 
random-number generation when using the Shiny app, 
hosted online, and the R package, running locally on a 
personal computer. As discussed earlier, one can exam-
ine how stable the results are by varying the random-
number seed, which yields new bootstrap samples  
at each stage of the small-telescopes analysis. When  
the command shown above was rerun using seeds of  

Table 2.  Shiny App Widgets and Corresponding R Package 
Function Arguments

Shiny app widgets
R package function 

arguments

Data File data
Built-in Analysis Functions /  
  Custom Analysis Function

analysis

Original Sample Size n.original
Number of Bootstrap Samples to  
  Construct Confidence Interval

B.CI

Confidence Level CI.level
Number of Bootstrap Samples to  
  Estimate Power

B.power

Significance Level (Alpha) alpha
[not available in Shiny app] n.rows
Random Number Seed seed

Fig. 4.  Output from SmallTelescopes() function using Open Science 
Collaboration Study 104. Analysis was conducted on August 25, 2023.
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2 and 3, the power estimates at the upper bound of the 
CI were .149 and .147, which demonstrates strong agree-
ment with the values of .150 from the Shiny app and 
.148 using the R package with seed = 1 (and leaves no 

doubt that the value falls short of the 33% threshold 
suggested by Simonsohn, 2015). Figure 5 summarizes 
the steps in the empirical small-telescopes analysis with 
results from this example. For this example, we can 

Step #2: Calculate Effect Size From Replication Data.

Step #3: Construct a 90% CI for the Effect Size.

Step #4: Estimate Statistical Power for Samples at the Lower and Upper Bounds of the CI.

Upper Bound
(5th percentile)

ϕ = .066

Lower Bound
(5th percentile)

ϕ = .000

Sample at 95th
Percentile

Sample at 5th
Percentile 

ϕ = .018

Step #5: Interpret the Results. (1) Are Results From Step #1 Statistically Significant? No, p = .543. 
(2) Is Statistical Power at Least 33% at the Appropriate Bound of the CI From Step #4? No, Power 
Is Less than 33% at the Upper Bound. Conclusion: The Original Findings Are Not Supported.

Resample,
Statistical Power
Estimate = .038

Resample,
Statistical Power
Estimate = .148

ϕ = .066
Power = .148

ϕ = .000
Power = .038

Step #1: Test for Statistical Significance in Replication Data.

p = .543

Fig. 5.  Steps in the empirical approach to small-telescopes analysis, illustrated with results from Open Science Collaboration Study 104.
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conclude that the original results are unsupported and 
that the original study was underpowered to detect the 
effect of interest. Although we cannot definitively con-
clude that the original results were a Type I error, it is 
not unreasonable to assume the replication results are 
more trustworthy given the significantly larger sample.

Applications

The empirical approach to small-telescopes analysis has 
been used successfully in published research. For exam-
ple, when evaluating the results of a series of replication 
studies, Crawford et al. (2019) were unable to take an 
analytic approach. In the original study, the investigators 
had conducted a regression analysis, and the effect of 
interest was an interaction tested after controlling for 
covariates and main effects. The replication authors were 
unable to identify formulas to estimate statistical power 
for the effect of interest in this scenario. By using an 
empirical approach, the authors were able to conduct 
the small-telescopes analysis.

To further demonstrate the utility and versatility of 
the empirical approach to small-telescopes analysis, we 
reanalyzed data from the OSC’s (2015) RPP. The RPP 
sought to evaluate the extent of false-positive findings 
in psychological science by replicating 100 studies cho-
sen from leading social- and cognitive-psychology jour-
nals. The RPP was chosen for present purposes because 
it is well known and the data were readily available. All 
code used for this demonstration is available at https://
osf.io/4daw2/.

The empirical small-telescopes analysis was con-
ducted for 95 of the 100 studies. Studies 150 and 154, 
as numbered in the OSC archives, were excluded because 
we could not reproduce the results reported by the 
replication authors (and the OSC analysis auditors also 
failed to corroborate the reported results). Studies 25, 
89, and 121 were excluded because the data manage-
ment and analysis could not be conducted using an R 
package. In principle, however, the small-telescopes 
analysis could have been performed if these particular 
types of transposition error coding (Study 25), multilevel 
modeling (Study 89), and neuroimaging data-management 
techniques (Study 121) were available in R. Thus, before 

even considering the results, it is clear that the empirical 
approach to the small-telescopes method can be used 
for a wide range of study designs and analysis types. 
The limiting factor is not the availability of formulas for 
CI construction or statistical power estimation or the 
willingness to make parametric assumptions. Instead, 
the limiting factor is the availability of functions to per-
form the appropriate types of data analysis in R.

Thirty-four studies (36% of the 95 that were analyzed) 
supported the original results because the replication 
was statistically significant and the original study was 
sufficiently powered. Twenty-eight studies (29%), includ-
ing the example shown above for OSC Study 104, did 
not support the original findings because the replication 
results were not statistically significant and the original 
study appeared to be underpowered. Thirty-three studies 
(34%) produced inconclusive results because the replica-
tion results were not statistically significant but the origi-
nal study appeared to be sufficiently powered. This type 
of inconclusive results would not be expected to occur 
often, if ever, when designing a replication study with 
small-telescopes analysis in mind. However, the RPP was 
performed before Simonsohn (2015) published this 
method, and many of the RPP studies did not have a 
sample that was at least 2.5 times as large as the original. 
Finally, in no case were replication results statistically 
significant for an original study that appeared to be 
underpowered. Results are summarized in Table 3.

Empirically Evaluating the Resampling 
Approach to Small-Telescopes Analysis

Simulations were performed to examine the accuracy and 
precision of the resampling approach to the small-
telescopes method. Data were generated to simulate rep-
lication studies of two-group comparisons in which 
parametric assumptions of normality and equal variance 
were satisfied, which affords a comparison between the 
small-telescope results obtained via analytic calculations 
with those from resampling. The data conditions included 
equal group sizes in the original studies that were small 
(n = 25), medium (n = 50), or large (n = 100) and, as per 
Simonsohn’s (2015) advice, sample sizes were 2.5 times 
as large in the simulated replication studies. Effect sizes 

Table 3.  Summary of Empirical Small-Telescopes Analysis of Open Science Collaboration 
(2015) Studies

Are the replication results statistically significant?

  Yes No

Was the original study  
  sufficiently powered?

Yes Original findings supported
(34 studies)

Inconclusive
(33 studies)

  No Inconclusive
(0 studies)

Original findings not supported
(28 studies)

https://osf.io/4daw2/
https://osf.io/4daw2/
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in these replication studies were sufficiently small (ds = 
0.00, 0.05, or 0.10) that the independent-groups t tests 
were not statistically significant, and therefore a small-
telescopes analysis would be warranted. The code used 
for this simulation is available at https://osf.io/4daw2/.

Within each cell of this 3 × 3 simulation design, stan-
dard analytic methods were used to implement small-
telescopes analysis first by constructing a 90% CI for the 

effect size in the replication study and then by estimating 
statistical power at both ends of the CI using the sample 
size of the original study. These calculations provided 
reference values against which to compare the accuracy 
of results obtained via resampling. To assess its accuracy 
and the precision of its results, the resampling method 
was repeated 100 times for each data condition. The 
performance of the resampling method was tested not 

Table 4.  Results for Simulated Replication Studies Testing the Mean Difference Between Two Groups

Limits of 90% confidence  
interval for d

Statistical power estimates at 
limits of confidence interval

Original group 
sizea

Replication 
effect size 

and p valueb

Number of 
bootstrap 
samplesc

Lower  
bound

Upper  
bound

Lower  
bound

Upper  
bound

n = 25 d = 0.00 — –0.294 0.294 0.179 0.179
  p = 1.000 10,000 –0.297 (0.004) 0.297 (0.003) 0.177 (0.008) 0.175 (0.009)
  1,000 –0.299 (0.012) 0.298 (0.013) 0.177 (0.018) 0.176 (0.019)
  100 –0.294 (0.043) 0.292 (0.034) 0.175 (0.050) 0.174 (0.042)
  d = 0.05 — –0.245 0.344 0.137 0.229
  p = .780 10,000 –0.246 (0.004) 0.348 (0.004) 0.135 (0.007) 0.223 (0.010)
  1,000 –0.247 (0.012) 0.350 (0.013) 0.135 (0.014) 0.226 (0.020)
  100 –0.243 (0.044) 0.343 (0.035) 0.136 (0.046) 0.226 (0.048)
  d = 0.10 — –0.195 0.394 0.102 0.286
  p = .576 10,000 –0.195 (0.004) 0.399 (0.004) 0.104 (0.006) 0.279 (0.009)
  1,000 –0.196 (0.012) 0.401 (0.013) 0.105 (0.013) 0.282 (0.021)
  100 –0.192 (0.044) 0.394 (0.036) 0.106 (0.040) 0.287 (0.053)
n = 50 d = 0.00 — –0.208 0.208 0.179 0.179
  p = 1.000 10,000 –0.209 (0.003) 0.209 (0.002) 0.179 (0.006) 0.178 (0.006)
  1,000 –0.207 (0.008) 0.207 (0.007) 0.173 (0.016) 0.175 (0.016)
  100 –0.209 (0.027) 0.202 (0.023) 0.181 (0.057) 0.174 (0.043)
  d = 0.05 — –0.158 0.258 0.121 0.252
  p = .693 10,000 –0.159 (0.003) 0.259 (0.002) 0.122 (0.004) 0.250 (0.007)
  1,000 –0.156 (0.008) 0.257 (0.007) 0.121 (0.013) 0.245 (0.019)
  100 –0.159 (0.027) 0.252 (0.024) 0.127 (0.046) 0.241 (0.059)
  d = 0.10 — –0.109 0.308 0.078 0.337
  p = .429 10,000 –0.108 (0.003) 0.310 (0.002) 0.083 (0.004) 0.334 (0.007)
  1,000 –0.106 (0.008) 0.308 (0.007) 0.083 (0.010) 0.332 (0.020)
  100 –0.109 (0.028) 0.303 (0.024) 0.088 (0.035) 0.316 (0.057)
n = 100 d = 0.00 — –0.147 0.147 0.179 0.179
  p = 1.000 10,000 –0.147 (0.002) 0.148 (0.002) 0.179 (0.005) 0.180 (0.006)
  1,000 –0.148 (0.007) 0.148 (0.006) 0.180 (0.016) 0.178 (0.015)
  100 –0.141 (0.017) 0.142 (0.016) 0.171 (0.048) 0.166 (0.051)
  d = 0.05 — –0.097 0.197 0.102 0.286
  p = .576 10,000 –0.097 (0.002) 0.198 (0.002) 0.105 (0.004) 0.285 (0.008)
  1,000 –0.097 (0.007) 0.198 (0.006) 0.107 (0.012) 0.284 (0.020)
  100 –0.091 (0.016) 0.192 (0.016) 0.105 (0.035) 0.268 (0.063)
  d = 0.10 — –0.047 0.247 0.062 0.416
  p = .264 10,000 –0.047 (0.002) 0.248 (0.002) 0.063 (0.003) 0.414 (0.008)
  1,000 –0.047 (0.007) 0.249 (0.006) 0.064 (0.009) 0.415 (0.023)
  100 –0.041 (0.016) 0.243 (0.016) 0.064 (0.025) 0.393 (0.070)

Note: References values, shown in bold, were calculated analytically as per Simonsohn (2015). Simulation results are summarized using the  
M (SE) values for 100 samples at each data condition. Figures in parentheses represent standard errors.
aSample sizes were 2.5 times as large for replication studies.
bp values and statistical power estimates calculated for independent groups t tests (α = .05, two tails).
cThe same number of bootstrap samples was used to construct confidence intervals and estimate statistical power.

https://osf.io/4daw2/


12	 Costigan et al.

only using the default value of B = 10,000 bootstrap 
samples to construct CIs and to estimate statistical power 
but also smaller values of B = 1,000 and B = 100 to 
examine the impact of this parameter on the results.

Table 4 shows the analytically calculated CIs and sta-
tistical power estimates in bold. The results for resam-
pling are summarized using the mean to assess accuracy 
and its standard error to assess precision. In the context 
of this resampling approach to small-telescopes analysis, 
one would expect greater precision when constructing 
CIs than when estimating statistical power. Constructing 
a CI entails a single application of the bootstrap, with 
its associated sampling error, whereas estimating statisti-
cal power relies on a second level of bootstrapping that 
introduces additional sampling error. Nonetheless, the 
simulation results reveal high levels of accuracy and 
precision at both stages.

Using the program default of B = 10,000, most means 
were within ±0.001 of the calculated reference values, 
and none differed by more than ±0.007. Given the met-
rics of these CIs (Cohen’s d) and statistical power (prob-
ability scale), this represents excellent accuracy. 
Moreover, standard errors ranged from 0.002 to 0.010, 
which represents excellent precision. As expected, preci-
sion was even better for CIs (all SEs ≤ 0.004) than for 
statistical power estimates, but all of these values are 
quite small. This suggests that the resampling approach 
to small-telescopes analysis can be relied on to produce 
trustworthy results.

Finally, the influence of using fewer bootstrap sam-
ples to construct CIs and estimate statistical power was 
examined. Accuracy levels remained fairly high (most 
means remained within ±0.010 of reference values, and 
the largest difference was 0.023), but precision decreased 
(standard errors ranged as high as 0.023 for B = 1,000 
and 0.070 for B = 100). This suggests that it would be 
wise to use the program default values of B = 10,000 
bootstrap samples for CI construction and statistical 
power estimation unless run time is prohibitive. As a 
point of reference, an ordinary laptop computer took 
about 16 s to complete the small-telescopes analysis of 
each simulated replication study reported here when 
using B = 10,000.

Summary

The small-telescopes method proposed by Simonsohn 
(2015) provides a compelling way to evaluate replication 
results. However, performing small-telescopes analysis 
using an analytic approach is not always possible (if the 
required formulas do not exist), practical (if formulas 
exist but the calculations are not implemented in acces-
sible software), or advisable (if parametric assumptions 
are violated), which limits how widely the method can 

be adopted. The empirical approach to small-telescopes 
analysis is a versatile tool for evaluating replication 
results because it can be used with a wide range of data 
analyses and data conditions. This approach allows users 
to conduct small-telescopes analysis even when the ana-
lytic approach is impractical or impossible to conduct, 
avoids making assumptions that may not be satisfied, 
yields only theoretically possible CI limits, and can be 
performed using freely available software.

The small-telescopes method can be used for a variety 
of study designs, and its particular strength is that its 
conclusions are based on more nuanced considerations 
than a test of statistical significance alone (Schauer & 
Hedges, 2021). By also asking whether the original study 
appears to have been adequately powered, one can 
reach a better-informed conclusion regarding the find-
ings (Nosek et al., 2022).

In some instances, the original findings will be sup-
ported by a statistically significant replication and a 
small-telescopes analysis that suggests the original study 
was sufficiently powered to detect the effect. In other 
instances, the original findings will not be supported, as 
when the replication findings are not statistically signifi-
cant and a small-telescopes analysis suggests the original 
study was insufficiently powered to detect the effect. 
Other patterns of results might suggest that the original 
findings were correct, albeit by a lucky accident, or that 
the findings of the original and replication studies are 
inconsistent, requiring further research to help reach a 
more definitive conclusion.

The ability to perform small-telescopes analysis 
empirically extends its reach, but there are also some 
limitations to this approach and what is known about it. 
One practical limitation is that it requires investigators 
to go beyond a test of statistical significance. Whether 
one wishes to perform small-telescopes analysis analyti-
cally or empirically, there is extra effort involved. The 
analytic approach requires identifying and using relevant 
formulas. Some or all of this may be facilitated by soft-
ware, but that requires access to the software and know-
ing how to use it correctly. The empirical approach 
would be fairly simple if one’s analysis is of a common 
variety included in the Shiny app, less so if one’s analysis 
required the use of the R package. Although not a trivial 
concern, R is becoming increasingly familiar to psycho-
logical scientists, especially to younger investigators 
more likely to have been trained in it during graduate 
school, so this should not be too serious an obstacle to 
overcome if performing a small-telescopes analysis 
seems worthwhile.

In addition, although the empirical approach expands 
the usability of small-telescopes analysis, it is not neces-
sarily well suited for all data and research designs. For 
instance, data with complex dependencies, such as 
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nested or time-series data, cannot be analyzed with the 
present code. To conduct small-telescopes analysis in 
such cases, the code must be altered to use specialized 
bootstrap methods that ensure the resampling occurs at 
the proper unit of analysis.

Furthermore, whereas the analytic approach will usu-
ally require parametric assumptions, the empirical 
approach avoids these by resampling using bootstrap 
methods. However, this substitutes a different assump-
tion: that the sample of data at hand is representative of 
its population (Efron & Tibshirani, 1993). For example, 
when one performs a t test to compare scores across 
two groups, one makes parametric assumptions about 
normality and homogeneity of variance. Using the boot-
strap avoids those assumptions, instead assuming that 
the observed distributional shapes and variances are 
representative of individuals in the population. This may 
be more tenable than standard parametric assumptions 
in many instances, but particularly with small samples, 
there is no assurance that characteristics of the sample 
are representative of the population.

In addition to the different types of assumptions that 
the empirical approach makes, there are some additional 
uncertainties introduced by its implementation. Perhaps 
most significant is that we have not systematically stud-
ied the impact of varying the number of bootstrap sam-
ples that are used when constructing a CI and then when 
estimating statistical power at each end. We relied heav-
ily on the advice of Efron and Tibshirani (1993), experts 
in bootstrap methods, and set default values even more 
conservatively than recommended to yield stable esti-
mates. Particularly given that this is a two-stage process, 
using bootstrapping (for statistical power estimation) 
layered within bootstrapping (for the construction of a 
CI), we chose to err on what we believe is the side of 
caution by setting default values larger than is likely to 
be necessary to obtain sufficiently precise results for 
making decisions.

Future research could investigate the performance of 
this methodology using varying numbers of bootstrap 
samples at each stage. This could be done for a variety 
of types of data analysis because it is conceivable that 
smaller numbers of bootstrap samples are required to 
obtain sufficiently precise results for some types of anal-
yses than for others. Until this issue is itself addressed 
empirically, we expect that leaving the number of boot-
strap samples at the very large default values (10,000 
samples at each stage) should be a safe way to proceed. 
If doing so takes too long to run a small-telescopes 
analysis, one can reduce the number of bootstrap sam-
ples at one or both stages. In that case, we recommend 
repeating the entire small-telescopes analysis using at 
least a few different random-number seeds to check 
whether the results are sufficiently stable to afford trust-
worthy conclusions.

Another area that might be worth exploring further 
is the bootstrap method used to construct a CI. We used 
the percentile bootstrap for several reasons. First, it is 
simple to understand and implement. Second, it gener-
ally works well, yielding CIs with good probability cov-
erage (Efron & Tibshirani, 1993). Third, and perhaps 
most important, it enabled us to identify the precise 
bootstrap samples that yielded particular effect sizes. 
For example, when constructing a 90% CI, we wanted 
to know precisely which samples yielded effect sizes at 
the fifth and 95th percentiles. This is important because 
it allowed us to take these bootstrap samples and, in 
turn, perform the second-stage bootstrap resampling to 
estimate statistical power at each end of the CI. It is 
possible that another method of bootstrap CI construc-
tion would work even better, but that alternative would 
have to identify a unique bootstrap sample correspond-
ing to each end of the CI. Interested readers can find 
further discussion of alternative bootstrap methods and 
software implementations in Banjanovic and Osborne 
(2016) and Kirby and Gerlanc (2013).

One interesting candidate that we considered is the 
bias-corrected and accelerated bootstrap method (Efron 
& Tibshirani, 1993). This often yields even better cover-
age probabilities than the percentile bootstrap method, 
and it would identify which samples yielded effect sizes 
at each end of a CI, but we have not yet included it in 
our small-telescopes software because it is more com-
puting-intensive. Future research could examine whether 
the bias-corrected and accelerated bootstrap method 
produces results that are worth the increase in run time. 
For the time being, we believe the percentile bootstrap 
rests on a sufficiently solid theoretical foundation that 
it provides a good general-purpose CI construction 
method for the many types of data analyses encountered 
in replication studies.

With these limitations and unknowns in mind, we 
believe that the empirical approach to the small-tele-
scopes method, as demonstrated through this tutorial, 
should enable this valuable tool to be used more often 
as researchers grapple with the replication crisis in psy-
chological science and beyond.
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