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3.11.1 Introduction

One major challenge faced by scientists involves determining the latent structure of their variables of interest. Of particular interest
to psychologists, people can differ on any given psychological construct by belonging to discrete groups or by varying along
a continuum (Meehl, 1992). However, constructs may be conceptualized and measured using either structure based upon theoret-
ical, rather than empirical, grounds. For instance, whereas diagnosis of discrete disorders assumes that individual differences are
categorical in nature, evaluating symptom or disorder severity leans toward a dimensional model.

Regardless of any a priori preferences, how one chooses to conceptualize and measure a construct and whether this is congruent
with its true latent structure has important consequences for theory, research, and practice (Meehl, 1992; Ruscio et al., 2006; Ruscio
and Ruscio, 2002). For instance, knowledge of the structure of a psychological disorder can assist in understanding causal models of
psychopathology. Whereas disorders with dimensional variation may be the result of several additive factors (e.g., genetic predis-
position, environmental stressors), those that vary in discrete categories require either the presence or absence of a specific causal
variable (e.g., a traumatic event) or an accumulation effect, threshold effect, or interaction between variables (e.g., both genetic
predisposition and environmental stressors are necessary to push someone over a threshold). Further, structural knowledge can
assist researchers in their design and statistical analysis of studies. When measurement models match latent structure, this can
increase statistical power of subsequent analyses, such as group comparisons for categorical constructs or tests of association for
dimensional constructs (Fraley and Waller, 1998).
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Rather than choosing to conceptualize or measure a construct based on conventional practices or preferences for categories or
dimensions, this structural distinction can be addressed empirically. Beginning in the 1960s, Paul Meehl and his colleagues pub-
lished a series of technical reports that introduced a new method for differentiating categorical and dimensional variables. Printed
with yellow covers and known informally as the “yellow monsters”, these reports introduced Meehl’s taxometric method. As these
reports were circulated and these methods refined, researchers began to incorporate taxometric methodology in their study of
psychological constructs. Perhaps because Meehl was a clinical psychologist who developed this method to test for the existence
of a schizotypy taxon, these methods were largely applied in the realm of psychopathology research. For instance, early taxometric
studies examined the latent structure of schizophrenia (Golden andMeehl, 1979), abnormal personality (Erlenmeyer-Kimling et al.,
1989), nuclear depression (Grove et al., 1987), and dementia (Golden, 1982). Reviews of taxometric studies show that they have
been used most often to study constructs in the realm of clinical psychology, although researchers have also used these methods to
study constructs across all subfields of psychology (e.g., flashbulb memories, infant attachment patterns, emotions) and related
fields (e.g., functional dyspepsia, metabolic syndrome) (Haslam et al., 2012; Haslam et al., 2020).

Despite their application to the study of psychopathology and personality, little work was published on the methodology of
taxometric analysis until the 1990s. Meehl and Yonce (1994, 1996) illustrated prototypical curve shapes for categorical and dimen-
sional data from analyses of 700 artificial data sets, and this was followed by a demonstration of how to perform several taxometric
procedures (Waller et al., 1996). Waller and Meehl (1998) published a book describing existing methods and introducing new
procedures. These early methods required a fair amount of subjectivity in that investigators were asked to make a number of choices
to implement each taxometric procedure and then visually inspect their taxometric graphs, comparing them to those obtained in
analyses of prototypical categorical and dimensional data.

Subsequent developments began to reduce this subjectivity in a variety of ways. Parallel analyses of artificial comparison data
provided a clearer sense for what taxometric results would look like for categorical and dimensional data that reproduced important
characteristics of the empirical sample at hand (Ruscio et al., 2007). An objective measure of the relative fit of the obtained results to
those for categorical or dimensional data was developed (Ruscio et al., 2007). Simulation studies (e.g., Ruscio, 2007; Ruscio et al.,
2018; Ruscio and Kaczetow, 2009; Ruscio et al., 2007; Ruscio et al., 2010; Ruscio and Walters, 2011; Walters and Ruscio, 2009)
provided further guidance about acceptable data conditions, the best ways to implement taxometric analyses, and the interpretation
of results. In the past two decades, the number of taxometric studies has increased rapidly and these methodological safeguards have
become standard practice (Haslam et al., 2020). The R package RTaxometrics (Ruscio and Wang, 2017) now fully incorporates
knowledge on best practices in taxometric analysis in a user-friendly way. This article reviews each of these issues in greater detail
to help an interested reader assess the merits of a taxometric study or perform one of their own.

3.11.2 Overview of the Taxometric Method

At its most fundamental level, taxometric research begins with the premise that not all individual differences are alike. For instance,
whereas dogs and cats are qualitatively different in kind, tall people and short people are quantitatively different in degree.
However, the latent structure of other constructs is less clear. For instance, do depressed and non-depressed individuals form
two separate groups of people, or does everyone fall along a continuous spectrum of depression? Taxometric analysis is designed
to address the question of whether a categorical or dimensional model is a better fit for any particular construct. To do so, various
taxometric procedures are applied to examine relationships among observable variables for clues to the underlying latent structure.

Within the overarching framework of the taxometric method, dozens of data-analytic procedures have been introduced. A small
handful has emerged as the most popular and well-studied set of taxometric procedures. These include mean above minus below
a cut (MAMBAC; Meehl and Yonce, 1994), maximum covariance (MAXCOV;Meehl and Yonce, 1996), maximum eigenvalue (MAX-
EIG; Waller and Meehl, 1998), and latent mode (L-Mode; Waller and Meehl, 1998). The primary output of these procedures is
graphical in nature, with certain patterns of graphs more indicative of categorical or dimensional latent structure for each procedure.
Although each taxometric procedure is conceptually andmathematically distinct from the others in important ways, they all involve
the analysis of multiple valid quantitative indicators of the latent construct (e.g., scores on a depressive symptoms scale as an indi-
cator of depression).

For instance, MAMBAC requires at least two indicator variables (Meehl and Yonce, 1994). First, one indicator is designated as an
“input” indicator and the other as an “output” indicator. Scores on the input indicator are used to sort cases. Next, beginning and
ending a fixed number of cases away from the lowest and highest scores on the input indicator, a series of cutting scores is located.
Mean differences of output indicator scores are calculated above and below each cut. Finally, a MAMBAC graph is created by plot-
ting the series of mean differences corresponding to each cut. A prototypical MAMBAC graph for categorical data shows a peak near
the cut that best separates the members of two groups. In contrast, a prototypical MAMBAC graph for dimensional data is concave.
Curves for both structures will be shown in the Illustrative Analyses section that appears later. If there are more indicators (k >2),
MAMBAC may be repeated k(k � 1) times so that all variables are used as input and output variables to generate a panel of curves,
with these curves typically averaged for interpretation.

The MAXCOV and MAXEIG procedures are conceptually very similar to one another, and they yield very similar results (Ruscio
et al., 2010). Therefore, we will only describe MAXEIG (Waller and Meehl, 1998). This procedure requires at least three indicator
variables. As in MAMBAC, one indicator is designated as an input indicator and cases are sorted along this variable. Ordered
subsamples called “windows” of cases are formed such that they overlap, typically by 90%, with their neighbors. Then one
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calculates, for each window, the first (largest) eigenvalue from a modified variance-covariance matrix (by replacing the variances
with zeros) of all remaining variables, which serve as output indicators. A MAXEIG graph is created by plotting the series of eigen-
values along the mean score of the input indicator for cases in each window. Similar to MAMBAC, categorical data submitted to
MAXEIG are expected to yield a peaked curve. Within windows containing mostly members of just one group (e.g., all of the
lowest-scoring cases on the input indicator), little association among output indicators is expected. The same holds true within
windows containing mostly members of the other group (e.g., all of the highest-scoring cases). When windows contain a fairly
even mixture of members of two groups, however, this gives rise to strong associations between indicator variables, hence
a peak in the MAXEIG curve. In contrast, a prototypical MAXEIG graph for dimensional data is flat because there are no groups being
mixed in differing proportions across windows of cases. Instead, the associations between indicator variables remain fairly constant
at all levels of the input indicator.

L-Mode is slightly different thanMAMBAC andMAXEIG in that it does not involve cutting or splitting the sample into subgroups
(Waller and Meehl, 1998). Instead, all three or more indicators available are submitted to a factor analysis, and scores on the first
principal factor are estimated using Bartlett’s (1937) method. An L-Mode graph is created by plotting the distribution of cases on
this factor as a density plot. Whereas a prototypical L-Mode graph for categorical data is bimodal, revealing the separation between
scores for two groups, a prototypical L-Mode graph for dimensional data is unimodal.

Unlike many other forms of latent variable data analyses (e.g., latent class analysis), taxometric procedures do not test for statis-
tical significance to assess the fit of a categorical or dimensional structural model, thereby avoiding the potential pitfalls of null
hypothesis statistical testing (Nickerson, 2000; Wagenmakers, 2007). Instead, a cornerstone of Meehl’s taxometric method involves
checking the consistency of findings across multiple taxometric procedures (Meehl, 1995). These procedures would ideally be
applied to multiple datasets drawn from different populations, using different measures as observed indicators of the latent
construct. The rationale for consistency testing is not unlike that for replication in other types of research, namely that confidence
accumulates only as results from nonredundant tests point toward the same conclusion. Neither a single test nor inconsistent results
provide compelling support for an inference of categorical or dimensional latent structure.

3.11.3 Reducing Subjectivity in Taxometric Analysis

Research on taxometric methodology has accelerated over the past few decades, with several important advances being made to
reduce the subjectivity in taxometric analysis. A key development in this area was the introduction of parallel analyses of artificial
comparison data (Ruscio et al., 2007), and this in turn enabled the more rigorous study of taxometric methodology to help decide
how best to perform taxometric procedures and interpret their results.

3.11.3.1 Parallel Analysis of Comparison Data

Using this approach, one generates populations of categorical and dimensional comparison data by holding constant important
characteristics of the empirical data (e.g., sample size, number of variables, marginal distributions, correlationmatrices) and varying
only the structural models used to create the data. By analyzing many random samples drawn from each population of comparison
data, the typical results for each structure can be examined along with the variation attributable to normal sampling error. Plotting
results for empirical data alongside those for both types of comparison data provides a more appropriate reference point than
comparing the empirical results only to the prototypical curves for each structure that were generated using a narrow range of fairly
ideal data parameters.

To further reduce the subjectivity in the interpretation of taxometric results, Ruscio et al. (2007) developed the Comparison
Curve Fit Index (CCFI). The CCFI quantifies the extent to which the results for the empirical data are a closer match to those for
the categorical or dimensional comparison data. Values can range from 0 (strongest support for dimensional structure) to 1 (stron-
gest support for categorical structure), with 0.50 representing the most ambiguous outcome possible. A number of simulation
studies demonstrated that the CCFI effectively differentiates between categorical and dimensional data across a wide range of chal-
lenging data conditions (see Ruscio et al., 2011, for an overview).

3.11.3.2 Inspecting Curves and Curve Fit

Historically, taxometric methodology required investigators to make several judgments about the similarities and differences
between graphs for empirical data and prototypical graphs for categorical and dimensional data. These prototypical comparison
graphs were generated from a relatively small number of idealized data conditions, which often did not match the distributional
and correlational properties of the empirical research data. For instance, whereas empirical data usually differ from normality in one
or more ways (Micceri, 1989), the artificial data used to generate the prototypical graphs were normally distributed. Interpreting
taxometric results often involved difficult judgments about highly ambiguous comparisons. This reliance on visual inspection of
curve shapes introduced an unfortunate degree of subjectivitydand allowed confirmation bias to play an outsized roledin taxo-
metric research.

Compounding this challenge, each taxometric procedure can be performed in a variety ways, and empirical guidance for making
implementation decisions was slow to develop because simulation studies required that taxometric experts judge the output of each
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analysis. Whereas other approaches to latent variable modeling could be studied in large-scale simulation studies using objective
measures of model fit, the need to visually inspect curves severely constrained the size and scope of methodological research on the
taxometric method.

The use of parallel analyses of categorical and dimensional comparison data, accompanied by the calculation of the CCFI, goes
a long way toward addressing these limitations. Graphs generated from artificial comparison data provide a much better interpre-
tative aid by holding constant important characteristics of the data as well as all implementation choices made when performing
each taxometric procedure (Ruscio et al., 2007). Calculating the CCFI on the basis of results from these parallel analyses, rather than
subjectively interpreting curves shapes relative to idealized prototypes, removes a great deal of subjectivity from taxometric research.
Moreover, the CCFI can be used to perform large simulation studies that examine taxometric methodology itself, including ques-
tions about necessary data conditions for informative taxometric results as well as the most effective ways to implement taxometric
procedures.

Haslam et al. (2012) noted not only that parallel analyses of comparison data and the CCFI have become standard practice in
taxometric studies, but also that using the CCFI is strongly associated with higher methodological quality in other respects (e.g.,
larger sample size, continuous rather than dichotomous indicators). Because the CCFI has become standard practice, Haslam
et al. (2020) were able to perform a meta-analysis of taxometric studies using the CCFI as the measure of effect size. Their findings
suggest that dimensional structure is far more common than categorical structure in taxometric research, including but not limited
to psychopathological constructs.

Evidence from Monte Carlo simulation studies shows that the CCFI distinguishes between categorical and dimensional data
with a high level of accuracy across various a wide range of challenging data conditions (Ruscio et al., 2007, 2010, 2018; Ruscio
and Kaczetow, 2009). Moreover, using the CCFI allows for the detection of categorical structure with highly unequal base rates
of group membership in the sample (Ruscio and Marcus, 2007). This is particularly important as taxometric analysis is frequently
applied in the context of psychological disorders, constructs with low base rates.

3.11.3.3 Implementation Decisions

Researchers must make a number of implementation decisions when performing a taxometric analysis. For instance, researchers
must decide which taxometric procedures to use (e.g., MAMBAC, MAXEIG, MAXCOV, L-Mode), how to assign variables to input
and output configurations, and how to locate cutting scores or subsamples along input variables. In the past, such implementation
decisions were made by following conventions suggested in the original papers introducing the methodology or examples in previ-
ously published taxometrics studies. Given the many options available to researchers, there was no guarantee that others had made
the best choices. The development of the CCFI enabled large-scale simulation studies in which various implementation options
were systematically investigated across a wide range of data conditions to uncover acceptable boundary conditions and suggest
best practices.

These simulation studies form the foundation of empirically supported guidelines in taxometric analysis. For instance, Ruscio
et al. (2010) found that MAXEIG and MAXCOV procedures produced remarkably similar results, and it is now standard practice
to only select one of these procedures for use in consistency testing. Other simulation studies have established guidelines for the
implementation of MAMBAC, MAXCOV, and MAXEIG procedures (Walters and Ruscio, 2009), as well as the calculation of CCFI
values (Ruscio et al., 2018) and use of internal replications when tied scores are found on the input indicator (Ruscio and Wal-
ters, 2011).

3.11.3.4 CCFI Profiles

A more recent development in taxometric methodology involves performing analyses using a series of populations of categorical
comparison data that vary in the base rate of the taxon. The purpose is to examine how the CCFI changes when known groups differ
in their relative size. Ruscio et al. (2018) found that creating what they called a CCFI profile using a range of base rates for categorical
comparison data (from 0.025 to 0.075, in increments of 0.025) provided two key benefits.

First, using a CCFI profile improves base rate estimation relative to what can be obtained using formulas for each taxometric
procedure. If the results support an inference of categorical structure, locating the peak in the CCFI profile provides a clue about
the taxon base rate. It is expected that this peak will emerge for the population of categorical comparison data generated using
a base rate close to that for the empirical data. Because a discrete series of base rates is used to generate the CCFI profile, and
also because each CCFI contained therein will be subject to sampling error, the profile is smoothed before locating its peak. The
location of the peak in this smoothed curve is then used as the base rate estimate. Ruscio et al. (2018) found that this decreases
bias and increases precision of base rate estimation for the MAMBAC, MAXEIG, and L-Mode procedures.

Second, a weighted mean of the CCFI values in a profile improves the ability of CCFI to differentiate between categorical and
dimensional data. A single CCFI value is useful, but like any statistic it is subject to sampling error. Averaging values reduces the
sampling error and an aggregate CCFI even more effectively differentiates between categorical and dimensional data. The weighting
scheme is based on the distance from each data point to the estimate of the taxon base rate, thus giving more weight to points nearer
the estimated base rate.
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3.11.3.5 Consistency Testing

Another cornerstone of Meehl’s taxometric method is the use of multiple non-redundant data-analytic procedures to check the
consistency of findings (Meehl, 1995). Like other implementation decisions, there are many choices to be made when checking
for consistency. The general idea of consistency testing is sound, but with so many “researcher degrees of freedom” (Simmons
et al., 2011) in selecting which data-analytic techniques to perform and to report, there was a substantial risk of confirmation
bias. Indeed, for a long time, researchers’ approaches to consistency testing were uneven, at best. Practice was guided only by a shared
ideal that had not been operationalized.

Ruscio et al. (2010) used the CCFI to specify and evaluate several operationalizations of consistency testing. The best method
among those they tested was to obtain CCFI values using multiple taxometric procedures and then calculate and interpret the
mean CCFI. When a single threshold at 0.50 is used in this way, there are inevitable errors (i.e., categorical data that yield
a CCFI below 0.50 or dimensional data that yield a CCFI above 0.50). Findings suggested that the error rate should be low
provided that the data are appropriate for taxometric analysis, but users could reduce it further by treating values close to
0.50 as ambiguous. For instance, treating CCFIs from 0.40 to 0.60 as ambiguous, and reaching no conclusion, eliminated
most errors. Using a narrower range of ambiguous CCFIs (e.g., from 0.45 to 0.55) yielded fewer ambiguous findings, but at
the cost of an increase in the error rate. Alternatives to such fixed-width intervals (e.g., intervals based on multiples of the CCFI’s
standard error) have also been rigorously evaluated via simulation studies, but results indicated that an ambiguous range of CCFI
values should be defined using fixed-width intervals (Ruscio et al., 2018). In all of these ways, development of the CCFI and its
use in simulation studies have helped to reduce subjectivity and accelerate research in taxometrics by allowing researchers to
select the most appropriate analyses, make decisions to perform them most effectively, and report and interpret their results
in a more transparent, standardized, and effective fashion.

3.11.4 Software for Taxometric Analysis

Mainstream statistical software does not include taxometric analysis, so investigators have created their own special-purpose code
through the years. By the time that the use of simulated comparison data became part of standard practice, most investigators
seemed to be using Ruscio’s (2016) R code, which incorporated that approach. To check our impression that Ruscio’s (2016) R
code for taxometric analysis had become the most popular, we performed a review of 37 taxometric studies published from
2011 to 2016 using the search term “taxometric analysis” in Google Scholar. In each case, the researchers used Ruscio’s taxometric
programs. The code was originally written in the commercial Sþ language in 2000, and soon thereafter converted for use in the R
computing environment.

This code was updated many times, with the results that one might expect of an incremental, evolutionary process. The original
formulation and structure remains, buried beneath a variety of add-ons and modifications. The code’s growth rendered it increas-
ingly difficult to read or update, much less to reorganize in more modular and efficient ways. Moreover, even as the practice of taxo-
metric analysis began to converge on best practices supported by methodological research, the difficulty of making substantial
changes to the inelegant code meant that some outdated options remained and some new techniques had not been incorporated.

Therefore, we completely reworked Ruscio’s R code for taxometric analysis to create the R package RTaxometrics (Ruscio and
Wang, 2017). We followed the modern style conventions of R programming and documentation to produce an R package that
is distributed in the standard way, rather than through a personal web site. Though we borrowed parts from the existing code,
the RTaxometrics package was designed from scratch to have many advantages over the previously distributed code. First, functions
in this package were created and tested to be as user-friendly as possible while enabling, encouraging, and in some cases even
requiring users to follow best practices. For instance, many aspects of the data can be checked to ensure they are adequate for taxo-
metric analysis prior to running actual taxometric procedures, and additional checks on the fit between the data and the implemen-
tation choices are automatically done before any analyses are performed. A newly developed function also allows for the generation
and analysis of CCFI profiles.

Second, this package was programmed to be run-time efficient. Perhaps the most significant improvement, from a run-time
perspective, involves the generation of comparison data. As noted above, it has become standard practice in taxometric analysis
to generate and submit to parallel analysis artificial comparison data (Ruscio et al., 2007). Generating the necessary populations
of categorical and dimensional comparison data, from which random samples are taken for parallel analysis, can take as long or
longer than performing all of the taxometric analyses. This step used to be done separately for each taxometric procedure, but RTaxo-
metrics generates the populations of comparison data only once, storing and using them as needed for multiple taxometric
procedures.

Third, RTaxometrics provides status updates once a command is run, with progress being reported as various actions are taken.
This includes preliminary checks of the data and program parameter specifications, as well as analyses of empirical and comparison
data.

Fourth, once analyses are complete, RTaxometrics provides streamlined output. The text and graphical output from analyses have
been simplified to help users focus on the most important results and incorporate them into their documents. For instance, a single
graph sheet is created with the results from all taxometric procedures performed, rather than producing multiple windows with
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graphs for each procedure separately. These graphs can be displayed on the screen or written directly to either compressed (.jpeg) or
high-resolution (.tiff) files. Likewise, the text output can be displayed on screen or diverted directly to a text file.

Fifth, RTaxomertrics is much more modular than previous versions, with anything done repeatedly (e.g., calculating CCFIs)
handled in its own function and called by higher-order functions as needed. All program parameters are bundled into a single object
passed between all functions, making it simple to add or remove elements in future updates. These changes have all improved read-
ability of the code, which is also written and documented in conventional R style. Steps to follow in a taxometric analysis are
provided below, followed by several illustrations using RTaxometrics.

3.11.5 Performing Taxometric Analysis

3.11.5.1 Checking the Data

Before performing taxometric analyses, researchers should ensure that this is the right data-analytic tool to address the research ques-
tion. Taxometric analysis is designed to differentiate between categorical and dimensional data, where dimensional structure
consists of one or more latent factors, and categorical structure consists of two separate groups (with potential dimensional varia-
tion within one or both). After making this determination, investigators should next check that their data are acceptable for taxo-
metric analysis, which requires that data meet several requirements in order to reach accurate and informative conclusions (Meehl,
1995; Ruscio et al., 2010). These include total sample size (N �300), size and base rate of the putative taxon (nt �50 and P �0.10),
number of variables (k �2), number of ordered categories per variable (C �4), between-group validity of each variable (d �1.25),
and within-group correlations among variables (rwg�0.30). Although it is desirable for data sets to meet each of these requirements,
a number of simulation studies have shown that borderline values on some of these criteria, or failure to meet one or more criteria,
may be offset by especially favorable characteristics on other criteria in the same data set (Ruscio et al., 2011).

Analyses to check whether data were appropriate for taxometric analysis were previously completed within the functions for
taxometric procedures themselves. For example, if one constructed a set of variables and submitted it to taxometric analysis, the
output would include information about the between-group validity and within-group correlations of these variables. Incorpo-
rating this into the taxometric functions themselves may have been convenient, but it also may have muddied the distinction
between checking whether the data are appropriate for analysis and performing the analysis itself. To make this clearer, the RTaxo-
metrics package includes a CheckData() function intended to be run before any taxometric procedures. Running CheckData()
requires users to assign cases to putative groups, which can be based on prior theory, diagnostic criteria, or a conventionally applied
threshold. If no better alternative exists, a base-rate classification may be assigned by running the ClassifyCases() function, which
requires only that the base rate of the putative taxon be provided. CheckData() examines and provides output bearing on each of the
characteristics listed above. If data do not meet one or more of these requirements, the function provides warning notes in the
output (e.g., “This is smaller than the recommended minimum of N ¼ 300”).

3.11.5.2 Taxometric Procedures

If the data are determined to be acceptable for analysis, researchers should proceed to performing taxometric analysis using the Run-
Taxometrics() function. Like the CheckData() function, this also requires the provision of a classification variable. The reason for this is
that cases must be assigned to groups to generate a population of categorical comparison data. Options for taxometric procedures
include MAMBAC, MAXEIG, L-Mode, and MAXSLOPE. The latter procedure, which was not described earlier, is a seldom-used surro-
gate for MAXCOV or MAXEIG when there are only two indicator variables available for analysis (Grove, 2004; Ruscio and Walters,
2011).

A review of literature on empirically supported guidelines for taxometric analysis was conducted to determine options that the
new code should include, as well as appropriate default choices. Although default options exist, most of these can be modified by
changing the object containing bundled program parameters.

MAMBAC is automatically run if k �2, where k is the number of observed variables submitted to the analysis. Default settings
for MAMBAC include variables being used in all input-output pairings (assign.MAMBAC ¼ 1), cuts starting and ending at 25
points from either extreme (n.end ¼ 25), and 50 total cuts (n.cuts ¼ 50). MAXEIG is automatically run if k �3, and default
settings include each variable serving as an input variable once (assign.MAXEIG ¼ 1) and overlapping windows at 0.90
(overlap ¼ 0.90). Because the MAXEIG and MAXCOV procedures produce such similar results (Ruscio et al., 2010) and should
not be used as consistency tests, a single function is provided to perform MAXEIG, but not MAXCOV. In the event that only two
variables are provided for analysis, MAXSLOPE is performed instead of MAXEIG. L-Mode is automatically run if k � 3, and
default settings include searching for the left mode beyond �0.001 (mode.l ¼ �0.001) and searching for the right mode beyond
0.001 (mode.r ¼ 0.001). Table 1 provides a complete list of options that can be specified, along with default settings and any
required minimum or maximum values.

If output from RunTaxometrics() indicates that data appear categorical, users may choose to generate a CCFI profile using the
RunCCFIProfile() function to estimate the taxon base rate. This function does not require users to provide a classification vari-
able; however, users must still specify procedures and implementation (or rely on default options) as if using RunTaxometrics().
To estimate base rate of the empirical data, RunCCFIProfile() will systematically vary the base rate in the populations of categor-
ical comparison data, displaying CCFI values for each base rate. If this profile is peaked, the location of the peak is used to esti-
mate the base rate for the empirical data (for details, see Ruscio et al., 2018). Of note, this CCFI profile technique can be used
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either along with or in place of RunTaxometrics(), as it appears to perform as well or slightly better than the conventional
approach at differentiating between categorical and dimensional data. However, generating CCFI profiles is considerably
more computing- and time-intensive, and it may not be practical to begin with this approach. CCFI profiles are included in
the demonstrations to which we turn next.

3.11.6 Illustrative Analyses

To demonstrate the use of RTaxometrics, we will proceed step-by-step through the analysis of four artificial data sets, including both
categorical and dimensional datas that are both unambiguous (idealized data conditions) and ambiguous (some data properties
outside the range of conventionally acceptable values). Each of these analyses, including the creation of our illustrative datasets, can
be reproduced using RTaxometrics and the provided code.

3.11.6.1 Unambiguous Categorical Data

3.11.6.1.1 Creating the Data
The CreateData() function creates an artificial data set based on either categorical or dimensional structure, including within-group
correlations, skew, and/or ordered categorical values if desired (see Table 2 for full details on default settings and optional param-
eter specifications for the CreateData() function). This function is useful for becoming familiar with taxometric procedures and the
RTaxometrics package, even if one does not have an empirical dataset with which to perform analyses. The program returns a data
object containing the variables and a final column containing group membership (1 ¼ complement, 2 ¼ taxon). For dimensional

Table 1 Taxometric program parameters.

Parameter Function and default value

seed The random number seed provided prior to analysis of empirical data as well as prior to generating each population of
comparison data (if comparison data are used); this allows users to create exact replications of analyses. The default value is 1.

n.pop The size of populations of comparison data. The default value is 100,000, and the minimum value is 10,000.
n.samples The number of samples drawn from each population of comparison data; generating multiple sets of comparison data is

strongly encouraged. The default value is 100, and the minimum value is 10.
reps The number of times to resort tied scores and redo calculations, which are averaged to obtain final results. If no tied scores are

found, the default and minimum values are 1; if tied scores are found, the default and minimum values are 10.
min.p The minimum base rate used for generating a CCFI profile. The default value is 0.025, and the minimum value is 0.025.
max.p The maximum base rate used for generating a CCFI profile. The default value is 0.975, and the maximum value is 0.975.
num.p The number of base rates used for generating a CCFI profile. The default value is 39, and the minimum value is 20.
MAMBAC Whether the MAMBAC procedure is performed (default ¼ TRUE).
assign.MAMBAC Whether the variables are used in all input-output pairings (assign.MAMBAC¼ 1) or one variable at a time is used as the output

variable with all remaining variables summed to form the corresponding input variable (assign.MAMBAC ¼ 2). The default
value is 1.

n.cuts The number of cuts along the input variable in a MAMBAC analysis. The default value is 50, and the minimum value is 25.
n.end The number of cases at each extreme along the input variable before making the first and last cuts in a MAMBAC analysis. The

default value is 25, and the minimum value is 10.
MAXEIG Whether the MAXEIG procedure is performed (default ¼ TRUE).
assign.MAXEIG Whether the variables are used in all input-output triplets (assign.MAXEIG ¼ 1), each variable serves as input once with all

remaining variables serving as the correspond output variables (assign.MAXEIG ¼ 2), or two variables at a time are used as
the output variables with all remaining variables summed to form the corresponding input variable (assign.MAXEIG ¼ 3). The
default value is 1.

windows The number of overlapping windows in a MAXEIG analysis. The default value is 50, and the minimum value is 10.
overlap The proportion of overlap between windows in a MAXEIG analysis. The default value is 0.90, and the minimum value is 0.
LMode Whether the L-Mode procedure is performed (default ¼ TRUE).
mode.l The position beyond which to search for the left mode in an L-Mode analysis. The default value is �0.001, and this value must

be a negative number.
mode.r The position beyond which to search for the right mode in an L-Mode analysis. The default value is 0.001, and this value must be

a positive number.
MAXSLOPE Whether the MAXSLOPE procedure is performed (default ¼ FALSE).
graph Whether to display the graphical output on screen (graph ¼ 1), to save a compressed .jpeg file (500 dpi, 50% quality; graph ¼

2), or to save an uncompressed .tiff file (500 dpi; graph ¼ 3).

Notes. The parameters for the RunTaxometrics() and RunCCFIProfile() functions are shared across all taxometric procedures (MAMBAC, MAXEIG, L-Mode, MAXSLOPE). All subsidiary
functions will automatically run with the defaults shown here, unless otherwise specified by users. Although there is flexibility in adjusting these parameters, some minimum and
maximum values are often required. For example, the minimum size of populations of comparison data is 10,000; if users set n.pop to a value less than 10,000, it will automatically
be reset to 10,000 (and the user will be notified of this change).
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data, this final column is created using the ClassifyCases() function described below, and the codes do not correspond to actual
groups. Artificial data can be useful for getting to know the taxometric programs and becoming familiar with their output by con-
ducting analyses using data sets whose characteristics are known.

First, suppose we wished to create a categorical data set by running the CreateData() function. These data are assigned to the
object “x1” so they can be provided to other functions:

> x1 <- CreateData(“cat”, p ¼ .25)

By specifying the argument “cat”, the function will create a categorical data set. As this function used all default settings (aside
from the size of the taxon), this function will create a set of unambiguously categorical data.

3.11.6.1.2 Checking the Data
The CheckData() function checks whether the data are appropriate for taxometric analysis. Users should ensure that the data set is
a matrix object including one variable per column, followed by a final column containing case classification coded as 1 ¼ comple-
ment, 2¼ taxon. If the data set does not include this final classification column, users can run the ClassifyCases() function described
below to assign cases to groups. Using the first dataset created above, running CheckData() is relatively straightforward:

> CheckData(x1)

Sample size: N ¼ 600

Taxon base rate: P ¼ 0.25

Taxon size: n ¼ 150

Complement size: n ¼ 450

Number of variables: k ¼ 4

Distributions:

M SD Skewness Kurtosis

v1 -0.53 1.35 0.17 -0.24

v2 -0.50 1.38 0.31 -0.26

v3 -0.49 1.31 0.29 -0.15

v4 -0.43 1.36 0.18 0.11

Validities:

Cohen’s d

v1 2.05

v2 1.96

v3 2.01

v4 1.72

Mean 1.93

Within-group correlations (taxon):

v1 v2 v3 v4

v1 1.00 -0.02 -0.09 -0.03

v2 -0.02 1.00 -0.02 -0.01

v3 -0.09 -0.02 1.00 0.12

v4 -0.03 -0.01 0.12 1.00

Mean ¼ -0.01

Within-group correlations (complement):

v1 v2 v3 v4

Table 2 Parameters for creating data.

Parameter Function and default value

str The type of data to be generated. This argument has no default value; users must specify either “dim” to generate a sample of dimensional
data or “cat” (or anything else) to generate a sample of categorical data.

n Sample size. The default value is 600.
k Number of variables. The default value is 4.
p Taxon base rate. The default value is 0.5.
d Standardized mean difference between groups. The default value is 2.
r Correlation among variables. The default value is 0.
r.tax Correlation among variables within the taxon. The default value is 0.
r.comp Correlations among variables within the complement. The default value is 0.
skew Amount of skew to be applied to variables. The default value is 0.
cuts Number of values to use when generating ordered categorical data. The default value is 0.
seed Random number seed; specifying the same seed enables users to generate and analyze identical data sets. The default value is 1.

Notes. The CreateData() function allows users to create artificial datasets of known structure (categorical or dimensional), with the data parameters and default values shown here.
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v1 1.00 0.03 0.03 -0.03

v2 0.03 1.00 0.03 -0.03

v3 0.03 0.03 1.00 0.03

v4 -0.03 -0.03 0.03 1.00

Mean ¼ 0.01

If one or more data requirements (e.g., sufficiently large sample size, taxon size, and between-group validity, as well as suffi-
ciently small within-group correlations) are not met, the program will print warnings. In this case, no concerns were noted. Because
these data appear adequate for taxometric analysis, we will proceed with the analysis.

3.11.6.1.3 Running Taxometric Analyses
The RunTaxometrics() function performs taxometric analyses for a sample of data. If the supplied (empirical) data set contains three
or more variables (k �3), the function will automatically run the MAMBAC, MAXEIG, and L-Mode procedures. If the supplied data
set contains only two variables, the function will automatically run only the MAMBAC and MAXSLOPE procedures. Otherwise,
users may also specify which procedures they wish to perform by specifying the MAMBAC, MAXEIG, L-Mode, and MAXSLOPE
parameters as TRUE or FALSE. This function requires one argument to be specified, namely the data set. Users may also choose
to specify a variety of other shared and procedure-specific parameters (see Table 1 for details). Here, we allow the program to
use default settings:

> RunTaxometrics(x1)

STATUS OF PROGRAM EXECUTION

Checking for missing data

Checking classification variable

Checking for variance

Checking program parameters

Generating population of dimensional comparison data

Generating population of categorical comparison data

Generating taxon

Generating complement

Analyzing empirical data

Analyzing samples of dimensional comparison data

Analyzing samples of categorical comparison data

Note: Users should run the CheckData() function to evaluate whether

data appear to be adequate for taxometric analysis.

TAXOMETRIC ANALYSIS RESULTS

Summary of shared analytic specifications

sample size: 600

number of variables: 4

comparison data population size: 1eþ05

comparison data samples: 100

comparison data taxon base rate: 0.25

replications: 1

Summary of MAMBAC analytic specifications

cuts: 50 evenly-spaced cuts beginning 25 cases from either extreme

indicators: all possible input-output pairs

number of curves: 12

Summary of MAXEIG analytic specifications

subsamples: 50 windows that overlap 0.9

indicators: all possible input-output-output triplets

number of curves: 12

Summary of L-Mode analytic specifications

position beyond which to search for left mode: -0.001

position beyond which to search for right mode: 0.001

Comparison Curve Fit Index (CCFI)

MAMBAC: 0.932

MAXEIG: 0.876

L-Mode: 0.871

mean: 0.893

Note: CCFI values can range from 0 (dimensional) to 1 (categorical).

The further a CCFI is from .50, the stronger the result.

Base Rate Estimates:

MAMBAC: 0.311
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MAXEIG: 0.386

L-Mode:

based on location of left mode: 0.177

based on location of right mode: 1

mean: 0.588

mean: 0.428

Note: There is no evidence-based way to use base rate estimates to

differentiate categorical and dimensional data. They should

only be used if evidence supports categorical structure.

Most of the text output involves status updates as the program executes and notifications of what procedures were performed,
and in what ways. Once it has been confirmed that procedures were implemented appropriately, the critical output is the CCFI
values and, if the user believes the structure to be categorical, the taxon base rate estimates.

The graphical output (see Fig. 1) includes panels of curves with results for the empirical data (dark line) superimposed above the
results for the categorical comparison data, and then the results for the dimensional comparison data. Results for comparison data

Fig. 1 Graphs for unambiguous categorical data. Curves for the empirical data are very clearly a closer match for the categorical than dimensional
comparison data curves. However, the L-Mode procedure missed the clear right mode because the curve was taller at x ¼ 0 than at the ride mode
(near x ¼ 2).
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sets are summarized by plotting the middle 50% of data points as a gray band and light lines that show the minimum and
maximum values. From the graphical output, it appears that the L-Mode procedure missed the clear right mode because the curve
was taller at a factor score of 0 (x ¼ 0) than at the right mode (near x ¼ 2). Therefore, before interpreting these results, analyses
should be rerun with a program specification of “mode.r¼ 1” to begin the search for the right mode at x¼ 1, rather than the default
setting of x ¼ 0.001, which will enable the identification of the right mode near x ¼ 2:

> RunTaxometrics(x1, mode.r ¼ 1)

STATUS OF PROGRAM EXECUTION

Checking for missing data

Checking classification variable

Checking for variance

Checking program parameters

Generating population of dimensional comparison data

Generating population of categorical comparison data

Generating taxon

Generating complement

Analyzing empirical data

Analyzing samples of dimensional comparison data

Analyzing samples of categorical comparison data

Note: Users should run the CheckData() function to evaluate whether

data appear to be adequate for taxometric analysis.

TAXOMETRIC ANALYSIS RESULTS

Summary of shared analytic specifications

sample size: 600

number of variables: 4

comparison data population size: 1eþ05

comparison data samples: 100

comparison data taxon base rate: 0.25

replications: 1

Summary of MAMBAC analytic specifications

cuts: 50 evenly-spaced cuts beginning 25 cases from either extreme

indicators: all possible input-output pairs

number of curves: 12

Summary of MAXEIG analytic specifications

subsamples: 50 windows that overlap 0.9

indicators: all possible input-output-output triplets

number of curves: 12

Summary of L-Mode analytic specifications

position beyond which to search for left mode: -0.001

position beyond which to search for right mode: 1

Comparison Curve Fit Index (CCFI)

MAMBAC: 0.932

MAXEIG: 0.876

L-Mode: 0.871

mean: 0.893

Note: CCFI values can range from 0 (dimensional) to 1 (categorical).

The further a CCFI is from .50, the stronger the result.

Base Rate Estimates:

MAMBAC: 0.311

MAXEIG: 0.386

L-Mode:

based on location of left mode: 0.177

based on location of right mode: 0.341

mean: 0.259

mean: 0.318

Note: There is no evidence-based way to use base rate estimates to

differentiate categorical and dimensional data. They should

only be used if evidence supports categorical structure.

This new graphical output (see Fig. 2) shows that L-Mode now correctly identifies the right mode. In this case, both the text and
graphical output support a categorical structure, which is correct: CCFIs are well above 0.50, the MAMABC and MAXEIG curves
contain clear peaks, the L-Mode curve is bimodal, and the curves for empirical data are a much closer match to those for categorical
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than dimensional comparison data. In addition, adjusting the program settings for L-Mode increased the accuracy of its base rate
estimate: 0.259 is very close the correct value of 0.25. The mean base rate estimate across procedures, 0.318, was not as accurate.

3.11.6.1.4 Generating a CCFI Profile
Because the results appear categorical, we can generate a CCFI profile in an attempt to improve base rate estimation. To do so, we
will run RunCCFIProfile() with the same settings as RunTaxometrics(), save for the exclusion of the classification variable in the 5th
and final column of the data matrix:

> RunCCFIProfile(x1[,1:4], mode.r ¼ 1)

STATUS OF PROGRAM EXECUTION

Checking for missing data

Checking for variance

Fig. 2 Graphs for unambiguous categorical data, with data analytic parameters adjusted for L-Mode to begin searching for the right mode at x ¼ 1.
This adjustment allowed L-Mode to correctly identify the second (right) mode.
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Checking program parameters

Analyzing empirical data

Generating population of dimensional comparison data

Analyzing samples of dimensional comparison data

Generating populations of categorical comparison data and analyzing samples

p ¼ 0.025

p ¼ 0.05

p ¼ 0.075

[base rates from .10 to .95 were removed to conserve space]

p ¼ 0.975

Note: Users should run the CheckData() function to evaluate whether

data appear to be adequate for taxometric analysis.

TAXOMETRIC ANALYSIS RESULTS

Summary of shared analytic specifications

sample size: 600

number of variables: 4

comparison data population size: 1eþ05

comparison data samples: 100

replications: 1

Summary of MAMBAC analytic specifications

cuts: 50 evenly-spaced cuts beginning 25 cases from either extreme

indicators: all possible input-output pairs

number of curves: 12

Summary of MAXEIG analytic specifications

subsamples: 50 windows that overlap 0.9

indicators: all possible input-output-output triplets

number of curves: 12

Summary of L-Mode analytic specifications

position beyond which to search for left mode: -0.001

position beyond which to search for right mode: 1

Aggregate Comparison Curve Fit Index (CCFI)

mean profile: 0.724

MAMBAC profile: 0.789

MAXEIG profile: 0.71

L-Mode profile: 0.673

Note: CCFI values can range from 0 (dimensional) to 1 (categorical).

The further a CCFI is from .50, the stronger the result.

Aggregate CCFI values are a weighted mean of all CCFI values

in the profile.

Base Rate Estimates

mean profile: 0.271

MAMBAC profile: 0.3

MAXEIG profile: 0.243

L-Mode profile: 0.277

Note: There is no evidence-based way to use base rate estimates to

differentiate categorical and dimensional data. They should

only be used if evidence supports categorical structure.

The text and graphical output (see Fig. 3) are still clearly suggestive of categorical structure. CCFIs are closer to 0.50 than
previous results. This is because constructing a CCFI profile uses fallible classification methods (base-rate classification method;
Ruscio, 2009) rather than the perfect classification provided by CreateData() and used in RunTaxometrics(). Indeed, the CCFIs
obtained earlier using RunTaxometrics() are unrealistically accurate, as empirical data will not include an infalliable classification
variable.

In terms of base rate estimation, RunCCFIProfile() provides a mean profile estimate of 0.271, which is much closer to the correct
value of 0.25 than was the mean estimate of 0.318 provided by the RunTaxometrics() procedure. It is worth noting, however, these
data are ideal for taxometric analysis. In actual research, empirical data may contain some properties (e.g., sample size, correlation
among variables) that are at or below conventionally acceptable thresholds. Therefore, the next demonstration creates and utilizes
a set of “messier” data.
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3.11.6.2 Ambiguous Categorical Data

3.11.6.2.1 Creating and Checking the Data
The CreateData() function is used to create a second sample of categorical data, this time specifying parameters to create more chal-
lenging data rather than relying on prototypical, idealized values:

> x2 <- CreateData("cat", n ¼ 350, k ¼ 4, p ¼ .25, d ¼ 1.5, r.tax ¼ .25, r.comp ¼ .25, g ¼ .6, h ¼ .15,

cuts ¼ 6)

The challenges introduced here include a smaller sample size, lower taxon base rate, lower indicator validity, larger within-group
correlations, greater asymmetry and tail weight than for normal distributions, and discrete values rather than truly continuous score
variation. Next, CheckData() will check the data to determine whether they are appropriate for taxometric analysis:

> CheckData(x2)

Sample size: N ¼ 350

Taxon base rate: P ¼ 0.2514286

Taxon size: n ¼ 88

Complement size: n ¼ 262

Number of variables: k ¼ 4

Distributions:

M SD Skewness Kurtosis

v1 2.38 1.21 0.81 0.16

v2 2.16 1.15 0.93 0.54

v3 2.55 1.35 0.67 -0.40

v4 2.49 1.25 0.71 -0.10

Validities:

Cohen’s d

v1 1.75

v2 1.59

v3 2.06

v4 1.87

Mean 1.82

Within-group correlations (taxon):

v1 v2 v3 v4

v1 1.00 0.21 0.18 0.27

v2 0.21 1.00 0.34 0.21

v3 0.18 0.34 1.00 0.23

v4 0.27 0.21 0.23 1.00

Mean ¼ 0.24

* One or more values above the recommended maximum of r ¼ .30.

Within-group correlations (complement):

v1 v2 v3 v4

Fig. 3 CCFI profile for unambiguous categorical data. M ¼ MAMBAC, X ¼ MAXEIG, L – L-Mode, and circles are mean values across these
procedures. These curves are clearly suggestive of categorical data, as the CCFIs are consistently above 0.5, and the peak of the mean profile
suggests a base rate of 0.271.
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v1 1.00 0.32 0.20 0.23

v2 0.32 1.00 0.33 0.35

v3 0.20 0.33 1.00 0.27

v4 0.23 0.35 0.27 1.00

Mean ¼ 0.28

* One or more values above the recommended maximum of r ¼ .30.

Some warnings are noted in the output of this function to indicate that some of the within-group correlations are large. This
documents just one of the challenges noted above, and underscores that these data are more representative of empirical data
that investigators submit to taxometric analyses than the unambiguous categorical data examined earlier.

3.11.6.2.2 Classifying Cases
To treat this sample as actual research data, the correct classification values provided by CreateData() cannot be used. Rather, we will
use the ClassifyCases() function to assign cases to the taxon or complement groups by using a taxon base rate estimate. In this case,
we will suppose that this estimate is 0.30, which represents an imperfect guess based on diagnosis, threshold values, theory, or the
like. After assigning cases to groups, we will re-check the data:

> x2b <- ClassifyCases(x2[, 1:4], p ¼ .3)

> CheckData(x2b)

Sample size: N ¼ 350

Taxon base rate: P ¼ 0.3171429

Taxon size: n ¼ 111

Complement size: n ¼ 239

Number of variables: k ¼ 4

Distributions:

M SD Skewness Kurtosis

v1 2.38 1.21 0.81 0.16

v2 2.16 1.15 0.93 0.54

v3 2.55 1.35 0.67 -0.40

v4 2.49 1.25 0.71 -0.10

Validities:

Cohen’s d

v1 2.09

v2 2.29

v3 2.28

v4 2.16

Mean 2.20

Within-group correlations (taxon):

v1 v2 v3 v4

v1 1.00 -0.02 0.05 0.14

v2 -0.02 1.00 0.04 -0.01

v3 0.05 0.04 1.00 0.07

v4 0.14 -0.01 0.07 1.00

Mean ¼ 0.05

Within-group correlations (complement):

v1 v2 v3 v4

v1 1.00 0.12 0.01 0.02

v2 0.12 1.00 0.16 0.17

v3 0.01 0.16 1.00 0.15

v4 0.02 0.17 0.15 1.00

Mean ¼ 0.11

Using this classification, the data appear adequate for taxometric analysis.

3.11.6.2.3 Running Taxometric Analyses
Wewill again perform taxometric analysis using RunTaxometrics(), specifying a location for the L-Mode procedure to start searching
for the right mode. First, we will run this function using the correct classification of cases to groups (provided by CreateData)):

> RunTaxometrics(x2, mode.r ¼ 1)

STATUS OF PROGRAM EXECUTION

Checking for missing data

Checking classification variable

Checking for variance

Checking program parameters
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* tied scores, reps set to 10

* windows too small, set to N / 10 ¼ 35

Generating population of dimensional comparison data

Generating population of categorical comparison data

Generating taxon

Generating complement

Analyzing empirical data

Analyzing samples of dimensional comparison data

Analyzing samples of categorical comparison data

Note: Users should run the CheckData() function to evaluate whether

data appear to be adequate for taxometric analysis.

TAXOMETRIC ANALYSIS RESULTS

Summary of shared analytic specifications

sample size: 350

number of variables: 4

comparison data population size: 1eþ05

comparison data samples: 100

comparison data taxon base rate: 0.251

replications: 10

Summary of MAMBAC analytic specifications

cuts: 50 evenly-spaced cuts beginning 25 cases from either extreme

indicators: all possible input-output pairs

number of curves: 12

Summary of MAXEIG analytic specifications

subsamples: 35 windows that overlap 0.9

indicators: all possible input-output-output triplets

number of curves: 12

Summary of L-Mode analytic specifications

position beyond which to search for left mode: -0.001

position beyond which to search for right mode: 1

Comparison Curve Fit Index (CCFI)

MAMBAC: 0.778

MAXEIG: 0.755

L-Mode: 0.708

mean: 0.747

Note: CCFI values can range from 0 (dimensional) to 1 (categorical).

The further a CCFI is from .50, the stronger the result.

Base Rate Estimates:

MAMBAC: 0.388

MAXEIG: 0.447

L-Mode:

based on location of left mode: 0.364

based on location of right mode: 0.411

mean: 0.388

mean: 0.408

Note: There is no evidence-based way to use base rate estimates to

differentiate categorical and dimensional data. They should

only be used if evidence supports categorical structure.

In this example, both the text and graphical output (see Fig. 4) again support a categorical structure. CCFIs are well above 0.50,
and the curves for empirical data more closely match the categorical comparison data. Although these results support a categorical
structure, it is noteworthy that the base rate estimates are fairly inaccurate (mean estimate ¼ 0.408, correct value ¼ 0.25). As these
results were based on an entirely correct classification, which researchers will not have in practice, we will run taxometric analysis
again with the fallible classification from ClassifyCases():

> RunTaxometrics(x2b, mode.r ¼ 1)

STATUS OF PROGRAM EXECUTION

Checking for missing data

Checking classification variable

Checking for variance

Checking program parameters

* tied scores, reps set to 10
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* windows too small, set to N / 10 ¼ 35

Generating population of dimensional comparison data

Generating population of categorical comparison data

Generating taxon

Generating complement

Analyzing empirical data

Analyzing samples of dimensional comparison data

Analyzing samples of categorical comparison data

Note: Users should run the CheckData() function to evaluate whether

data appear to be adequate for taxometric analysis.

TAXOMETRIC ANALYSIS RESULTS

Summary of shared analytic specifications

sample size: 350

Fig. 4 Graphs for ambiguous categorical data with correct classification of empirical data (based on CreateData()). Curves for the empirical data are
very clearly a closer match for the categorical than dimensional comparison data curves.
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number of variables: 4

comparison data population size: 1eþ05

comparison data samples: 100

comparison data taxon base rate: 0.317

replications: 10

Summary of MAMBAC analytic specifications

cuts: 50 evenly-spaced cuts beginning 25 cases from either extreme

indicators: all possible input-output pairs

number of curves: 12

Summary of MAXEIG analytic specifications

subsamples: 35 windows that overlap 0.9

indicators: all possible input-output-output triplets

number of curves: 12

Summary of L-Mode analytic specifications

position beyond which to search for left mode: -0.001

position beyond which to search for right mode: 1

Comparison Curve Fit Index (CCFI)

MAMBAC: 0.835

MAXEIG: 0.649

L-Mode: 0.743

mean: 0.742

Note: CCFI values can range from 0 (dimensional) to 1 (categorical).

The further a CCFI is from .50, the stronger the result.

Base Rate Estimates:

MAMBAC: 0.365

MAXEIG: 0.462

L-Mode:

based on location of left mode: 0.364

based on location of right mode: 0.411

mean: 0.388

mean: 0.405

Note: There is no evidence-based way to use base rate estimates to

differentiate categorical and dimensional data. They should

only be used if evidence supports categorical structure.

These results appear to support categorical structure just as well as those with the correct classification. Examining the compar-
ison data fit (see Fig. 5) and CCFIs, all three procedures support categorical structure, and the mean CCFI is 0.742. However, the
base rate estimation continues to be fairly inaccurate, with a mean estimate of 0.405.

3.11.6.2.4 Generating a CCFI Profile
Facing categorical or ambiguous results, researchers might consider generating a CCFI profile. Rather than using a single classifica-
tion of cases, this technique uses a wide range of taxon base rates to classify cases. Each of these is used to generate a new population
of categorical comparison data for parallel analyses, and ultimately a series of CCFI values are calculated. Examining the CCFI
profile (a plot of CCFIs by taxon base rates) can provide more accurate base rate estimates if data appear to be categorical, and
clearer results if data structure is ambiguous.

> RunCCFIProfile(x2[,1:4], mode.r ¼ 1)

STATUS OF PROGRAM EXECUTION

Checking for missing data

Checking for variance

Checking program parameters

* tied scores, reps set to 10

* windows too small, set to N / 10 ¼ 35

Analyzing empirical data

Generating population of dimensional comparison data

Analyzing samples of dimensional comparison data

Generating populations of categorical comparison data and analyzing samples

p ¼ 0.025

p ¼ 0.05

p ¼ 0.075

[base rates from .10 to .95 were removed to conserve space]

p ¼ 0.975
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Note: Users should run the CheckData() function to evaluate whether

data appear to be adequate for taxometric analysis.

TAXOMETRIC ANALYSIS RESULTS

Summary of shared analytic specifications

sample size: 350

number of variables: 4

comparison data population size: 1eþ05

comparison data samples: 100

replications: 10

Summary of MAMBAC analytic specifications

cuts: 50 evenly-spaced cuts beginning 25 cases from either extreme

indicators: all possible input-output pairs

number of curves: 12

Fig. 5 Graphs for ambiguous categorical data with fallible classification of empirical data (based on ClassifyCases()). Empirical data curves for all
three procedures appear closer to categorical comparison data than dimensional comparison data. These results appear similarly ambiguous as those
with correct classification (see Fig. 4).
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Summary of MAXEIG analytic specifications

subsamples: 35 windows that overlap 0.9

indicators: all possible input-output-output triplets

number of curves: 12

Summary of L-Mode analytic specifications

position beyond which to search for left mode: -0.001

position beyond which to search for right mode: 1

Aggregate Comparison Curve Fit Index (CCFI)

mean profile: 0.635

MAMBAC profile: 0.718

MAXEIG profile: 0.541

L-Mode profile: 0.653

Note: CCFI values can range from 0 (dimensional) to 1 (categorical).

The further a CCFI is from .50, the stronger the result.

Aggregate CCFI values are a weighted mean of all CCFI values

in the profile.

Base Rate Estimates

mean profile: 0.335

MAMBAC profile: 0.351

MAXEIG profile: 0.27

L-Mode profile: 0.389

Note: There is no evidence-based way to use base rate estimates to

differentiate categorical and dimensional data. They should

only be used if evidence supports categorical structure.

The text output and graph (see Fig. 6) of this CCFI profile again provide support for a categorical structure, such that the CCFI for
the mean profile is still clearly above 0.50 at 0.635. However, the base rate estimates have now improved, with a mean of 0.335 that
is closer to the correct value of 0.25. Therefore, generating a CCFI profile seems to have provided some benefits above and beyond
a conventional taxometric analysis for these ambiguous categorical data, particularly in providing a more accurate estimate of the
taxon base rate.

3.11.6.3 Unambiguous Dimensional Data

3.11.6.3.1 Creating and Checking the Data
We will use CreateData() to create a third dataset, this time using all default settings, and check this dataset using CheckData():

> x3 <- CreateData("dim")

> CheckData(x3)

Sample size: N ¼ 600

Taxon base rate: P ¼ 0.5

Taxon size: n ¼ 300

Complement size: n ¼ 300

Fig. 6 CCFI profile for ambiguous categorical data. Results suggest that the data are categorical, as CCFIs appear to be consistently above the 0.5
threshold.
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Number of variables: k ¼ 4

Distributions:

M SD Skewness Kurtosis

v1 0.01 1.00 0.00 0.14

v2 -0.06 1.06 -0.03 -0.16

v3 -0.01 1.04 -0.02 0.00

v4 0.01 1.04 0.06 -0.05

Validities:

Cohen’s d

v1 1.56

v2 1.59

v3 1.70

v4 1.68

Mean 1.63

Within-group correlations (taxon):

v1 v2 v3 v4

v1 1.00 0.17 0.06 0.13

v2 0.17 1.00 0.07 0.12

v3 0.06 0.07 1.00 0.13

v4 0.13 0.12 0.13 1.00

Mean ¼ 0.11

Within-group correlations (complement):

v1 v2 v3 v4

v1 1.00 0.21 0.27 0.23

v2 0.21 1.00 0.26 0.21

v3 0.27 0.26 1.00 0.15

v4 0.23 0.21 0.15 1.00

Mean ¼ 0.22

Because all the distributional and correlational properties of the data appear adequate for taxometric analysis, we proceed to
perform them.

3.11.6.3.2 Running Taxometric Analyses
We will run the taxometric analysis using all default settings:

> RunTaxometrics(x3)

STATUS OF PROGRAM EXECUTION

Checking for missing data

Checking classification variable

Checking for variance

Checking program parameters

Generating population of dimensional comparison data

Generating population of categorical comparison data

Generating taxon

Generating complement

Analyzing empirical data

Analyzing samples of dimensional comparison data

Analyzing samples of categorical comparison data

Note: Users should run the CheckData() function to evaluate whether

data appear to be adequate for taxometric analysis.

TAXOMETRIC ANALYSIS RESULTS

Summary of shared analytic specifications

sample size: 600

number of variables: 4

comparison data population size: 1eþ05

comparison data samples: 100

comparison data taxon base rate: 0.5

replications: 1

Summary of MAMBAC analytic specifications

cuts: 50 evenly-spaced cuts beginning 25 cases from either extreme

indicators: all possible input-output pairs

number of curves: 12
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Summary of MAXEIG analytic specifications

subsamples: 50 windows that overlap 0.9

indicators: all possible input-output-output triplets

number of curves: 12

Summary of L-Mode analytic specifications

position beyond which to search for left mode: -0.001

position beyond which to search for right mode: 0.001

Comparison Curve Fit Index (CCFI)

MAMBAC: 0.391

MAXEIG: 0.326

L-Mode: 0.201

mean: 0.306

Note: CCFI values can range from 0 (dimensional) to 1 (categorical).

The further a CCFI is from .50, the stronger the result.

Base Rate Estimates:

MAMBAC: 0.607

MAXEIG: 0.581

L-Mode:

based on location of left mode: 0

based on location of right mode: 0.948

mean: 0.474

mean: 0.554

Note: There is no evidence-based way to use base rate estimates to

differentiate categorical and dimensional data. They should

only be used if evidence supports categorical structure.

These results all clearly suggest dimensional structure. As shown in the graphical output (see Fig. 7), the MAMBAC and MAXEIG
curves contain no peaks, the L-Mode curve is unimodal, and all curves for empirical data are a much closer match to those for
dimensional than categorical comparison data. This is reflected in the CCFIs, which are well below 0.50 (mean CCFI ¼ 0.306).
Base rate estimates should not be interpreted because these data do not appear to be categorical.

3.11.6.3.3 Generating a CCFI Profile
Though it might not be worth the time because the taxometric analysis does not suggest categorical structure and therefore there is
no taxon base rate to estimate, we will demonstrate how researchers nonetheless could generate a CCFI profile with these data:

> RunCCFIProfile(x3[, 1:4])

STATUS OF PROGRAM EXECUTION

Checking for missing data

Checking for variance

Checking program parameters

Analyzing empirical data

Generating population of dimensional comparison data

Analyzing samples of dimensional comparison data

Generating populations of categorical comparison data and analyzing samples

p ¼ 0.025

p ¼ 0.05

p ¼ 0.075

[base rates from .10 to .95 were removed to conserve space]

p ¼ 0.975

Note: Users should run the CheckData() function to evaluate whether

data appear to be adequate for taxometric analysis.

TAXOMETRIC ANALYSIS RESULTS

Summary of shared analytic specifications

sample size: 600

number of variables: 4

comparison data population size: 1eþ05

comparison data samples: 100

replications: 1

Summary of MAMBAC analytic specifications

cuts: 50 evenly-spaced cuts beginning 25 cases from either extreme

indicators: all possible input-output pairs
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number of curves: 12

Summary of MAXEIG analytic specifications

subsamples: 50 windows that overlap 0.9

indicators: all possible input-output-output triplets

number of curves: 12

Summary of L-Mode analytic specifications

position beyond which to search for left mode: -0.001

position beyond which to search for right mode: 0.001

Aggregate Comparison Curve Fit Index (CCFI)

mean profile: 0.378

MAMBAC profile: 0.394

MAXEIG profile: 0.385

Fig. 7 Graphs for unambiguous dimensional data. MAMBAC and MAXEIG curves contain no peaks, and the L-Mode curve is unimodal. Curves for
the empirical data are very clearly a closer match for the dimensional than categorical comparison data curves.

170 Taxometric Analysis

Comprehensive Clinical Psychology, Second Edition, 2022, 148–175

Author's personal copy



L-Mode profile: 0.356

Note: CCFI values can range from 0 (dimensional) to 1 (categorical).

The further a CCFI is from .50, the stronger the result.

Aggregate CCFI values are a weighted mean of all CCFI values

in the profile.

Base Rate Estimates

mean profile: 0.975

MAMBAC profile: 0.975

MAXEIG profile: 0.975

L-Mode profile: 0.975

Note: There is no evidence-based way to use base rate estimates to

differentiate categorical and dimensional data. They should

only be used if evidence supports categorical structure.

As expected, these results (see Fig. 8 for CCFI profile graph) also provide clear support for dimensional structure, with a CCFI of
0.378 for the mean profile.

3.11.6.4 Ambiguous Dimensional Data

3.11.6.4.1 Creating and Checking the Data
To provide a final demonstration, we will now create dimensional data with suboptimal properties to examine whether taxometric
analyses are able to identify dimensional structure under more challenging circumstances. This dataset will be created with substan-
tial positive skew and a modest number of discrete values:

> x4 <- CreateData("dim", g ¼ .5, cuts ¼ 6, p ¼ .25)

> CheckData(x4)

Sample size: N ¼ 600

Taxon base rate: P ¼ 0.25

Taxon size: n ¼ 150

Complement size: n ¼ 450

Number of variables: k ¼ 4

Distributions:

M SD Skewness Kurtosis

v1 2.24 1.14 0.99 0.74

v2 2.29 1.22 1.03 0.76

v3 2.38 1.23 0.91 0.41

v4 2.19 1.15 1.07 0.98

Validities:

Cohen’s d

v1 1.55

v2 1.74

Fig. 8 CCFI profile for unambiguous dimensional data. These curves are clearly suggestive of dimensional data, as the CCFIs are consistently
below 0.5.
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v3 1.90

v4 1.67

Mean 1.72

Within-group correlations (taxon):

v1 v2 v3 v4

v1 1.00 0.07 -0.03 0.12

v2 0.07 1.00 -0.03 -0.05

v3 -0.03 -0.03 1.00 -0.15

v4 0.12 -0.05 -0.15 1.00

Mean ¼ -0.01

Within-group correlations (complement):

v1 v2 v3 v4

v1 1.00 0.22 0.23 0.19

v2 0.22 1.00 0.16 0.17

v3 0.23 0.16 1.00 0.17

v4 0.19 0.17 0.17 1.00

Mean ¼ 0.19

Note that specifying a taxon base rate (p ¼ 0.25) when creating dimensional data will not affect the data themselves, only the
classification variable included in the final column of the resulting data object. Although these dimensional data were created to be
more challenging, they do appear adequate for taxometric analysis.

3.11.6.4.2 Running Taxometric Analyses
Once again, we proceed with a standard taxometric analysis using all default settings:

> RunTaxometrics(x4)

STATUS OF PROGRAM EXECUTION

Checking for missing data

Checking classification variable

Checking for variance

Checking program parameters

* tied scores, reps set to 10

Generating population of dimensional comparison data

Generating population of categorical comparison data

Generating taxon

Generating complement

Analyzing empirical data

Analyzing samples of dimensional comparison data

Analyzing samples of categorical comparison data

Note: Users should run the CheckData() function to evaluate whether

data appear to be adequate for taxometric analysis.

TAXOMETRIC ANALYSIS RESULTS

Summary of shared analytic specifications

sample size: 600

number of variables: 4

comparison data population size: 1eþ05

comparison data samples: 100

comparison data taxon base rate: 0.25

replications: 10

Summary of MAMBAC analytic specifications

cuts: 50 evenly-spaced cuts beginning 25 cases from either extreme

indicators: all possible input-output pairs

number of curves: 12

Summary of MAXEIG analytic specifications

subsamples: 50 windows that overlap 0.9

indicators: all possible input-output-output triplets

number of curves: 12

Summary of L-Mode analytic specifications

position beyond which to search for left mode: -0.001

position beyond which to search for right mode: 0.001
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Comparison Curve Fit Index (CCFI)

MAMBAC: 0.409

MAXEIG: 0.273

L-Mode: 0.31

mean: 0.33

Note: CCFI values can range from 0 (dimensional) to 1 (categorical).

The further a CCFI is from .50, the stronger the result.

Base Rate Estimates:

MAMBAC: 0.412

MAXEIG: 0.149

L-Mode:

based on location of left mode: 0.255

based on location of right mode: 1

mean: 0.627

mean: 0.396

Note: There is no evidence-based way to use base rate estimates to

differentiate categorical and dimensional data. They should

only be used if evidence supports categorical structure.

As shown in the graphical output (see Fig. 9), the results for empirical data appear strange. None of the curve shapes approximate
prototypes well. The MAMBAC curve appears wavy rather than peaked or concave, the MAXEIG curve is knotty rather than peaked or
flat, and the L-Mode curve is generally unimodal, but a bit lumpy. Relying on visual inspection of these curves might yield ambig-
uous or inaccurate conclusions about which reasonable people could disagree. In this way, we see that the curves for comparison
data help to clarify that the empirical data results are a better fit for the dimensional data. Likewise, the CCFI values provide helpful
information, with a mean CCFI of 0.330 indicating stronger support for dimensional data. This underscores the usefulness of
comparison data and the CCFI in taxometric analysis (Ruscio and Marcus, 2007; Ruscio and Kaczetow, 2009; Ruscio et al.,
2010, 2018).

3.11.7 Concluding Remarks

Originally developed by Meehl in the 1960s to test his model of schizotaxia and the development of schizophrenia, research on the
methodology and applications of taxometric analysis has rapidly progressed over the past few decades. A major innovation in taxo-
metric methodology was the introduction of comparison data and the CCFI by Ruscio et al. (2007), which prompted a series of
Monte Carlo studies that yielded important information about best practices in implementing taxometric procedures. More
recently, Ruscio et al. (2018) introduced the CCFI profile, a novel technique that rigorously tests for the existence of groups in
empirical data and estimates their size with less bias and greater precision than conventional techniques.

Although taxometric analysis has been most widely applied in the realm of clinical psychology and psychopathology, we also
see great potential for this analysis in other fields. For instance, some researchers have begun to apply these methods in social
psychology to examine emotions and emotional/affective processes (e.g., Falcon, 2015), as well as in cognitive psychology to
examine the latent structure of secure base script knowledge (Waters et al., 2015) and flashbulb memories (Lanciano and Curci,
2012). In the field of neuroscience, Tran et al. (2014) used taxometric analysis to study the latent structure of cerebral laterali-
zation. Future research in these and other areas could provide important information about whether individual differences on
any construct of interest are better conceptualized as categories or dimensions at the latent level. For example, the Implicit Asso-
ciation Test (IAT; Greenwald et al., 2003) yields continuous scores, but thresholds are often applied to generate categorical results
(i.e., classifying individuals as biased). It would be worthwhile to empirically evaluate the validity not only of this presumed
categorical structure, but also of the location(s) of thresholds used to assign individuals to groups. Whether it is appropriate
to refer to a certain proportion of individuals as biased on the basis of IAT scores, and if so how large this proportion may
be, has been the subject of considerable controversy (see, e.g., Blanton et al., 2015). Taxometric analysis could be helpful in
addressing debates like this. As research using taxometric analysis continues to proliferate, we hope that researchers in the
psychological, behavioral, and brain sciences will consider whether taxometric analysis could be used to answer meaningful
questions in their programs of research.

We encourage researchers who seek to conduct taxometric analysis, or are simply interested in familiarizing themselves with this
methodology, to explore the RTaxometrics package (available at https://cran.r-project.org/web/packages/RTaxometrics/index.html).
This replaces Ruscio’s (2016) code, which has been retired, and incorporates all of the methodological advances described in this
article. RTaxometrics is more easily modified and updated, more modular, more readable, and more efficient in the execution of
functions and procedures, as well as providing more user-friendly output. We hope that the overview of taxometric methodology
and demonstrations in this article enable readers to think critically about taxometric studies they encounter in their research and, if
interested, to perform their own taxometric analyses.
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