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Abstract
Developingpsychological assessment instruments often involves exploratory factor analyses, duringwhichonemust determine
the number of factors to retain. Several factor-retention criteria have emerged that can infer this number from empirical data.
Most recently, simulation-based procedures like the comparison data approach have shown the most accurate estimation of
dimensionality. The factor forest, an approach combining extensive data simulation and machine learning modeling, showed
even higher accuracy across various common data conditions. Because this approach is very computationally costly, we
combine the factor forest and the comparison data approach to present the comparison data forest. In an evaluation study, we
compared this new method with the common comparison data approach and identified optimal parameter settings for both
methods given various data conditions. The new comparison data forest approach achieved slightly higher overall accuracy,
though there were some important differences under certain data conditions. The CD approach tended to underfactor and the
CDF tended to overfactor, and their results were also complementary in that for the 81.7% of instances when they identified
the same number of factors, these results were correct 96.6% of the time.

Keywords Exploratory factor analysis · Comparison data · Factor retention · Number of factors · Factor forest ·
Machine learning

Introduction

Psychological research relies heavily on latent variables that
are unobservable and thereforemeasuredusingmanifest indi-
cators. Exploratory factor analysis (EFA) models the links
between one or more latent variables, or factors, and a set of
manifest indicators. Hence, it is frequently used in the devel-
opment of psychological scales and assessment tools. When
performing an EFA, several methodological decisions have
to be made by the researcher (see Fabrigar, Wegener, Mac-
Callum,&Strahan, 1999; Goretzko, Pham,&Bühner, 2019),
and determining the number of factors seems to be the most
difficult (Henson & Roberts, 2006; Zwick & Velicer, 1986).
That said, retaining the correct number of factors should be
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of utmost importance, especially when an EFA is used to
construct or validate an instrument used for psychological
assessment. In cases where too few factors are extracted, the-
oretically interesting subscales of psychological constructs
could be missed, while overfactoring (i.e., extracting too
many factors)may lead toblurred conceptswith an artificially
increased number of subfacets. A clear conceptualization of
the respective latent variables and an accurate factor reten-
tion are essential prerequisites for trustworthy psychological
assessment and valid measurement instruments for use in
clinical settings. Thus, researchers who develop these instru-
ments have to be very careful when determining the number
of factors to retain in EFA.

Since EFA is often used in contexts in which theoretical
guidance about dimensionality is not available, the number
of factors has to be estimated from the data. Traditional
approaches like the Kaiser–Guttman rule (Kaiser, 1960) –
also known as the eigenvalue-greater-one rule – or the scree
test (Cattell, 1966) are heuristic rules based on the empiri-
cal eigenvalue distribution. Parallel analysis (Horn, 1965), as
well as more modern approaches like comparison data (CD,
Ruscio&Roche, 2012),make use of the larger computational
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resources now available to simulate reference eigenvalues
based on characteristics of the empirical data. Another new
and promising method, the empirical Kaiser criterion (EKC,
Braeken & Van Assen, 2017) also compares the empirical
eigenvalues with reference values that are a function of the
variables-to-sample-size ratio and a correction term for the
variance that previous factors have already accounted for.

Focusing on the eigenvalue distribution to determine the
number of factors makes sense because eigenvalues of a cor-
relationmatrix are directly linked to the explained variance of
a component in principal component analysis (PCA). How-
ever, as Braeken and Van Assen (2017) point out, sampling
error deteriorates the informational value of the empirical
eigenvalue distribution. Hence, Goretzko and Bühner (2020)
developed a new factor retention criterion that is based on
an extensive simulation step and a subsequent step where
a machine learning model is trained to predict the number
of factors based on the empirical eigenvalues and additional
data characteristics. Their evaluation study showed that this
new approach, called a factor forest, is superior to common
retention criteria reaching almost perfect accuracy over a
broad range of conditions. However, because the creation of
a factor forest is computationally costly, pre-trained machine
learning models would have to be provided for practitioners
(Goretzko & Bühner, 2022). Accordingly, if the empirical
data do notmeet the distributional assumptions of the training
data used to generate these pre-trained models, their applica-
bility might be impaired and a new model would have to be
trained using newly simulated training data. The complete
process would be very time-consuming.

To circumvent this issue,we combine the factor forestwith
the CD approach that is able to adapt to the empirical data
and does not require strong distributional assumptions. In an
extensive simulation study, we compare this new combined
approach, called a comparison data forest (CDF), with the
traditional CD approach. We derive recommendations for
the hyperparameter settings of both factor retention criteria
as well as suggestions for when to use which approach.

Comparison data – Using reference eigenvalues
to determine the number of factors

Ruscio and Roche (2012) introduced the CD approach as
a way to improve what was then widely considered the
best available method for determining the number of fac-
tors to retain in EFA, namely parallel analysis. When using
parallel analysis, one generates a large number of random
data sets with the same number of cases and variables as
the empirical data, but in which the data are normally dis-
tributed, uncorrelated variables. One estimates the number of
factors to retain as the number of eigenvalues for the empir-

ical data that exceed the mean eigenvalues for the parallel
analysis of all samples of random data. The parallel anal-
ysis approach works comparably well because it takes into
account sampling error (Turner, 1998). Simulation studies
(e.g., Auerswald&Moshagen, 2019; Zwick&Velicer, 1986)
usually show that parallel analysis is among the most accu-
rate factor retention criteria.

The CD approach also generates a large number of data
sets in order to obtain reference eigenvalues, but it differs
from parallel analysis in three ways. First, whereas the ran-
dom data in parallel analysis are normally distributed1, the
CD approach reproduces each empirical indicator’s distribu-
tion by using bootstrap methods (Efron & Tibshirani, 1993).
Second, whereas the random data in parallel analysis are
uncorrelated, the CD approach reproduces the indicator cor-
relationmatrix. Third, whereas parallel analysis provides one
set of reference eigenvalues, theCDapproach providesmulti-
ple sets of reference eigenvalues by incrementing the number
of factors used to reproduce the indicator correlation matrix.
The first population of comparison data is generated using
one factor, many random samples are drawn from this popu-
lation, and a set of reference eigenvalues is obtained in order
to calculate their fit to those of the empirical data. Next, a
new population of comparison data is generated using two
factors, random samples are drawn, reference eigenvalues are
obtained, and fit is calculated. Goodness of fit is described by
the eigenvalues’ root mean squared residuals (RMSR) where
the residuals are defined as the difference between an eigen-
value and its corresponding reference eigenvalue (i.e., the
eigenvalue of a comparison data set). This iterative process of
increasing the number of factors used to reproduce the indi-
cator correlation matrix continues until fit fails to improve
significantly (i.e., until the RMSR values of the k-factor solu-
tion are not deemed significantly higher on average than those
of the (k+1)-factor solution). For example, if using three fac-
tors fails to improve fit relative to what was observed using
two factors, this suggests that one should retain only two
factors. In their evaluation study, Ruscio and Roche (2012)
found that the CD approach outperformed parallel analysis,
as well as the many other techniques (Kaiser–Guttman rule,
optimal coordinates, the minimum average partial test, AIC,
BIC, and sequential χ2 tests) they tested, across a wide range
of challenging data conditions.

1 This distinction between CD and parallel analysis only holds if the
classic version of parallel analysis is considered. There are also imple-
mentations of parallel analysis using resampled data (i.e., permutation-
based parallel analysis) that keep intact the marginal distributions of
the variables. For a comparison of parallel analysis implementations,
interested readers are referred to Lim and Jahng (2019).
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The factor forest – Usingmachine learningmodels
to determine the number of factors

Goretzko and Bühner (2020) proposed a new approach to
factor retention that makes use of the predictive power of
machine learning algorithms. The first step of their approach
is to simulate numerous data setswith a known factorial struc-
ture that cover all important data conditions of the application
context2. Data characteristics (the predictor variables which
are called features in the context of machine learning appli-
cations) that are relevant in the factor retention process are
then extracted for each simulated data set (inter alia eigenval-
ues and matrix norms of the correlation matrix, the sample
size, and the number of manifest variables). As described
above, the eigenvalues of the empirical correlation matrix
are directly related to the variance explained by the respective
component in PCA (equivalently, eigenvalues of a reduced
correlation matrix with communalities in the diagonal are
indicative of the variance explained by the respective factor in
an EFAmodel). Braeken andVanAssen (2017) also consider
the size of previous eigenvalues and the sample sizewhen cal-
culating the reference eigenvalues for their criterion, which
is why the latter and features that describe the explained vari-
ance are also included in the feature set. Furthermore, since
EFA can simply be described as a decomposition of themani-
fest correlation matrix, other features that describe the “size”
and composition of the correlationmatrix are calculated. One
example is the Gini coefficient (Gini, 1921) which is usually
used to quantify inequalities in distributions. In this context,
it can be used to assess the inequality of all bivariate manifest
correlations, since if unidimensionality holds, all correlations
should be similar and the more latent factors, the more clus-
ters can be found in the correlation matrix. All features are
describedmore thoroughly in the original article byGoretzko
and Bühner (2020).

These features and the known number of factors are then
stored as the columns in one combined training data set,
which contains one row for each data set simulated in the
first step (i.e., each simulated data set is one observation in
the training data). A machine learning model is trained3 to
predict the number of factors using the extracted features as

2 In their paper, Goretzko and Bühner (2020) simulated multivariate
normal data with varying sample sizes (N ∈ [200, 1000]), numbers
of manifest variables (k ∈ [4, 80]), numbers of underlying factors
(p ∈ [1, 8]), different loading patterns (patterns following simple
structure with varying communalities, but also complex patterns with
cross-loadings and correlated factors). They used themvtnorm package
(Genz et al., 2018) for data simulation. We oriented ourselves to their
simulation approach for comparisons (see also our “Methods” section).
3 Depending on themachine learning algorithm, some hyperparameters
(parameters of the algorithm that determine how the model structure is
formed – in tree-basedmodels, for example, this could be the maximum
depth a tree can grow) can be tuned in this step to increase the predictive
performance of the resulting model.

independent variables. Training a machine learning model
means that the multidimensional link between the features
(data characteristics) and the number of underlying factors
is learned based on the fully labeled training data. In other
words, the relationship between data characteristics that can
be observed for every empirical data set and the number of
underlying factors is statistically modeled and reflected by
the complexmodel structure of the trainedmodel. To validate
this model, it must be successfully evaluated using a new test
sample of simulated data sets. Once validated, it can be used
to determine (i.e., to predict) the number of factors on new
samples of empirical data.

The comparison data forest – A combined approach

In this paper, we want to evaluate whether the machine
learning modeling approach can be used within the CD
framework. We call the new, combined approach the com-
parison data forest (CDF) as it is a combination of CD and
the factor forest, or rather a similar random forest implemen-
tation (see the pseudo-code below). For CDF, populations
with a known factorial structure are simulated as described
for the original CD approach using the GenData function
provided by Ruscio and Roche (2012). GenData is an iter-
ative algorithm that aims at finding a k-factor solution that
best reproduces the empirical correlation matrix assuming
normally distributed latent factors and an unrotated solu-
tion (i.e., orthogonal factors and potentially cross-loadings),
but taking into account skewed item distributions contrary
to parallel analysis. Specifically, populations ranging from 1
to kmax factors are simulated and then Nrep samples (each
with the same sample size as the empirical data set) are drawn
from each population. Several features (e.g., eigenvalues and
matrix norms)4 are calculated for these Nrep × kmax com-

4 The following features were used for the comparison data forest
implementation in this study: the sample size, the number of items
p, the number of eigenvalues of the correlation matrix that are greater
than one (which is the Kaiser–Guttman rule), the relative size of each of
the first three eigenvalues in a cumulative manner (i.e., the first eigen-
value alone, the first two eigenvalues together, the first three eigenvalues
together), the number of eigenvalues greater than 0.7 (which is a modi-
fied variant of the Kaiser–Guttman rule that is sometimes used instead),
the standard deviation of the eigenvalues, the number of eigenvalues that
explain 50%/75% of indicator variance, the L1-norm/ the Frobenius-
norm / the maximum-norm / the spectral-norm / the determinant of
the empirical correlation matrix, the number of correlations below 0.1,
the average of the initial communality estimates based on the squared
multiple correlations, the average of the off-diagonal correlations, the
measure of sampling adequacy by Kaiser (1970), the Gini-coefficient
(Gini, 1921) of the correlation matrix, the Kolm measure of inequality
of the correlation matrix (Kolm, 1999), all p eigenvalues of the cor-
relation matrix as well as all p eigenvalues of the reduced correlation
matrix. We decided to rely on the full feature set of Goretzko and Büh-
ner (2020) that has proven to result in a very accurate prediction of
the number of factors (excluding only the two resource-intensive factor
retention criteria; i.e., parallel analysis and comparison data).
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parison data sets and used to train a machine learning model.
We used the feature set suggested by Goretzko and Bühner
(2020) and chose a random forest, as implemented in the
ranger package (Wright & Ziegler, 2017), as the machine
learning modeling method due to its predictive power and
relatively low computational costs. To further reduce the
computational costs of this approach, we relied on the well-
established default settings of the random forest in the ranger
package (Wright & Ziegler, 2017) – namely, setting the num-
ber of trees to 500 and using the (rounded down) square root
of the number of features for each split (mtry = �√p�)
as suggested by Breiman (1999). Subsequently, the trained
model can be used to predict the number of factors to retain
for an empirical data set using the same features as indepen-
dent variables (i.e., the same features have to be calculated
for the empirical data set).

Algorithm 1 Comparison data forest
Simulation:
for all k ∈ [1, kmax ] do

UseGenData to create Population with NPop observations based on
k Factors
for all j ∈ [1, Nrep] do

Draw Sample DTkj (same Size as Empirical Data Set) from Pop-

ulation and Calculate Feature Set X f eat
k j

for all k, j do
traindata = bind(X f eat

k j )

Training:
Train Random Forest (rf) on traindata
Prediction:
Step 1: Calculate Feature Set for Empirical Data X f eat

emp

Step 2: Predict k with trained rf and Extracted Features: k̂ = r f (X f eat
emp )

Hyperparameters of the comparison data
approaches

Both CD and CDF have hyperparameters that influence how
each method performs and how computationally costly the
respective approach is. When using the initial CD approach,
researchers have to set three parameters – the significance
level for the internal Mann–Whitney U test (α), the size of
the population Npopulation that is simulated for each fac-
tor solution and the number of comparison data sets that are
drawn from each of these populations Nrep.While the impact
of α appears to be quite clear – higher values increase the
statistical power of the test, but also increase the probabil-
ity for a Type I error, therefore yielding a stronger tendency
of overfactoring (and vice versa for smaller values) – both
the population size Npopulation and Nrep have a less clear
influence on CD. In both cases (CD and CDF), higher val-
ues seem beneficial as they promise less randomness in the
comparison data sets (i.e., a reduced sampling error), but

there is obviously a limit in usefulness when increasing Nrep

and Npopulation (especially, since increasing these numbers
will increase computational costs as well). When choosing
Npopulation , the sample size of the empirical data set has to
be considered as well, since all comparison data sets that
are drawn from the simulated populations have the same
size as the empirical data set. Accordingly, samples that are
much larger than those considered in this paper may call for
greater population sizes Npopulation . Since machine learning
models “learn” patterns from large numbers of examples,
the number of comparison data sets Nrep that yields a good
performance might actually be higher for CDF than for CD.
While α is no longer a hyperparameter for CDF, the new
approach has additional hyperparameters that determine how
the internal machine learning model (i.e., the random forest
in this case) actually looks like. For a random forest, the
number of decision trees, the tree depth or the proportion
of variables considered for each split are the most important
hyperparameters. Contrary to other machine learning algo-
rithms, random forests perform comparablywell with default
hyperparameters (e.g., Probst, Wright, & Boulesteix, 2019)
and are therefore considered a good “off-the-shelf” option
that does not require extensive tuning (e.g., Sterner, Goret-
zko, & Pargent, 2021). In our implementation, we set the
number of trees to 500 and the number of variables consid-
ered for each split to the (rounded down) square root of the
number of features (Breiman, 2001).

Aim of the study

In this paper,wewant tofindoptimal default hyperparameters
for both comparison data approaches (CD and CDF) and
evaluate their performance under various data conditions.
Hence, the aim of this study is to establish a new variant
of comparison data-based factor retention and to compare
it to the initial CD method. For sake of clarity and to save
computational costs, we do not expand the simulation study
to the previously described factor forest approach5.

Methods

To evaluate under which conditions CDF is a useful new
approach to determine the number of factors in EFA and
to find appropriate default values for Nrep and Npopulation ,
we simulated multivariate normal data using the mvtnorm
package (Genz et al., 2018) for various data conditions. We
varied the true number of factors k ∈ {1, 3, 5}, the sample
size N ∈ {250, 500, 1000}, the number of variables per factor

5 Since we used comparable data conditions as Goretzko and Bühner
(2020), interested readers can compare the performance of the compar-
ison data approaches to the more cumbersome factor forest approach.
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Table 1 Overall accuracy of CD with different parameter settings

α Nrep = 250 Nrep = 500 Nrep = 1000 Nrep = 2000

.05 0.843 0.848 0.850 0.849

.10 0.836 0.842 0.844 0.844

.20 0.818 0.826 0.832 0.833

.30 0.797 0.813 0.819 0.822

Note. α is significance level used in the internal Mann–Whitney U test
in the CD approach, while Nrep denotes the number of replications or
comparison data sets

vp f ∈ {4, 7}, the inter-factor correlation ρ ∈ {0, 0.2, 0.5}, as
well as the loadingmagnitudes of primary and cross-loadings
according to the simulation settings of Goretzko and Bühner
(2020). Standardized primary loadings were sampled from
three categories (small: [0.35, 0.5], medium: [0.5, 0.65] and
large [0.65, 0.8]) and cross-loadings were sampled/selected
from three categories (zero cross-loadings, small: [0, 0.1],
and medium: [0.1, 0.2]). In total, we evaluated 3726 data
conditions with 500 replications each.

We analyzed the simulated data with common CD (using
the R code provided by Ruscio & Roche, 2012) vary-
ing the parameters α ∈ {0.05, 0.1, 0.2, 0.3} and Nrep ∈
{250, 500, 1000, 2000} and the new CDF approach with
five different parameter settings for Nrep and two values
for Npopulation (nrep ∈ {100, 1000, 2000, 4000, 5000} and
Npopulation ∈ {10000, 25000}). To assess the performance
of CD and CDF in comparison to non-simulation-based fac-
tor retention criteria, we also calculated the EKC for each
simulated data set.

Data analysis

We used R (Version 4.2.2; R Core Team, 2020) and the
R-packages batchtools (Bischl, Lang, Mersmann, Rahnen-
führer, & Weihs, 2015; Version 0.9.15; Lang, Bischl, & Sur-
mann, 2017), dae (Version 3.2.13; Brien, 2020), data.table
(Version 1.14.6; Dowle & Srinivasan, 2019), ggplot2 (Ver-
sion 3.4.0; Wickham, 2016), mvtnorm (Version 1.1.3; Genz
& Bretz, 2009), papaja (Version 0.1.1; Aust & Barth, 2020),
and tinylabels (Version 0.2.3; Barth, 2022) for the data simu-

6 We analyzed all conditions that can be defined when crossing all
design factors: 3 numbers of factors × 3 sample sizes × 2 numbers of
variables per factor × 3 between-factor correlations × 3 different load-
ing magnitudes for primary loadings × 3 different loading magnitudes
for cross-loadings = 486 conditions. Excluding conditions that are not
meaningful (i.e., unidimensionality and correlated factors or high pri-
mary loadings and medium-sized cross-loadings in combination with
highly correlated factors and five latent variables which would yield
communalities greater than one), we ended up with 372 conditions.

lation and all our analyses as well as writing the manuscript.
For each data condition and each parameter setting of both
methods, we calculated the accuracy of the factor retention
process (i.e., the relative frequency of the correctly deter-
mined number of factors) as well as bias (i.e., the relative
frequency and magnitude of over- or underfactoring). The
code for our simulation study as well as the implementation
of the comparison data forest can be found in the electronic
supplementary material.

Results

Comparison data

Table 1 shows the overall accuracyofCDfor all combinations
of evaluated parameter values. Averaged over all conditions,
CD attained the highest overall accuracy with a comparably
low significance level α and a large value of comparison data
sets Nrep. However, differences were very small, especially
with α ≤ .10. Interestingly, the lower α was, the more biased
the estimation (average bias for α = .05: −0.26 and for α =
.30: −0.17). Put differently, CD tended to underfactor with
all parameter settings, and this tendency that was stronger
with low α-levels (on average CD suggested too few factors
in 13.10% of the cases when α = .05 compared to 11.90%
when α = .30). Given that the criterion for advancing to
a larger number of factors is significant improvement in fit,
and that using a lower α-level makes it more difficult to attain
statistical significance, it is not surprising that underfactoring
was more common with lower α-levels.

Figure1 presents the accuracy of CD in greater detail for
different sample sizes, numbers of factors, variables per fac-
tor, andbetween-factor correlations. The differences between
the four α-level settings were rather small, though in single-
factor conditions a smaller α seems to be clearly favorable.
Oddly, when k = 1, CD showed a higher accuracy with
smaller sample sizes; for k ≥ 3 larger samples yielded
higher accuracies. Higher amounts of overdetermination
(more variables per factor), as well as smaller between-factor
correlations, fostered more accurate factor retention.

Comparison data forest

In Table 2, the overall accuracy of the new CDF approach
is displayed for the parameter values of Npopulation (num-
ber of observations in each simulated population) and Nrep

(number of comparison data sets simulated for each fac-
tor solution). As expected, the number of comparison data
sets drawn from each simulated population (Nrep) was pos-
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Fig. 1 Accuracy of CD for different sample sizes, α-levels, numbers of factors (k), variables per factor (vpf) and between-factor correlations (ρ)

itively associated with the overall accuracy of the approach.
Increasing this number from 100 to 1000 boosted the per-
formance by 3.7 percentage points, but increasing it further
led to much smaller improvement (i.e., going all the way to
Nrep = 5000 only yielded an additional 0.5 percentage point
improvement). Increasing the size of the simulated popula-
tions from 10, 000 to 25, 000 did not improve accuracy; in
fact, accuracy was lower by up to 0.33 percentage points.
Contrary to the classical CD approach, the CDF showed

a rather small but positive bias, which means a small ten-
dency for overfactoring (i.e., extracting too many factors).
Table 3 displays the average bias of the CDF approach
given different parameter settings. CDF with Nrep = 100
showed a substantial tendency to overfactor (it suggested
too many factors in 10.81% of the cases), with an overall
bias of 0.07 when Npopulation = 10, 000 and 0.09 when
Npopulation = 25, 000. In comparison to CD, this average

Table 2 Overall accuracy of
CDF with different parameter
settings

Npopulation Nrep = 100 Nrep = 1000 Nrep = 2000 Nrep = 4000 Nrep = 5000

10000 0.821 0.858 0.860 0.863 0.863

25000 0.818 0.856 0.860 0.862 0.862

Note. Npopulation is the population size within the CDF approach, while Nrep denotes the number of replica-
tions or comparison data sets that are drawn per factor solution

Table 3 Bias of CDF with
different parameter settings

Npopulation Nrep = 100 Nrep = 1000 Nrep = 2000 Nrep = 4000 Nrep = 5000

10000 0.069 0.018 0.013 0.011 0.010

25000 0.090 0.035 0.028 0.025 0.025

Note. Npopulation is the population size within the CDF approach, while Nrep denotes the number of replica-
tions or comparison data sets that are drawn per factor solution
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Fig. 2 Accuracy of CDF for different sample sizes, Nrep values, number of factors (k), variables per factor (vpf) and between-factor correlations (ρ)

deviation from the true number of factors was rather small,
though (bias between −0.292 and −0.168).

Figure2 presents the accuracy of CDF in greater detail
for varying Nrep-settings against the sample sizes given
the different numbers of factors, variables per factor, and
between-factor correlations. For most conditions, there was
little to no difference in performance with regard to different
values of Nrep, though Nrep = 100 was an exception in that
accuracy was notably lower in conditions with k = 3 and lit-
tle overdetermination (variables per factor vp f = 4) as well

as conditions with k = 5, high between-factor correlations
(ρ = 0.5) and greater sample sizes. For k ≥ 3, the impact of
Nrep was negligible (if one excludes Nrep = 100) – only a
minor tendency that smaller values (i.e., Nrep = 1000) could
be preferable in cases with k = 3 could be identified.

However, in single-factor conditions (k = 1), immense
differences in accuracy were present. In conditions with very
few manifest variables, CDF struggled to correctly iden-
tify unidimensionality. The tendency to overfactor was more
severe the smaller Nrep and the greater the sample size (bias

Table 4 Accuracy and Bias of
CD and CDF with selected
parameter settings (EKC as
baseline)

Method Acc1 Bias1 Acc3 Bias3 Acc5 Bias5

CD.30/2000 0.852 0.177 0.871 −0.104 0.761 −0.354

CD.05/1000 0.924 0.079 0.886 −0.144 0.787 −0.466

CDF5000/10000 0.783 0.428 0.895 0.004 0.857 −0.132

EKC 0.998 0.002 0.852 −0.216 0.750 −0.635

Note. CD.30/2000 stands for the classical comparison data approach with α = .30 and 2000 comparison data
sets per factor solution. CDF5000/10000 stands for the comparison data forest with 5000 comparison data
sets per factor solution and a population size of 10000. EKC is the empirical Kaiser criterion. Acc1 is the
accuracy in conditions with one true factor, Acc3 and Acc5 the accuracy in conditions with three and five
factors respectively. Bias1 shows the bias of each method in conditions with one underlying factor, Bias3
and Bias5 the bias in conditions with three and five underlying factors accordingly
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of CDF with Nrep = 100 and a sample size of 1000 was
1.32; bias with Nrep = 5000 and a sample size of 250 was
0.46). Even though larger sample sizes were associated with
lower accuracy in these special conditions, more generally an
increase in the number of observations was related to a more
accurate factor retention (comparable to the results of CD).
As expected, a higher rate of overdetermination (i.e., a higher
variables-per-factor ratio) as well as smaller between-factor
correlations were beneficial for the factor retention process.

Comparison of CD and CDF

For a detailed comparison of the general approaches, we
focus on the hyperparameter settings that yielded the highest
overall accuracy (CD with α = .05 and Nrep = 1000 and
CDF with Nrep = 5000 and Npopulation = 10, 000) as well
as the settings that yielded the smallest bias (CDwithα = .30
and Nrep = 2000 and, again, CDF with Nrep = 5000 and
Npopulation = 10, 000). Although these settings showed the
best performance, other parameter settings did not perform
substantially worse (see also Tables 1 – 3). Table 4 displays

the accuracy and bias of CD and CDF (using these selected
hyperparameters) for different numbers of factors k (inter-
ested readers who want to investigate the rates of under-
and overfactoring more thoroughly can find this informa-
tion in additional tables in the online supplemental material).
In conditions with k = 1, CD clearly outperformed CDF
(e.g., accuracy of CD with α = .05 and Nrep = 1000 was
92.37%) and a smaller bias than CDF (e.g., accuracy of CDF
with Nrep = 5000 and Npopulation = 10, 000 was 78.27%),
while in conditions with k = 3 CD and CDF yielded com-
parably high accuracies and CDF showed almost no bias,
whereas CD underestimated the number of factors. In con-
ditions with k = 5, CDF was clearly superior to CD as it
showed a higher accuracy (85.70 vs. 78.68%) and a smaller
bias (here a smaller tendency of underfactoring). Accord-
ingly, averaged over all conditionswith the same true number
of factors, CD performed better in single-factor conditions,
CD and CDF performed comparably well with k = 3, and
CDFperformed betterwith k = 5. The non-simulation-based
EKC reached almost perfect accuracy in single-factor con-
ditions, while being out-performed by the comparison data
approaches in multi-factor cases.
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k: 3

vpf: 4

k: 3
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Fig. 3 Comparison of CD and CDF with selected hyperparameters (and EKC as a baseline) across conditions with different between-factor
correlations (ρ), variables per factor (vp f ) and numbers of factors (k)
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Figure3 shows the performance of both CD and CDF
across conditions with different between-factor correlations
(ρ), variables per factor (vp f ), and numbers of factors (k). In
data conditions with higher rates of overdetermination (i.e.,
more variables per factor) aswell as in conditionswith higher
between-factor correlations, CDF yielded higher accuracies
than CD, especially when k = 5. While CD reached a
comparable accuracy in conditions with k = 3 and orthog-
onal factors (ρ = 0; in cases with only four variables per
factor, CD had an even slightly higher accuracy), its per-
formance decreased more with increasing between-factor
correlations. The non-simulation-based EKC shows compa-
rably high accuracy in orthogonal data conditions in general
but reached substantially lower accuracy than CD or CDF in
conditions with between-factor correlations. This tendency
was particularly pronounced in conditions with few indica-
tors per factor.

The loading patterns in the data generating process also
had a substantial impact on accuracy.7 In Table 5, the accu-
racy of CD and CDF is displayed for all combinations of
primary loading categories (small, medium, large) and cross-
loading categories (zero, small, medium). CD (with α = .05
and Nrep = 1000) outperformed CDF in conditions with
large andmedium-sized primary loadings (i.e., primary load-
ings of [0.5, 0.8]), while CDF reached higher accuracies
when primary loadings were small, especially in conditions
where cross-loadings were present. In conditions with small
primary loadings, CD with a more liberal significance level
(α = .30) showed higher accuracy thanCDwithα = .05, but
was clearly inferior to CDF. EKC, for comparison, reached
very high accuracy in conditions with clear simple structure
patterns (i.e., independent cluster patterns without cross-
loadings) and performed relatively poorly when substantive
cross-loadings were present. In addition, EKC was outper-
formed by CDF in conditions with small primary loadings
(except for simple structure conditions) reaching similar
accuracy as CD.

7 In fact, when conducting an ANOVA with all design factors as pre-
dictors (including all interaction terms) and factor retention accuracy as
the dependent variable, the size of the primary loadings has the largest
impact (η̂2 = 0.183) followed by the main effect of the cross-loadings
and the second order interaction of sample size and primary loadings.
A model with all interaction terms can explain roughly 80% of the vari-
ance of the factor retention accuracy, while a simplermain effectsmodel
can only explain ~40% of the variance. In comparison, a model that also
includes the factor retention method as a factor (CD vs. CDF vs. EKC)
explains 92% of the variance. Hence, this analysis illustrates the sub-
stantial influence of the data characteristics (i.e., the design factors of
the simulation study) on the factor retention process. The size of the
primary loadings appears to be especially important as its interaction
with the factor retention criterion (η̂2 = 0.015) is the most important
predictor of factor retention accuracy involving the method itself.

Discussion

In thepresent paper, wecomparedthecomparisondata approach
with a new method called comparison data forest which
combines the comparison data (Ruscio & Roche, 2012) and
factor forest (Goretzko & Bühner, 2020) approaches. These
findings enable us to assess which hyperparameter settings
yielded higher accuracy in factor retention for each method,
compare their results with regard to their accuracy and bias,
derive recommendations for which method to prefer under
which conditions, and suggest ideas for future research.
Accordingly, the aim of this study was to refine the exist-
ing comparison data approach (Ruscio & Roche, 2012) and
develop amore complex variant – the comparison data forest.

As the performance differences across CDFwith different
parameter settings were rather small (at least in cases with
Nrep ≥ 1000) and considering the computation time of the
new approach, it might be a good choice to rely on CDF
with Nrep = 1000 and Npopulation = 10, 000 and use the
classical CD approach (with Nrep = 1000 and α = .05) for
comparison. This choice of hyperparameters seems to be a
good trade-off between accuracy and computational costs.
A larger population (Npopulation) might be necessary when
the sample size of the empirical data becomes substantially
higher than the sample sizes evaluated in this study (i.e.,
n >> 1000), but for common sample sizes, Npopulation =
10, 000 is superior.

Compared to the results of Ruscio and Roche (2012), who
reported an accuracy for CD of 87.1%, in this study the over-
all accuracy of CD was slightly smaller (with α = .30 and
Nrep = 500whichwas used byRuscio&Roche, 2012, accu-
racy = 81.27%; accuracy varied from 79.74% for CD with
α = .30 and Nrep = 250 and 84.99% for CD with α = .05
and Nrep = 500). This suggests that the conditions in our
study might have been slightly more difficult, which can also
explain why other hyperparameters performed best in our
study (α = 0.05 instead of α = 0.30). Our findings that
the optimal hyperparameters settings appear to be dependent
on the respective data conditions may be a little unsettling
for users. However, because this study was the first to sys-
tematically evaluate different hyperparameter values for CD,
researchers using the approach could start with the suggested
hyperparameters from this study as default values. Depend-
ing on their data conditions, a less strict α could be chosen
to avoid underfactoring though.

While the overall accuracy of the CDF approach was
slightly higher than that of the CD approach, there were sub-
stantial performance differences in some conditions. The CD
approach performed better in single-factor conditions and
when primary loadings were relatively high (and hence the
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manifest variables were reliable indicators of the latent fac-
tors). CDF, on the other hand, was superior in conditions
with five factors, with three factors and sufficient overde-
termination (i.e., when there were relatively large numbers
of indicators per factor), when primary loadings were small
(i.e., the indicators were less reliable representations of the
latent factors), when substantial between-factor correlations
were present, and in small sample conditions (N ≤ 500,
especially in cases with N = 250).

Accordingly, CD seems to be the better choice if one
assumes few latent factors (unidimensionality) and/or in
cases where high primary loadings can be expected (e.g.,
when constructing cognitive ability tests). However, if sev-
eral latent variables can be expected (e.g., when developing
clinically relevant personality scales) and in cases with
rather small samples that are quite common in psychologi-
cal research (around 50% of papers conducting an EFA have
sample sizes smaller than 400, see Goretzko et al., 2019;
Henson & Roberts, 2006 reported a median sample size of
267), CDF may lead to more trustworthy results. Besides, as
Peterson (2000) reported that primary factor loadings were
0.32 on average (with approximately 25% smaller than 0.23)
in studies presenting complete patternmatrices, it seems to be
meaningful to consult CDF due to its superior performance
in conditions with small loadings.

Many authors recommend that more than one factor reten-
tion criterion should be consulted when determining the

number of factors in EFA (e.g., Fabrigar et al., 1999; Goret-
zko et al., 2019; Henson&Roberts, 2006). Along these lines,
using both CD and CDF could be advisable. In the 81.7% of
cases where CD and CDF agreed on the number of factors in
our study, the overall accuracy of this solution was 96.6%.
This is even higher (97.5%) in conditions with at least 500
observations. Therefore, when using both CD and CDF and
comparing their results, agreement betweenmethods implies
a very high chance of determining the number of factors cor-
rectly.

In addition, CD and CDF may be complementary in that
CD tends to underfactor (especially when k becomes larger)
and CDF shows signs of overfactoring (especially when k is
small). In Fig. 4, the performance of CD (with Nrep = 1000
andα = .05) andCDF (with Nrep = 5000 and Npopulation =
25, 000) is presented for different scenarios. Fortunately, in
the 18.3%of caseswhere theCDandCDFmethods disagreed
about the number of factors to retain, we can offer some
general guidelines about when to trust one methodmore than
the other. When CDF suggests fewer factors than CD, CDF
attains nearly perfect accuracy, whereas in conditions where
CDF suggests way more factors than CD (mostly conditions
with k = 1 in this study), CD seems to be more trustworthy.

The tendency of CD to underfactor can be explained by
the sequential design of the method. For example, the three-
factor solution is tested only if the two-factor solution attains
statistically significantly better fit than the one-factor solu-
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tion, so if this iterative procedure stops at any point the
potentially superior fit of models with even more factors is
never tested. Decreasing the α-level of the Mann–Whitney
U test used to check for a significant improvement in fit
exacerbates this bias, and choosing a higher α mitigates it.
On the contrary, the CDF approach simulates data for all
factor solutions up to the predefined maximum number of
factors (here eight). Therefore, CDF more easily suggests a
higher dimensionality than CD. Although, these differences
help CDF when the true number of factors is large (k ≥ 3),
they lead to a less accurate factor retention with CDF when
the latent construct is unidimensional (k = 1). Surprisingly,
in single-factor conditions, CDF becomes less accurate with
larger samples while factor retention criteria (including CDF
in conditions with k > 1) usually benefit from larger sam-
ples. One explanation, again, could be that CDF simulates
data for all population models from a one-factor model to
a kmax -factor model. Internally, some important features for
the machine learning model could be correlated to the sam-
ple size, so that larger samples are indirectly associated with
a higher dimensionality within the model. Future research
could investigate this rather strange behavior of the CDF
approach, for example, by using interpretable machine learn-
ing methods (e.g., Molnar, 2020).

Since overfactoring often is considered less severe com-
pared to underfactoring (e.g., Fabrigar et al., 1999), it could
be reasonable to weigh the suggestion of CDF slightly more
strongly than the result of CD in a combined approach.
However, when combining several factor retention crite-
ria anyway, one might also consider the results of other
approaches such as parallel analysis, the empirical Kaiser
criterion, or the Hull method (a combination of these meth-
ods was suggested by Auerswald & Moshagen, 2019).

Although CDF was developed as a computationally less
costly alternative to the factor forest (Goretzko & Bühner,
2020), it takes substantially more time to conduct CDF than
the classical CD approach. In a serial computation, CDF
with Nrep = 5000 and Npopulation = 25, 000 applied to
empirical data with N = 500 and 35 manifest variables can
take around 25–30 min depending on the computer system.8

This is considerably slower than other commonly used factor
retention criteria. Future research could focus on improv-
ing the performance of CDF both in terms of its accuracy
(e.g., introducing new features that improve the predictions
of the internal random forest implementation, implement-
ing an option that allows for hyperparameter tuning of the
random forest) and with regard to its computational speed

8 Note that this estimated run time is based on normal data conditions.
For ordinal data with unfavorable item distributions, the generation of
population data fromwhich the comparison data sets are drawn can take
much longer and the convergence criterionwithin theGenData function
has to be adjusted to keep the run time within a reasonable range.

(e.g., parallelization, exclusion of features without predic-
tive power). One promising way to develop new features
that might improve the performance of CDF could be inte-
grating other common factor retention criteria. In doing
so, simulation-based approaches (such as parallel analysis)
may be too computationally costly, but methods such as the
minimum average partial test (MAP, Velicer, 1976) or the
non-graphical scree test (Raîche, Walls, Magis, Riopel, &
Blais, 2013) could be tried as features within CDF to increase
its predictive performance. Future research on CDFmay also
evaluate its performance for various other data conditions
(e.g., non-normal data, missing data, etc.) and compare it
to other state-of-the-art factor retention criteria. Additional
analyses (reported in the online supplemental material) indi-
cate that CDF may provide more robust results with ordinal
data (especially if the number of categories is comparably
large) than common non-simulation-based methods. How-
ever, the respective results are only based on very narrow
data conditions and thus have to be interpreted rather care-
fully. Future research should expand the simulation design
in this paper and evaluate both comparison data approaches
under much broader conditions that are typical for psycho-
logical research.

Older methods for determining the number of factors to
retain in an EFA, such as Kaiser’s criterion or the subjec-
tive examination of a scree plot, eventually gave way to
the demonstrably superior performance of parallel analy-
sis, which entails the generation of artificial comparison
data to provide reference eigenvalues. The comparison data
approach builds on this to provide evenmore useful reference
eigenvalues (by holding constant the distributions9 and corre-
lations among items) and to provide sequential tests between
structural models with increasing numbers of factors. The
comparison data forest builds on this to take advantage of
machine learning capabilities to examine evenmore data fea-
tures when identifying the number of factors to retain. These
simulation-intensive approaches enhance accuracy, are now
feasible to implement in research on psychological assess-
ment, and may be improved further by refining (through
empirically tested expansion and pruning) the set of addi-
tional features to train the machine learning algorithm.

Open Practices Statement

This article does not contain any empirical data. No prereg-
istration was created. All R-code to run the simulation study

9 This distinction between CD and parallel analysis only holds if the
classic version of parallel analysis is considered. There are also imple-
mentations of parallel analysis using resampled data (i.e., permutation-
based parallel analysis) that keep intact the marginal distributions of
the variables. For a comparison of parallel analysis implementations,
interested readers are referred to Lim and Jahng (2019).
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in this paper (and to apply the new method) is presented in
the supplemental material.

Author Note David Goretzko, Department of Psychology, LMU
Munich, Department of Methodology and Statistics, Utrecht Univer-
sity, Netherlands; John Ruscio, Psychology Department, The College
of New Jersey, NJ. R code for implementing the comparison data forest
as well as the simulation code can be found in the online supplementary
material.
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