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1. Basic Concepts 

Overview 
	 Research	design	and	data	analysis	go	hand	in	hand.	Choosing	the	most	appropriate	
statistical	tests	depends	on	how	a	study	was	designed.	For	example,	if	there	are	separate	
groups	of	subjects	representing	different	experimental	conditions,	known	as	a	between-
subjects	design,	scores	must	be	compared	using	an	independent	groups	statistical	
procedure.	On	the	other	hand,	if	subjects	were	tested	repeatedly	in	all	experimental	
conditions,	known	as	a	within-subjects	design,	scores	must	be	compared	using	a	related	
samples	statistical	procedure.	In	other	words,	there	is	a	close	correspondence	between	the	
kinds	of	research	designs	used	to	collect	data	and	the	kinds	of	statistical	procedures	used	
to	analyze	data.	
	 Another	link	between	design	and	analysis	emerges	from	the	fact	that	no	statistic	is	self-
interpreting.	Drawing	conclusions	from	statistical	results	requires	careful	consideration	of	
how	the	data	were	collected.	For	example,	finding	that	a	treatment	group	scores	better	
than	a	control	group	does	not	necessarily	mean	that	the	treatment	works.	There	might	be	a	
design	flaw,	such	as	failure	to	control	for	the	well-known	placebo	effect	by	which	the	
power	of	suggestion	itself	leads	to	improvement,	that	caused	the	statistical	difference	
observed	between	groups.	Data	analysis	is	not	a	mechanical	procedure	that	will	reveal	
whether	a	hypothesis	is	true	or	false.	Statistics	should	help	you	reach	informed	
conclusions,	but	evaluating	hypotheses	requires	you	to	make	judgments	that	go	beyond	the	
statistics	alone.	
	 In	this	chapter,	we’ll	explore	some	of	the	basic	concepts	of	research	design	and	
statistical	analysis	to	set	the	stage	for	all	that	follows.	To	help	make	these	concepts	
concrete,	an	illustrative	study	will	be	introduced.	
	 The	InnerChange	Freedom	Initiative	(IFI)	was	an	extensive,	faith-based	program	
designed	to	reduce	criminal	recidivism,	the	commission	of	crimes	by	individuals	released	
from	prison.	In	2000,	the	results	of	research	evaluating	the	effectiveness	of	IFI	were	
distributed.	The	full	report	is	available	online1,	and	excerpts	from	the	Executive	Summary	
are	quoted	below:	

	 …	The	InnerChange	Freedom	Initiative	(IFI)	…	is	a	largely	volunteer	driven	program	…	
the	first	full-scale	attempt	to	offer	comprehensive	programming	emphasizing	education,	
work,	life	skills,	values	restructuring,	and	one-on-one	mentoring	in	an	environment	where	
religious	instruction	permeates	all	aspects	of	the	prison	environment.	
	 …	this	study	tracks	the	two-year	post-release	recidivism	rates	for	those	prisoners	that	
entered	the	IFI	program	from	April	of	1997	through	January	of	1999,	and	were	released	
from	prison	prior	to	September	1,	2000…	
	 …	A	total	of	177	participants	…	formed	the	basis	of	the	IFI	study	group.	Comparison	
groups	were	selected	from	the	records	of	inmates	released	during	the	evaluation	period	
that	met	program	selection	criteria	but	did	not	enter	the	program.	The	comparison	

																																																								
1	http://web.archive.org/web/20030805160548/http://www.crrucs.org/8_research_pdf/innerchange_freedom.pdf	
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groups	were	matched	with	IFI	participants	based	on	the	following	characteristics:	race,	
age,	offense	type,	and	salient	factor	risk	score.	A	total	of	1,754	inmates	were	identified	as	
the	main	comparison	group	for	this	study.	
	 Anchored	in	biblical	teaching,	life-skills	education,	and	group	accountability,	IFI	is	a	
three-phase	program	involving	prisoners	in	16	to	24	months	of	in-prison	programs	and	6	
to	12	months	of	aftercare	following	release	from	prison…	
	 Among	the	study’s	key	findings	are	the	following:	
	 1.	The	IFI	participants	in	this	study	include	75	prisoners	who	completed	all	phases	of	
the	program	(called	IFI	Graduates),	51	who	were	paroled	early,	24	who	voluntarily	quit	
the	program,	19	who	were	removed	for	disciplinary	reasons,	7	who	were	removed	at	the	
request	of	the	staff,	and	1	who	was	removed	for	serious	medical	problems	…	
	 2.	17.3%	of	IFI	program	graduates	and	35%	of	the	matched	comparison	group	were	
arrested	during	the	two-year	post-release	period.	A	program	graduate	is	someone	who	
completes	not	only	the	in-prison	phases	of	IFI	dealing	with	biblical	education,	work,	and	
community	service	(usually	lasting	16	months),	but	also	includes	an	aftercare	phase	
(usually	lasting	6	months)	in	which	the	participant	must	hold	a	job	and	have	been	an	
active	church	member	for	3	consecutive	months	following	release	from	prison.	
	 3.	8%	of	IFI	program	graduates	and	20.3%	of	the	matched	comparison	group	were	
incarcerated	during	the	two-year	post-release	period.	
	 4.	Considering	all	participants,	including	those	inmates	who	did	and	did	not	complete	
all	phases	of	the	program,	36.2%	of	IFI	participants	were	arrested	compared	to	35%	of	
the	matched	group	during	the	two-year	tracking	period.	Among	the	total	number	of	IFI	
participants,	24.3%	were	incarcerated	compared	to	20.3%	of	the	comparison	group	
during	the	two-year	post-release	period.	

Exploratory vs. Hypothesis-Testing Research 
	 Research	can	be	designed	either	to	develop	ideas	or	to	test	them,	and	it	is	usually	not	
possible	to	address	both	of	these	goals	in	a	single	study.	The	goal	of	exploratory	research	
is	to	develop	ideas.	This	is	done	by	collecting	information	on	a	wide	range	of	variables,	
perhaps	with	very	little	experimental	control,	and	then	examining	the	data	in	many	ways	to	
search	for	interesting	patterns.	One	need	not	have	any	hypotheses	to	perform	useful	
exploratory	research,	nor	is	strong	evidence	required	to	raise	the	possibility	that	observed	
trends	may	be	worthy	of	further	testing.	Findings	are	tentative,	and	follow-up	research	is	
needed	to	replicate	and	better	understand	them.	
	 The	goal	of	hypothesis-testing	research,	which	is	sometimes	referred	to	as	
confirmatory	research	to	contrast	it	with	exploratory	research,	is	to	subject	ideas	to	
rigorous	tests.	This	is	done	by	designing	a	study	such	that	the	evidence	will	either	support	
or	refute	a	hypothesis.	This	entails	careful	experimental	control,	collecting	a	large	sample	
of	data	on	a	focused	selection	of	variables,	performing	demanding	statistical	tests,	or	other	
techniques	to	help	rule	out	alternative	explanations	for	results.	Findings	that	survive	this	
rigorous	testing	can	be	trusted	with	greater	confidence	that	they	are	correct.	
	 The	IFI	study	is	an	example	of	hypothesis-testing	research.	The	investigators	had	
already	developed	some	ideas	for	how	to	reduce	criminal	recidivism	and	they	wanted	to	
test	whether	their	faith-based	program	worked.	
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Experimental vs. Correlational Research 
	 In	experimental	research,	the	investigator	manipulates	one	variable	(e.g.,	treatment	
vs.	placebo	conditions)	and	tests	for	differences	on	an	outcome	variable.	Often	this	is	done	
through	random	assignment	to	experimental	conditions.	Provided	that	the	sample	is	large	
enough,	all	variables	other	than	the	one	manipulated	by	the	experimenter	should	cancel	
out	across	conditions.	The	goal	of	experimental	research	is	to	draw	causal	conclusions,	to	
test	whether	the	manipulated	variable	causes	changes	in	the	outcome	variable.	
	 In	correlational	research,	variables	are	measured	rather	than	manipulated.	
Sometimes	investigators	study	variables	that	cannot	be	manipulated	(e.g.,	sex,	age,	race),	
and	sometimes	subjects	volunteer	for	different	conditions	(e.g.,	patients	who	seek	different	
types	of	psychotherapy).	In	both	of	these	cases,	the	research	is	correlational	rather	than	
experimental.	The	goal	of	correlational	research	is	to	examine	relationships	among	
variables,	and	it’s	critical	to	keep	in	mind	that	correlation	does	not	equal	causation.	
	 The	IFI	study	included	a	treatment	group	and	a	matched	comparison	group,	so	in	a	
superficial	sense	it	might	appear	to	be	experimental	research.	However,	prisoners	
volunteered	for	the	IFI	treatment,	and	the	comparison	group	was	formed	through	the	
review	of	records	for	other	prisoners	who	did	not	volunteer	to	participate	in	the	study.	
There	was	no	random	assignment	to	experimental	conditions,	and	there	are	any	number	of	
ways	that	these	groups	could	have	differed	besides	the	IFI	treatment.	Therefore,	this	is	an	
example	of	correlational	research.	

Populations and Samples 
	 A	population	is	all	individuals	of	interest	to	a	researcher,	those	to	whom	we	would	like	
to	generalize	the	results	of	a	study.	A	sample	is	the	individuals	that	were	actually	included	
in	the	study.	A	truly	random	sample,	in	which	every	member	of	a	well-defined	population	
has	an	equal	chance	of	being	included	in	the	sample,	would	be	representative	of	its	
population.	
	 It’s	extremely	rare	for	researchers	to	obtain	truly	random	samples.	For	example,	it	
might	be	impossible	to	list	all	members	of	a	population,	to	select	people	at	random,	or	to	
obtain	consent	from	everyone	who	is	selected.	The	extent	to	which	a	sample	differs	
systematically	from	a	population	is	referred	to	as	sample	bias.	Some	samples	are	less	
biased,	and	therefore	more	representative,	of	a	population	than	other	samples.	Very	often,	
researchers	use	a	convenience	sample	such	as	students	enrolled	in	introductory	
psychology	courses.	As	the	name	implies,	convenience	samples	can	make	life	easier	for	
researchers.	However,	such	samples	are	seldom	very	representative	of	the	populations	of	
interest.	
	 In	the	IFI	study,	the	population	wasn’t	defined	explicitly.	This	is	common.	One	might	
infer	that	the	population	would	be	all	prisoners.	The	sample	consisted	of	the	177	program	
volunteers	as	well	as	the	1,754	members	of	the	matched	comparison	group,	for	a	total	of	
1,931	individuals.	The	extent	to	which	this	is	a	representative	sample	is	debatable.	On	the	
plus	side,	these	were	actual	prisoners	rather	than	students	or	another	more	convenient	
sample.	On	the	other	hand,	the	treatment	group	consisted	entirely	of	volunteers	for	a	faith-
based	program,	and	they	may	not	be	very	representative	of	all	prisoners.	In	addition,	
because	the	sample	was	drawn	from	a	single	prison,	it	cannot	represent	the	entire	
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population	of	all	prisoners	(e.g.,	it	cannot	simultaneously	represent	male	and	female	
inmates	or	those	at	minimum-,	medium-,	and	maximum-security	prisons).	

Parameters and Statistics 
	 Statistics	are	numerical	values	that	summarize	a	sample	of	data.	Parameters	are	the	
corresponding	numerical	values	for	the	population.	By	way	of	analogy,	we	can	say	that	
sample	:	statistic	::	population	:	parameter.		
	 Because	we	seldom,	if	ever,	have	access	to	data	for	every	member	of	a	population,	
parameters	typically	remain	unknown.	Using	a	sample	of	data,	we	calculate	statistics	to	
estimate	parameters.	The	difference	between	the	true	value	of	a	parameter	and	the	
observed	value	of	a	statistic	is	called	sampling	error.	All	statistics	are	subject	to	some	
degree	of	sampling	error,	and	the	goal	is	to	reduce	this	to	a	minimum.	The	best	way	to	do	
so	is	to	collect	as	much	data	as	possible	because	the	main	determinant	of	sampling	error	is	
sample	size.	The	larger	the	sample,	the	less	sampling	error.		
	 Usually,	sampling	error	decreases	as	a	function	of	the	square	root	of	sample	size.	For	
example,	suppose	you’ve	polled	N	=	100	people	to	see	how	many	plan	to	vote	for	candidate	
X	in	an	upcoming	election.	This	sample	size	would	give	a	margin	of	error	of	about	±10%	
when	estimating	the	parameter	(what	you	want	to	know,	the	percentage	of	people	in	the	
population	who	plan	to	vote	for	candidate	X)	from	your	statistic	(the	percentage	of	people	
who	reported	this	intention	in	your	sample).	To	cut	this	margin	of	error	in	half,	to	±5%,	
you’d	need	to	increase	the	size	of	your	sample	to	N	=	400,	not	just	N	=	200.	Four	times	as	
much	data	(400	/	100	=	4)	yields	twice	as	much	precision	(±10%	/	±5%	=	2).	
	 In	the	IFI	study,	the	most	important	statistics	were	the	percentage	of	individuals	in	each	
group	who	were	rearrested	and	reimprisoned	during	the	two-year	period	following	their	
release	from	prison.	These	statistics	would	provide	pretty	good	estimates	of	their	
corresponding	parameters	because	the	size	of	each	group	was	fairly	large	(n	=	177	for	the	
treatment	group)	to	very	large	(n	=	1,754	for	the	comparison	group).	

Error and Bias 
	 In	everyday	language,	the	terms	“error”	and	“bias”	are	very	similar.	In	research	
methods	and	statistics,	they	have	distinct	meanings.	Error	refers	to	something	that	is	
random,	and	bias	refers	to	something	that	is	systematic.	
	 Sampling	error	illustrates	a	kind	of	random	deviation.	Assuming	that	one	has	a	
representative	sample,	there	is	an	equal	chance	that	any	statistic	calculated	from	the	data	
would	be	an	overestimate	or	an	underestimate	of	the	parameter.	We	don’t	expect	the	
measured	height	of	a	random	sample	of	college	students	(the	statistic)	to	be	a	perfect	
estimate	of	the	average	for	the	entire	population	of	students	at	that	school	(the	parameter).	
There	will	be	some	sampling	error,	due	entirely	to	the	luck	of	the	draw	in	who	happens	to	
be	in	the	sample.	However,	we	also	don’t	expect	our	statistic	(the	sample	average)	to	
diverge	from	the	parameter	(the	population	average)	in	a	systematic	way.	The	fact	that	it’s	
equally	likely	that	the	sample	of	students	is	taller	or	shorter	than	the	population	of	all	
students	demonstrates	that	sampling	error	is	random.	
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	 Sample	bias	illustrates	a	kind	of	systematic	deviation.	When	a	sample	is	not	
representative	of	a	population,	statistics	can	be	expected	to	depart	from	parameters	in	a	
systematic	manner.	For	example,	if	our	sample	of	students	was	drawn	from	psychology	
classes,	it	would	probably	include	a	larger	proportion	of	women	than	in	the	school-wide	
population	of	all	students.	In	this	case,	we	would	expect	the	average	height	in	the	sample	to	
be	lower	than	the	population	average.	Sample	bias	allows	you	to	predict	the	direction	of	the	
difference	between	a	statistic	and	a	parameter.	
	 The	simple	point	to	remember	is	that	“error”	is	random	and	“bias”	is	systematic.	

Descriptive and Inferential Statistics 
	 Descriptive	statistics	are	used	to	summarize	data.	Often,	this	involves	indicating	what	
are	typical	scores	and	how	much	variation	there	is	in	the	sample.	Inferential	statistics	are	
used	to	test	hypotheses,	to	reach	conclusions	extending	beyond	a	sample	of	data.	
	 In	the	IFI	study,	the	percentage	of	individuals	in	each	group	who	were	rearrested	or	
reimprisoned	were	descriptive	statistics.	Though	these	figures	differed	across	groups,	it’s	
impossible	to	tell	just	by	looking	at	them	whether	the	differences	were	more	than	sampling	
error	alone	could	explain.	In	other	words,	the	apparent	differences	between	the	groups	in	
the	sample	may	not	correspond	to	actual	differences	between	groups	in	the	population.	To	
test	this	would	require	inferential	statistics,	which	were	not	presented	in	the	executive	
summary.2	Inferential	statistics	require	us	to	determine	how	large	a	difference	we	would	
expect	to	occur	by	chance	alone.	This	provides	a	context	for	judging	whether	or	not	we	
believe	the	observed	difference	provides	compelling	evidence	that	the	treatment	had	some	
effect.	

Independent and Dependent Variables 
	 An	independent	variable	is	either	manipulated	or	measured,	and	it	is	used	to	predict	
scores	on	a	dependent	variable.	Some	sources	differentiate	between	“true”	independent	
variables,	which	are	strictly	manipulated	in	experimental	designs,	and	subject	variables	
that	are	measured.	We	will	adopt	the	convention	used	in	most	statistics	texts	by	using	the	
term	“independent	variable”	more	inclusively.	
	 Whether	manipulated	or	measured,	independent	variables	are	conceptualized	as	causal	
factors.	Dependent	variables	are	conceptualized	as	outcomes.	By	way	of	analogy,	we	can	
say	that	independent	variable	:	cause	::	dependent	variable	:	effect.		
	 In	the	IFI	study,	the	only	independent	variable	was	group	membership,	indicating	
whether	each	individual	was	in	the	treatment	group	or	the	matched	comparison	group.	The	
primary	dependent	variables	were	rearrest	and	reimprisonment.	The	researchers	wanted	
to	test	the	hypothesis	that	members	of	the	treatment	group	would	have	lower	rates	of	
rearrest	and	reimprisonment	than	members	of	the	comparison	group.	

																																																								
2	We’ll	revisit	these	data	to	calculate	the	appropriate	inferential	statistics	in	a	later	chapter.	
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Conceptual and Operational Definitions 
	 Whereas	the	conceptual	definition	of	a	variable	captures	its	essence	and	serve	as	a	
shorthand	for	ease	of	communication,	the	operational	definition	of	a	variable	indicates	
precisely	how	it’s	measured	in	a	particular	study.	For	example,	a	researcher	might	want	to	
study	aggression.	That’s	an	important	concept,	and	surely	eveyone	has	some	idea	what	
aggression	means.	At	the	same	time,	it’s	pretty	vague.	Does	the	researcher	have	in	mind	
physical	aggression	(e.g.,	hitting	or	kicking	someone),	verbal	aggression	(e.g.,	taunting	or	
insulting	someone),	or	relational	aggression	(e.g.,	excluding	someone	from	a	group).	Even	
these	are	conceptual	distinctions,	and	a	complete	operationalization	of	the	variable	
requires	specifying	in	detail	how	aggression	was	measured.	
	 In	the	IFI	study,	the	conceptual	definition	of	the	dependent	variable	was	recidivism,	the	
commission	of	crimes	after	release	from	prison.	This	was	operationalized	in	two	ways,	both	
of	which	involved	a	period	of	two	years	following	release	from	prison.	Specifically,	the	
investigators	coded	whether	or	not	an	individual	was	rearrested	or	reimprisoned	during	
the	post-release	period.	Each	individual	received	a	score	of	“yes”	or	“no”	on	each	of	these	
variables.	

Measurement Scales 
	 The	kinds	of	statistical	analyses	that	we	can	perform	are	determined	in	part	by	the	
types	of	data	we	have	collected	and	the	ways	that	the	variables	were	measured.	The	
standard	typology	includes	four	scales	of	measurement:	Nominal,	ordinal,	interval,	and	
ratio.	

Nominal Scale 
	 The	simplest	type	of	data	consists	of	categories	that	cannot	be	placed	into	any	
meaningful	order.	There	may	be	only	two	categories	(e.g.,	male,	female)	or	more	(e.g.,	
marital	status,	classified	as	married,	divorced,	separated,	widowed,	or	never	married).	
These	variables	are	measured	using	a	nominal	scale.	“Nominal”	refers	to	the	fact	that	
categories	can	only	be	named,	not	organized	further.	

Ordinal Scale 
	 The	next	type	of	data	consists	of	values	that	can	be	rank-ordered.	For	example,	
artworks	can	be	subjectively	rated	as	high,	moderate,	or	low	in	creativity,	and	competitors	
in	a	race	can	be	scored	as	finishing	1st,	2nd,	3rd,	and	so	forth.	These	variables	are	measured	
using	an	ordinal	scale.	“Ordinal”	refers	to	the	fact	that	scores	can	be	arranged	in	order,	
even	though	the	actual	differences	between	neighboring	scores	may	be	highly	uneven	(e.g.,	
a	smaller	gap	between	1st	and	2nd	place	than	between	2nd	and	3rd	place).	

Interval Scale 
	 The	next	type	of	data	consists	of	values	that	can	be	ranked	and	for	which	the	differences	
between	neighboring	values	are	equivalent.	For	example,	IQ	tests	are	constructed	such	that	
the	difference	between	scores	of	90	and	100	is	equivalent	to	the	difference	between	scores	
of	100	and	110.	This	variable	is	measured	using	an	interval	scale.	“Interval”	refers	to	the	
fact	that	the	gaps,	or	intervals,	between	scores	are	equivalent	along	the	scale.	
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Ratio Scale 
	 The	final	type	of	data	not	only	has	the	property	of	equal	intervals,	but	also	that	there	
exists	a	true	zero	point.	For	example,	physical	measurements	such	as	height	and	weight	can	
be	used	to	form	ratios.	Even	though	nobody	can	actually	have	a	height	or	weight	of	zero,	
this	value	exists	and	is	easy	to	conceptualize.	The	same	cannot	be	said	for	a	variable	like	IQ.	
No	matter	how	we	define	intelligence,	there	is	no	such	thing	as	its	complete	absence	in	any	
person.	As	much	as	we	might	be	tempted	to	say	that	someone	is	twice	as	smart	as	someone	
else,	this	isn’t	meaningful	in	the	same	way	that	we	can	say	that	this	adult	is	twice	as	tall	as	
that	child,	or	that	one	person	is	two-thirds	the	weight	of	another.	Variables	such	as	height	
or	weight	are	measured	using	a	ratio	scale.	“Ratio”	refers	to	the	fact	that	ratios	of	one	score	
to	another	are	meaningful.		
	 In	the	IFI	study,	each	of	the	variables	was	measured	using	a	nominal	scale.	The	
independent	variable	consisted	of	membership	in	either	the	treatment	or	matched	
comparison	group.	The	dependent	variables	consisted	of	scores	of	“yes”	or	“no”	for	rearrest	
and	reimprisonment.	It’s	important	to	differentiate	between	the	dependent	variables	
themselves	and	the	statistical	summary	of	the	data.	For	an	individual	in	this	study,	there	
were	only	two	possible	scores	on	each	of	the	outcome	measures—someone	either	was	or	
was	not	rearrested,	and	either	was	or	was	not	reimprisoned—and	that’s	why	these	are	
nominal	data.	When	the	scores	on	the	dependent	variables	are	summarized,	the	rates	could	
vary	from	0%	to	100%.	That	still	doesn’t	make	this	quantitative	data.	The	type	of	data	
depends	only	on	how	individuals’	scores	are	scaled,	not	on	how	we	later	summarize	the	
data	for	a	larger	group.	

Threats to Internal Validity 
	 Internal	validity	is	the	extent	to	which	a	causal	conclusion	can	be	drawn	from	a	study’s	
findings.	A	study	has	strong	internal	validity	when	it	has	been	designed	to	minimize	
confounds,	sources	of	bias	that	lead	to	alternative	explanations	for	the	results.	There	are	
many	potential	threats	to	internal	validity.	Some	of	these	are	fairly	unique	to	particular	
studies,	but	a	handful	are	among	the	most	commonly	occurring	problems.	In	this	section,	
we’ll	review	the	threats	to	internal	validity	that	are	most	important	to	consider.	
	 In	thinking	about	internal	validity,	it’s	critical	to	pay	close	attention	to	whether	a	
potential	confound	results	in	a	systematic	bias	across	conditions	in	a	study.	If	an	
uncontrolled	influence	would	be	expected	to	have	different	effects	on	outcomes	in	different	
conditions,	that	is	a	threat	to	internal	validity	because	any	observed	differences	across	
conditions	may	be	attributable	to	the	confound.	On	the	other	hand,	if	an	uncontrolled	
influence	would	be	expected	to	have	the	same	effect	on	outcomes	in	different	conditions,	
this	is	not	a	threat	to	internal	validity.	It	does	not	pose	an	alternative	explanation	for	any	
observed	differences	across	conditions.	For	example,	because	some	amount	of	sampling	
error	is	always	present,	statistics	never	estimate	parameters	with	perfect	precision.	This	
doesn’t	pose	a	threat	to	internal	validity,	though,	because	it’s	a	source	of	error	rather	than	
bias.	In	other	words,	sampling	error	adds	random	noise	to	the	analysis,	but	it	doesn’t	bias	
the	findings	in	favor	of	one	condition	relative	to	another.	
	 Many	threats	to	internal	validity	can	be	prevented	by	careful	research	design	in	which	
the	outside	influence	is	not	eliminated,	but	made	to	cancel	out	across	conditions.	For	
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example,	random	assignment	of	subjects	to	experimental	conditions	can	be	helpful	to	
equate	groups	in	many	ways.	Individual	differences	that	can	influence	the	dependent	
variable	are	not	eliminated	by	randomization,	but	they	are	equated	across	conditions.	
Random	assignment	tends	to	be	more	effective	as	sample	size	increases	because	this	makes	
it	more	likely	that	individual	differences	will	cancel	out	across	conditions.	With	very	small	
samples,	groups	might	still	differ	in	important	ways	despite	randomization.	

History 
	 Events	that	take	place	between	measurements	in	a	study,	but	that	are	not	related	to	the	
independent	variable(s)	under	investigation,	can	bias	the	findings.	Apparent	changes	over	
time	might	result	from	history	effects	rather	than	the	operation	of	other	causal	influences	
being	studied.	For	example,	suppose	that	you	happened	to	be	studying	changes	in	anxiety	
as	children	age,	and	the	terrorist	attacks	of	September	11	occurred	right	in	the	middle	of	
your	study.	It	might	be	impossible	to	differentiate	the	normal	developmental	trajectory	of	
anxiety	from	changes	caused	by	this	outside	event.	
	 When	comparing	groups,	randomly	assigning	subjects	to	conditions	controls	history	
effects	because	they	should	affect	outcomes	in	each	condition	to	the	same	extent.	Even	
though	random	assignment	does	not	reduce,	let	alone	eliminate,	history	effects,	it	does	
mean	that	they	should	cancel	out	across	conditions	and	no	longer	pose	a	threat	to	internal	
validity.	

Maturation 
	 Over	long	periods	of	time,	subjects	tend	to	grow	older,	wiser,	stronger,	and	healthier,	
and	over	short	periods	of	time	they	can	become	tired,	bored,	and	so	forth.	Apparent	
changes	over	time	may	be	attributable	to	maturation	effects.	For	example,	performance	on	
a	test	given	early	in	an	experimental	session	may	be	superior	to	performance	on	a	later	test	
not	because	of	real	differences	in	ability	assessed	by	these	tests,	but	because	subjects	are	
less	attentive	or	motivated	toward	the	end	of	a	lengthy	session.	
	 As	with	history	effects,	random	assignment	to	conditions	will	not	eliminate	maturation	
effects,	but	it	can	cause	them	to	cancel	out	across	conditions.	When	each	subject	will	
participate	in	more	than	one	condition	in	a	study,	another	useful	design	strategy	is	to	
randomize	the	order	of	conditions.	This	technique	is	called	counterbalancing,	and	it	can	
control	maturational	influences	by	ensuring	that	they	will	affect	outcomes	in	each	
condition	to	the	same	extent.	Like	random	assignment,	counterbalancing	doesn’t	eliminate	
maturation	effects	but	it	can	cancel	them	out	across	conditions.	
	 These	strategies	are	not	mutually	exclusive	because	random	assignment	deals	with	
differences	between	two	or	more	groups	(a	between-subjects	component	of	a	design)	and	
counterbalancing	deals	with	differences	within	each	group	(a	within-subjects	component	of	
a	design).	If	your	study’s	design	includes	both	between-	and	within-subjects	components,	
you	can	randomly	assign	subjects	to	different	groups	and	counterbalance	the	order	of	
conditions	within	each	group.	Both	random	assignment	and	counterbalancing	are	desirable	
features	whenever	they	can	be	used,	alone	or	in	combination.	
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Instrumentation 
	 When	the	nature	or	process	of	measurement	differs	either	across	conditions	or	over	the	
course	of	a	study,	this	can	bias	the	results.	Problems	of	instrumentation	can	involve	
differences	in	definitions,	scoring	rules,	rating	criteria,	or	the	functioning	of	equipment.	
	 Sound	research	designs	will	include	precautions	to	ensure	that	measurement	
techniques	remain	constant	across	conditions	and	duration	of	a	study.	For	example,	the	
agreement	of	independent	raters	should	be	checked	periodically	to	ensure	that	they	
continue	to	apply	the	same	criteria	when	observing	behavior.	Straying	from	the	initial	
criteria	is	known	as	rater	drift.	Similarly,	any	device	used	to	present	stimuli	or	record	
responses	should	be	tested	regularly	to	ensure	that	it	is	functioning	properly.	

Selection 
	 Individuals	in	different	conditions	may	differ	from	one	another	at	the	outset	of	a	study	
in	ways	that	are	confounded	with	the	independent	variable.	For	example,	suppose	that	a	
researcher	compares	the	earnings	of	husbands	and	wives	to	test	for	gender	differences.	
There	is	a	selection	problem	here,	namely	a	confound	with	age.	Husbands	tend	to	be	a	few	
years	older	than	their	wives,	and	earnings	also	tend	to	increase	with	age.	If	husbands	earn	
more,	it	would	be	impossible	to	tease	apart	the	influences	of	gender	and	age	as	causes.	
	 Selection	effects	are	especially	problematic	when	subjects	have	not	been	randomly	
assigned	to	conditions.	When	people	choose	their	own	conditions	(e.g.,	seeking	vs.	not	
seeking	counseling	for	a	psychological	problem),	or	when	people	bring	pre-existing	
differences	to	a	study	(e.g.,	different	levels	of	self-esteem),	there	may	be	many	plausible	
alternative	explanations	for	any	differences	observed	across	groups.	
	 Random	assignment	to	conditions	yields	groups	that	should	not	systematically	differ.	
As	we	have	seen,	this	neither	eliminates	nor	reduces	the	influence	of	individual	differences,	
but	it	should	cancel	them	out	across	conditions.	When	subjects	cannot	be	randomly	
assigned,	measuring	potential	confounding	variables	allows	you	to	at	least	include	them	in	
the	analysis	to	test	for	their	influence.	For	example,	recording	the	ages	of	husbands	and	
wives	would	enable	you	to	perform	analyses	that	test	for	both	gender	and	age	differences.	

Mortality 
	 Over	the	course	of	a	study,	some	subjects	may	die,	drop	out,	or	refuse	to	continue	their	
participation.	This	threat	to	internal	validity	is	known	as	mortality.	Because	the	potential	
bias	is	due	to	missing	data	and	not	necessarily	death,	this	threat	is	also	known	as	dropout	
or	attrition.	
	 If	mortality	is	caused	by	factors	unrelated	to	the	focus	of	a	study,	it	reduces	sample	size	
but	may	pose	no	threat	to	internal	validity.	For	example,	in	a	longitudinal	study	some	
subjects	may	move	away	and	fail	to	provide	new	contact	information.	If	it	can	be	assumed	
that	those	who	move	do	not	differ	systematically	from	those	who	do	not	move	on	any	of	the	
variables	being	studied,	then	this	is	a	random	source	of	missing	data	rather	than	a	bias	
confounding	the	results.	
	 If	mortality	is	caused	by	factors	related	to	the	focus	of	a	study,	and	in	particular	if	there	
is	differential	dropout	across	conditions,	this	can	pose	a	threat	to	internal	validity.	For	
example,	in	a	study	of	a	new	drug	treatment	using	a	treatment	vs.	placebo	group	design,	if	
those	who	experience	side	effects	of	the	treatment	refuse	to	continue	taking	it	and	drop	out	
of	the	study	at	a	higher	rate	than	those	who	received	the	placebo,	this	will	bias	the	results.	
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The	drug	may	appear	beneficial	only	because	those	who	had	negative	reactions	dropped	
out	of	the	study,	leaving	only	those	who	had	positive	reactions	in	the	treatment	group.	
Alternatively,	in	a	study	of	a	powerful	drug,	subjects	who	experience	no	side	effects	of	any	
kind	may	suspect	that	they’re	in	the	placebo	group.	Not	only	does	this	reduce	the	value	of	
having	a	placebo	group	to	control	for	the	power	of	suggestion,	but	it	also	might	lead	some	
subjects	in	that	group	to	discontinue	their	participation	because	they	believe	it’s	a	waste	of	
their	time.3	
	 Precautions	against	mortality	include	random	assignment	to	conditions	(so	that	
dropout	should	be	equalized	across	groups),	minimizing	the	number	of	follow-up	
measurements,	and	taking	steps	to	stay	in	touch	with	subjects	and	motivate	them	to	return	
for	follow-up	sessions.	If	the	concern	is	that	attrition	might	yield	too	small	a	sample	of	data,	
which	threatens	the	power	of	statistical	tests	but	not	the	internal	validity	of	the	study,	an	
investigator	might	want	to	begin	with	an	especially	large	sample	size	to	allow	for	
substantial	dropout.	

Reactivity  
	 The	act	of	measuring	or	observing	behavior	can	influence	that	behavior.	One	common	
source	of	such	reactivity	is	the	repeated	testing	of	subjects,	because	practice	at	or	
knowledge	of	previous	tests	can	affect	subsequent	performance.	Reactivity	is	also	known	
as	a	testing	or	repeated	testing	problem.	
	 Likewise,	simply	knowing	what	a	researcher	is	studying	can	influence	subjects’	
behavior.	Experimenter	bias	refers	to	any	influence	on	subjects—intentional	or	
otherwise—that	biases	the	results	in	support	of	the	researcher’s	hypothesis.	Demand	
characteristics	are	subtle	cues	provided	to	subjects	that	hint	at	expected	responses	or	
behaviors.	
	 Several	kinds	of	precautions	can	be	taken	to	guard	against	reactivity.	In	a	blind	study,	
subjects	do	not	know	what	condition	they	were	assigned	to,	thereby	eliminating	the	
possibility	that	such	knowledge	could	affect	their	behavior.	In	a	double-blind	study,	
neither	the	subjects	nor	the	experimenters	who	interact	with	them	know	who	was	assigned	
to	which	condition.	This	further	reduces	the	potential	for	bias	because	experimenters	
cannot	leak	information	about	subjects’	assignment	to	conditions,	not	even	accidentally.	
	 As	we’ll	see,	there	are	many	important	decisions	that	must	be	made	to	analyze	data	in	
the	most	appropriate	manner.	How	the	data	analyst	makes	critical	choices	can	affect	the	
results.	For	this	reason,	there	is	even	a	triple-blind	procedure	in	which	neither	the	
subjects,	the	experimenters,	nor	the	data	analysts	know	who	was	assigned	to	which	
condition	in	a	study.	For	example,	data	analysts	can	be	asked	only	to	compare	outcomes	for	
conditions	A	and	B,	without	knowing	which	is	the	treatment	and	which	the	control	group.	
	 Other	precautions	against	reactivity	include	training	experimenters	to	avoid	biases	or	
demand	characteristics,	minimizing	the	number	of	times	that	the	same	tests	are	used,	and	
observing	subjects	covertly	rather	than	overtly.	

																																																								
3	For	this	reason,	researchers	often	use	a	so-called	“active	placebo”	that	doesn’t	contain	the	active	ingredient	
of	the	treatment	but	does	mimic	its	side	effects.	
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Statistical Regression  
	 Subjects	selected	on	the	basis	of	extreme	scores	on	one	variable	will	tend	to	score	at	
less	extreme	levels	on	another	variable.	This	phenomenon	of	statistical	regression	is	
expected	whether	the	two	variables	are	the	same	measure	collected	at	two	points	in	time	
(e.g.,	IQ	tested	at	ages	20	and	21)	or	different	measures	collected	at	the	same	point	in	time	
(e.g.,	IQ	and	extraversion).	Someone	who	receives	a	very	high	score	at	age	20	will	be	
expected	to	score	above	average,	but	less	so,	at	age	21.	Likewise,	someone	who	receives	a	
very	low	score	at	age	20	will	be	expected	to	score	below	average,	but	less	so,	at	age	21.	For	
this	reason,	statistical	regression	is	often	referred	to	as	regression	toward	the	mean,	
where	“mean”	refers	to	an	average	score.	
	 Statistical	regression	is	a	more	subtle	phenomenon	than	the	other	threats	to	internal	
validity.	It	can	be	difficult	to	grasp	and	easy	to	misunderstand.	The	reason	that	statistical	
regression	occurs	is	that	an	observed	score—what	we	see	in	our	data—reflects	the	sum	of	
two	factors,	true	score	and	measurement	error.	True	score	is	like	talent,	fairly	stable	
over	time,	and	measurement	error	is	like	luck,	randomly	distributed	over	time.		
	 If	you	select	people	with	the	very	highest	scores	on,	say,	an	IQ	test,	part	of	why	they	
happened	to	score	that	high	on	that	occasion	will	be	talent,	or	exceptional	levels	of	general	
mental	ability,	but	part	will	be	good	luck,	perhaps	guessing	correctly	more	often	than	
would	usually	be	the	case.	High	ability	alone	gets	people	near	the	top,	but	among	all	those	
with	high	ability,	those	at	the	very	top	are	those	who	also	experienced	good	luck.	When	you	
test	the	same	people	again,	though,	luck	won’t	tend	to	repeat	itself.	The	people	with	the	
very	highest	scores	the	first	time	around	will	still	score	above	average,	but	not	as	far	above	
average.	They	will	regress	toward	their	own	mean,	their	true	score.	A	new,	and	partially	
overlapping,	set	of	people	will	attain	the	very	highest	scores	this	time.	They	also	have	high	
ability,	but	they	experienced	the	best	luck	this	time	around.	
	 All	of	this	is	equally	true	for	those	who	score	on	the	low	end.	It	takes	a	combination	of	
low	ability	and	bad	luck	to	be	among	the	very	lowest	of	scorers	on	any	particular	occasion.		
	 Confusion	about	statistical	regression	often	stems	from	misunderstanding	one	of	two	
things.	First,	regression	operates	at	the	level	of	individuals.	A	person’s	performance	will	
tend	to	regress	toward	his	or	her	own	personal	mean,	or	true	score,	not	toward	a	group	
mean.	Second,	regression	is	distinct	from	genuine	change.	A	person’s	performance	can	
improve	over	time,	but	statistical	regression	still	occurs	relative	to	this	changing	mean.	All	
of	this	can	be	challenging	to	grasp	in	the	abstract,	so	let’s	consider	a	concrete	example.	
	 Imagine	that	Zeke	is	fairly	new	to	basketball	and	wants	to	improve	his	free-throw	
shooting.	He	decides	to	practice	by	shooting	a	lot	of	free	throws	every	day.	From	day	to	day,	
the	percentage	of	shots	that	he	makes	will	vary.	There	are	two	factors	at	work,	talent	and	
luck.	Suppose	that	when	Zeke	begins	he	can	make,	on	average,	30%	of	his	free	throws.	This	
mean	is	a	measure	of	Zeke’s	talent.	If	he	makes	50%	one	day,	well	above	his	mean,	that's	in	
large	part	because	of	good	luck.	We	can	expect	he'll	do	worse	the	next	day	because	luck	is	
random	and	doesn't	tend	to	repeat	itself.	Specifically,	we	expect	Zeke	to	be	closer	to	his	
talent,	his	mean,	the	next	day:	30%.	Likewise,	if	he	makes	only	10%	one	day,	that	unusually	
bad	performance	is	largely	due	to	bad	luck,	and	he'll	probably	do	better,	closer	to	his	mean	
of	30%,	the	next	day.	
	 As	time	goes	by,	Zeke's	daily	practice	will	begin	to	lift	his	average.	Suppose	he	reaches	
the	point,	after	weeks	or	months	of	effort,	that	his	daily	average	is	now	50%.	Day	to	day,	his	
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outcomes	are	now	much	better	than	before,	but	they'll	still	vary	randomly	around	his	new	
mean	of	50%.	If	Zeke	makes	70%	(or	30%)	one	day,	we	should	expect	him	to	be	closer	to	
50%	the	next	day	because	the	good	(or	bad)	luck	is	unlikely	to	repeat	itself.	
	 This	is	regression	toward	the	mean.	Zeke's	performance	outcomes	will	vary	randomly	
(the	luck	component,	or	error)	around	his	mean	(the	talent	component,	or	true	score).	
When	any	particular	performance	deviates	very	far	above	or	below	his	mean,	that's	largely	
due	to	luck,	and	the	next	performance	probably	will	be	closer	to	his	mean,	because	that's	
his	real	level	of	talent.	
	 Naturally,	this	applies	to	everyone,	not	just	Zeke.	If	you	had	100	people	attempt	free	
throws	and	you	selected	those	who	scored	in	the	top	10%	to	be	retested	the	next	day,	you	
should	expect	this	group	to	perform	well—but	not	as	well	as	the	first	time.	Part	of	what	
landed	people	in	the	top	10%	one	day	is	luck,	which	won’t	repeat	itself	for	the	same	people	
every	day.	A	slightly	different	10%	of	these	100	people	will	make	it	to	the	top	the	next	day.		
	 This	is	how	statistical	regression	poses	a	problem	in	research.	When	individuals	are	
selected	based	on	extreme	scores	on	one	measure	(e.g.,	depression	at	time	1),	their	scores	
on	another	measure	(e.g.,	depression	at	time	2)	will	be	less	extreme	due	to	regression	
toward	the	mean.	This	can	easily	be	mistaken	for	genuine	change	(e.g.,	less	depression)	
even	though	it	reflects	nothing	more	than	the	fact	that	measurement	error	is	like	luck	and	
doesn’t	tend	to	repeat	itself.	
	 One	solution	to	this	problem	is	to	select	subjects	at	all	levels,	rather	than	only	at	
extreme	levels,	on	a	measure.	This	is	not	always	feasible.	For	example,	when	studying	
disease	or	disorder,	this	usually	requires	sampling	only	individuals	functioning	relatively	
poorly.	When	subjects	must	be	selected	based	on	extreme	scores,	randomly	assigning	them	
to	conditions	controls	for	statistical	regression	because	this	phenomenon	should	affect	
outcomes	in	each	condition	to	the	same	extent.	For	example,	randomly	assigning	equally	
depressed	subjects	to	treatment	and	control	conditions	will	hold	constant	the	amount	of	
statistical	regression	in	each	group.	Any	differences	observed	across	conditions	could	then	
be	more	safely	attributed	to	treatment	effects	rather	than	regression	toward	the	mean.	

Evaluating External Validity 
	 Whereas	internal	validity	involves	the	soundness	of	causal	conclusions	drawn	from	a	
study’s	findings,	external	validity	involves	the	generalizability	of	those	findings	to	the	
populations,	settings,	outcomes,	and	time	frames	of	genuine	interest.	Often,	there	is	a	trade-
off	between	internal	and	external	validity	such	that	steps	taken	to	strengthen	one	of	these	
comes	at	the	cost	of	weakening	the	other.	Because	peer	reviewers	tend	to	place	much	more	
emphasis	on	the	causal	conclusions	that	can	be	drawn	from	research	than	on	the	
generalizability	of	findings,	investigators	tend	to	shore	up	internal	validity,	even	at	the	
expense	of	external	validity.		
	 This	trade-off	is	understood	well	in	the	realm	of	clinical	psychology.	There’s	an	
important	distinction	between	an	efficacy	study,	which	has	strong	internal	validity,	and	an	
effectiveness	study,	which	has	strong	external	validity.	In	an	efficacy	study,	subjects	must	
meet	stringent	eligibility	criteria	(e.g.,	being	diagnosed	with	a	single	mental	disorder),	
therapy	is	delivered	in	a	controlled	manner	(e.g.,	from	a	treatment	manual),	and	data	are	
analyzed	only	for	subjects	who	complete	all	therapy	sessions.	Exerting	experimental	



	 14	

control	in	these	ways	improves	the	ability	to	draw	conclusions	regarding	cause	and	effect.	
At	the	same	time,	this	limits	the	generalizability	of	those	conclusions	to	clinical	practice.		
	 Effectiveness	studies	are	quite	different.	Eligibility	criteria	are	less	stringent,	which	
allows	a	more	representative	sample	of	patients	to	be	studied.	Therapy	is	delivered	in	a	
more	natural	manner,	better	reflecting	the	personalization	of	treatment	in	practice.	So-
called	“intention-to-treat”	analyses	examine	data	for	all	patients	enrolled	in	the	study,	
which	includes	those	who	chose	to	discontinue	treatment	for	any	reason.	In	all	of	these	
ways,	effectiveness	studies	make	it	more	difficult	to	draw	causal	conclusions,	but	they	do	
make	it	easier	to	generalize	the	results	to	clinical	practice.	
	 Whenever	we	want	to	apply	scientific	theory	and	research,	we	should	consider	how	
well	findings	are	likely	to	generalize	to	the	populations,	settings,	outcomes,	and	time	
frames	of	interest.	Though	many	discussions	of	external	validity	focus	all	or	most	of	their	
attention	on	generalizability	to	populations,	all	four	domains	are	important.4	

Populations 
	 The	first	step	in	thinking	about	external	validity	is	to	determine	the	most	appropriate	
population	for	study.	For	example,	who	are	the	people	that	a	line	of	applied	research	is	
intended	to	help?	Ideally,	a	representative	sample	would	be	recruited	from	this	population.	
In	practice,	it	is	common	for	a	sample	of	convenience	to	be	drawn	from	an	unspecified	
population	that	differs	substantially	from	the	population	of	interest.	
	 In	the	IFI	study,	this	was	handled	very	well	by	recruiting	a	sample	of	actual	prisoners.	
The	results	should	generalize	reasonably	well	to	similar	populations	of	prisoners.	For	
different	populations	(e.g.,	female	or	minimum-security	prisoners),	it’s	less	clear	how	well	
the	findings	would	generalize.	

Settings 
	 	The	next	step	in	thinking	about	external	validity	is	to	determine	the	most	appropriate	
setting.	Where	should	the	study	take	place?	Ideally,	the	setting	would	mimic	the	ways	that	
subjects	would	experience	something	in	the	real	world.	In	practice,	it	is	common	to	collect	
data	in	a	laboratory	than	in	a	more	naturalistic	setting.	
	 In	the	IFI	study,	this	was	also	handled	very	well	by	performing	the	research	in	actual	
prisons.	The	setting	could	not	be	more	naturalistic,	given	the	goals	of	this	applied	research.	

Outcomes 
	 Another	step	in	thinking	about	external	validity	is	to	determine	the	most	appropriate	
measures	to	collect.	What	are	the	outcomes	of	interest?	Ideally,	the	measures	would	be	
those	with	the	most	real-world	significance.	In	practice,	it	is	common	to	collect	“proxy”	
measures.5	Such	data	are	easier	to	collect,	but	more	distant	from	the	outcomes	of	interest.	
	 In	the	IFI	study,	the	outcome	of	greatest	interest	is	recidivism,	or	the	commission	of	
new	crimes	once	released	from	prison.	Because	the	criminal	justice	system	is	not	
omniscient,	it’s	impossible	to	know	for	sure	who	has	or	has	not	committed	crimes.	Many	

																																																								
4	Loyka,	C.,	Ruscio,	J.,	Edelblum,	A.	B.,	Hatch,	L.,	Wetreich,	B.,	&	Zabel,	A.	(in	press).	Weighing	people	rather	
than	food:	A	framework	for	examining	external	validity.	Perspectives	on	Psychological	Science.	
5	The	term	“proxy”	refers	to	a	substitute,	as	in	“voting	by	proxy,”	a	practice	in	which	one	person	designates	a	
representative	to	vote	on	his	or	her	behalf	when	he	or	she	can’t	be	present.	
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crimes	are	undetected	or	unreported,	for	example.	The	researchers	recorded	whether	each	
subject	was	rearrested	and	reimprisoned,	and	these	proxy	measures	should	provide	a	
reasonable	(if	imperfect)	assessment	of	recidivism	that	would	generalize	fairly	well	beyond	
this	study.	

Time Frames 
	 The	final	step	in	thinking	about	external	validity	is	to	determine	the	most	appropriate	
time	frame	for	a	study.	How	long	should	a	study	last?	Can	it	be	performed	in	a	single	
experimental	session	or	are	multiple	sessions	necessary?	Should	follow-up	data	be	
collected?	Ideally,	a	study	would	be	of	sufficient	duration	to	represent	a	treatment	as	it	
would	be	applied	in	practice,	and	follow-up	data	would	be	collected	for	a	long	enough	
period	to	test	for	enduring,	rather	than	fleeting,	effects.	In	practice,	it	is	common	to	test	
only	a	simplified,	condensed	version	of	a	treatment	and	to	collect	little,	if	any,	follow-up	
data.	Perhaps	for	the	simple	reason	that	they’re	much	easier	to	conduct,	single-session	
experiments	are	the	norm,	not	the	exception,	even	in	applied	research.	
	 In	the	IFI	study,	the	treatment	phase	of	the	study	lasted	for	16	to	24	months,	with	6	to	
12	months	of	aftercare	following	release	from	prison.	No	compromises	were	made	when	
implementing	the	IFI	program.	With	respect	to	outcomes,	recidivism	was	tracked	during	a	
two-year	follow-up	period.	Findings	regarding	the	difference	(or	lack	thereof)	between	the	
IFI	and	matched	control	groups	may	or	may	not	generalize	to	even	longer	time	frames,	but	
two	years	is	a	pretty	good	starting	point.	For	example,	the	researchers	used	a	sufficiently	
long	follow-up	period	to	avoid	floor	effects	(recidivism	rates	close	to	0%	in	each	group),	
which	means	that	any	actual	differences	between	groups	had	the	opportunity	to	reveal	
themselves.	

Problems 
	 The	following	problems	refer	to	a	study	designed	to	test	whether	superficial,	visual	cues	
influence	the	amount	of	food	we	eat.6	Fifty-four	undergraduate	students	volunteered	to	eat	
a	soup-only	lunch	at	a	restaurant-style	table	in	a	research	lab.	Subjects	were	randomly	
assigned	to	eat	what	was	described	as	a	new	recipe	of	tomato	soup	from	either	a	normal	
bowl	or	a	self-filling	bowl	that	was	surreptitiously	rigged	to	slowly	refill	itself	as	soup	was	
consumed.	Enough	time	was	allowed	for	subjects	to	eat	as	much	soup	as	they	liked,	and	the	
number	of	ounces	of	soup	each	person	ate	was	measured	and	recorded.	Subjects	were	also	
asked	how	many	ounces	of	soup	they	thought	they’d	eaten.	Though	there	was	no	
statistically	significant	difference	in	perceived	consumption	across	conditions,	on	average	
subjects	ate	significantly	more	soup	from	the	self-filling	bowl	(14.7	±	8.4	oz.)	than	from	the	
normal	bowl	(8.5	±	6.1	oz.).	The	researchers	concluded	that	“people	use	their	eyes	to	count	
calories	and	not	their	stomachs.”	
1.	 Is	this	research	exploratory	or	hypothesis-testing?	How	can	you	tell?	

2.	 Is	this	research	experimental	or	correlational?	How	can	you	tell?	

																																																								
6	Wansink,	B.,	Painter,	J.	E.,	&	North,	J.	(2005).	Bottomless	bowls:	Why	visual	cues	of	portion	size	may	
influence	intake.	Obesity	Research,	13,	93-100.	
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3.	 What	is	the	population?	Was	this	stated	explicitly	or	did	you	have	to	infer	it?	
4.	 What	is	the	sample?	To	what	extent	do	you	believe	this	sample	is	representative	of	the	

population?	
5.	 What	is	the	independent	variable,	conceptually?	How	was	it	operationally	defined?	

What	is	its	scale	of	measurement?	

6.	 What	are	the	dependent	variables,	conceptually?	How	was	each	operationally	defined.	
What	is	the	scale	of	measurement	for	each?	

7.	 What	descriptive	statistics	are	presented?	

8.	 Would	you	expect	there	to	be	a	lot	of	sampling	error	surrounding	these	statistics?	Why	
or	why	not?	

9.	 Did	the	investigators	use	any	inferential	statistics?	How	can	you	tell?	
10.	Comment	on	the	internal	validity	of	this	study.	Review	the	list	of	common	threats	to	

internal	validity	and	explain	whether	each	of	these	is,	or	is	not,	a	concern	here.	

11.	Comment	on	the	external	validity	of	this	study.	Review	the	four	domains	to	consider	
and	explain	whether	each	of	these	is	handled	well,	or	poorly,	here.	

*	*	*	

	 The	following	problems	refer	to	a	study	of	links	between	obesity,	physical	activity,	and	
caloric	intake.7	Using	a	very	large	probability	sample	of	National	Health	and	Nutritional	
Examination	Survey	data	collected	from	U.S.	adults	between	1988	and	2010,	the	authors	
performed	a	wide	range	of	statistical	analyses	to	examine	the	relationships	between	many	
variables.	They	found	that	both	waist	circumference	and	body	mass	index	(BMI)	increased	
by	about	0.3%	to	0.4%	per	year,	which	was	a	statistically	significant	change.	Among	
women,	there	was	an	increase	from	19.1%	to	51.7%	who	reported	no	leisure-time	physical	
activity;	the	increase	for	men	was	from	11.4%	to	43.5%.	Both	of	these	increases	were	
statistically	significant.	There	was	no	significant	change	in	daily	caloric	intake,	as	estimated	
by	trained	dietary	interviewers	using	a	24-hour	recall	technique.	Both	waist	circumference	
and	BMI	trends	were	associated	significantly	with	physical	activity	levels,	but	not	with	
caloric	intake.	The	researchers	concluded	that	the	increasing	prevalence	of	obesity	may	
have	more	to	do	with	decreases	in	physical	activity	than	with	changes	in	food	
consumption.8		
12.	Is	this	research	exploratory	or	hypothesis-testing?	How	can	you	tell?	

13.	Is	this	research	experimental	or	correlational?	How	can	you	tell?	
14.	What	is	the	population?	Was	this	stated	explicitly	or	did	you	have	to	infer	it?	

																																																								
7	Ladabaum,	U.,	Mannalithara,	A.,	Myer,	P.	A.,	&	Singh,	G.	(2014).	Obesity,	abdominal	obesity,	physical	activity,	
and	caloric	intake	in	US	adults:	1988	to	2010.	American	Journal	of	Medicine,	127,	717-727.	
8	A	report	based	on	data	from	Britain	reached	a	similar	conclusion:	“The	rise	in	obesity	has	been	primarily	
caused	by	a	decline	in	physical	activity	at	home	and	in	the	workplace,	not	an	increase	in	sugar,	fat,	or	calorie	
consumption.”	See	Snowdon	(2014),	“The	Fat	Lie,”	Institute	for	Economic	Affairs.	
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15.	What	is	the	sample?	To	what	extent	do	you	believe	this	sample	is	representative	of	the	
population?	

16.	What	are	the	independent	variables,	conceptually?	How	was	each	operationally	
defined?	What	is	the	scale	of	measurement	for	each?	

17.	What	are	the	dependent	variables,	conceptually?	How	was	each	operationally	defined?	
What	is	the	scale	of	measurement	for	each?	

18.	What	descriptive	statistics	are	presented?	

19.	Would	you	expect	there	to	be	a	lot	of	sampling	error	surrounding	these	statistics?	Why	
or	why	not?	

20.	Did	the	investigators	use	any	inferential	statistics?	How	can	you	tell?	

21.	Comment	on	the	internal	validity	of	this	study.	Review	the	list	of	common	threats	to	
internal	validity	and	explain	whether	each	of	these	is,	or	is	not,	a	concern	here.	

22.	Comment	on	the	external	validity	of	this	study.	Review	the	four	domains	to	consider	
and	explain	whether	each	of	these	is	handled	well,	or	poorly,	here.	

*	*	*	

23.	If	the	margin	of	error	for	a	poll	of	N	=	400	is	±5%,	how	many	people	would	need	to	be	
polled	for	the	margin	of	error	to	be	±1%?	

24.	In	the	IFI	study,	there	were	177	members	of	the	treatment	group	and	1,754	members	of	
the	matched	comparison	group.	Do	the	unequal	group	sizes	pose	a	problem	related	to	
sample	bias?	How	about	sampling	error?	

Problems 1 – 11 are due at the beginning of class. 
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2. Describing Data 

Overview 
	 The	first	step	in	working	with	data	should	always	be	to	take	a	careful	look	at	it.	Before	
we	use	descriptive	statistics	to	summarize	responses,	let	alone	using	inferential	statistics	to	
test	hypotheses,	we	need	to	know	a	lot	about	the	data.	Do	the	data	differ	across	a	series	of	
discrete	categories	(e.g.,	sex,	race,	marital	status)?	If	so,	it’s	pretty	simple	to	indicate	which	
categories	occur	more	or	less	frequently.	Qualitative	data	are	easy	to	summarize.	
	 Alternatively,	do	the	data	differ	along	a	continuum	of	values	(e.g.,	IQ	scores,	ratings	on	a	
7-point	Likert	scale)?	In	this	case,	what’s	the	shape	of	the	distribution	of	scores?	Are	they	
bunched	together	or	widely	dispersed?	Are	there	are	any	outliers,	atypical	scores	either	
caused	by	data	entry	mistakes	or	representing	unusual	responses	that	could	exert	too	
much	influence	on	results?	Quantitative	data	are	more	complex	to	summarize,	and	because	
it’s	not	always	possible	to	present	tables	or	graphs	to	show	all	scores,	numerical	
summaries	can	help	paint	a	mental	picture	of	what	the	distribution	looks	like.	This	chapter	
will	emphasize	two	features	of	score	distributions:	central	tendency,	which	locates	the	
center	of	a	distribution,	and	variability,	which	indicates	how	widely	scores	are	spread.	
	 Particularly	when	we’re	interested	in	using	descriptive	statistics	as	estimates	of	
population	parameters,	well-chosen	measures	of	central	tendency	and	variability	will	be	
highly	stable.	This	means	that	they	would	be	consistent	when	calculated	for	random	
samples	from	the	same	population.	The	less	stable	a	measure,	the	more	it	varies	from	
sample	to	sample,	and	the	more	poorly	it	estimates	its	population	parameter.	

Qualitative Data 
	 For	a	strictly	categorical	variable	(e.g.,	anything	measured	using	a	nominal	scale),	a	
frequency	table	or	a	bar	chart	is	simple	to	construct.	Here	are	examples	of	each	for	a	
sample	of	114	inmates	at	a	federal	corrections	facility	who	were	released	on	parole:	
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	 In	the	frequency	table,	the	first	column	lists	the	categories	(White,	Black,	Other).	The	
“Frequency”	column	shows	the	number	of	cases	belonging	to	each	category.	The	“Percent”	
column	shows	the	percent	of	cases	for	each	category.	These	percentages	are	calculated	out	
of	the	total	number	of	cases	(N	=	114).	The	“Valid	Percent”	column	calculates	percentages	
after	excluding	any	missing	data.	Because	there	are	no	missing	values	in	this	instance—
race	is	provided	for	all	114	cases—the	values	are	identical	for	percent	and	valid	percent.	
Finally,	the	“Cumulative	Percent”	column	accumulates	the	percentages	across	categories.	
This	is	not	meaningful	for	qualitative	data	and	should	be	ignored	in	this	case.	
	 For	qualitative	data,	a	bar	chart	plots	the	frequency	of	scores	for	each	category.	The	
bars	themselves	should	not	touch	one	another.	This	separation	between	the	bars	in	a	bar	
chart	signals	to	the	informed	reader	that	the	data	are	qualitative.	The	gaps	imply	a	
discontinuity	between	the	categories	that	the	bars	represent.	If	you’re	describing	your	data	
and	have	enough	space	to	include	a	graph,	a	bar	chart	can	communicate	very	intuitively	
and	effectively	to	readers.	
	 If	you	don’t	have	the	luxury	of	that	much	space,	you	might	need	to	stick	to	a	text-based	
summary	written	from	the	values	in	a	frequency	table.	Because	there	are	so	few	categories,	
it	would	be	reasonable	to	list	them	all,	indicating	the	number	and/or	percentage	of	cases	
belonging	to	each.	For	example,	you	could	report	that	the	sample	of	114	parolees	includes	
28	white	individuals	(24.6%),	70	black	individuals	(61.4%),	and	16	individuals	of	other	
races	(14.0%).	If	the	number	of	categories	is	too	large	for	you	to	devote	space	to	listing	
them	all,	you	can	list	those	that	occur	most	often	and	then	indicate	how	many	cases	belong	
to	all	other	categories.	

Quantitative Data 
	 In	this	same	parole	data	set,	quantitative	scores	are	available	for	the	Lifestyle	
Criminality	Screening	Form	(LCSF).	The	LCSF	assesses	factors	related	to	a	criminal	lifestyle	
using	14	items,	and	scores	can	range	from	0	to	22.	Whereas	race	represents	qualitative	
differences	between	individuals—variation	across	discrete	categories	that	cannot	even	be	
rank-ordered—LCSF	scores	vary	along	a	continuum	from	low	to	high.	Several	kinds	of	tools	
can	be	helpful	to	understand	and	summarize	a	quantitative	variable	like	this,	including	a	
frequency	table,	graphs,	and	descriptive	statistics.	
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Frequency Table 
	 The	frequency	table	for	these	114	parolees’	LCSF	scores	is	shown	below:	

	
	 Though	scores	can	range	up	to	22,	nobody	in	this	sample	scored	above	15.	There	were	
very	few	scores	at	the	extremes,	with	most	clustered	closer	to	the	middle.	The	“Cumulative	
Percent”	values	are	meaningful	for	quantitative	data	such	as	these.	They	convert	each	score	
in	the	table	to	a	percentile,	which	indicates	how	many	scores	were	at	or	below	that	value.	
For	example,	83.3%	of	scores	were	at	or	below	10.	
	 When	a	quantitative	variable	spans	a	very	large	number	of	distinct	values,	it	can	be	
useful	to	construct	a	grouped	frequency	table.	Whereas	the	example	shown	above	is	
ungrouped,	meaning	that	each	score	that	occurs	in	the	data	is	listed	in	its	own	row	in	the	
table,	a	grouped	table	will	list	ranges	of	scores	for	each	row	of	the	table.	The	computer	
program	used	to	generate	these	frequency	tables	(SPSS,	introduced	in	the	next	chapter)	
does	not	provide	grouped	tables.	Other	software	does,	in	which	case	a	useful	rule	of	thumb	
for	a	good	number	of	rows	to	list	in	the	table	is	the	whole	number	closest	to	the	square	root	
of	the	sample	size.	For	example,	with	N	=	500	cases,	a	table	can	be	constructed	using	22	
rows	(the	square	root	of	500	is	22.36).		
	 One	final	note	on	frequency	tables	is	that	whereas	SPSS	lists	percentages,	other	
software	might	present	equivalent	information	labeled	as	proportions,	relative	frequencies,	
or	probabilities.	Each	of	these	is	simply	percentage	/	100	(e.g.,	83.3%	is	equivalent	to	a	
proportion,	relative	frequency,	or	probability	of	83.3	/	100	=	.833).	

Graphs 
	 To	display	the	frequencies	for	qualitative	data,	we	used	a	bar	chart.	For	quantitative	
data,	we	use	a	histogram.	Once	again,	the	frequency	of	scores	is	plotted,	but	this	time	the	
bars	themselves	touch	one	another	to	signal	to	the	informed	reader	that	the	data	are	
quantitative,	varying	along	a	continuum	rather	than	belonging	to	discrete	categories.	The	
number	of	bars	in	a	histogram,	like	the	number	of	rows	in	a	frequency	table,	can	be	as	large	
as	the	number	of	distinct	values	(as	in	an	ungrouped	table)	or	something	smaller	(as	in	a	
grouped	table).	When	the	sample	size	is	very	large,	a	good	rule	of	thumb	is	to	set	the	
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number	of	bars	equal	to	a	value	close	to	the	square	root	of	N.	Here	is	a	histogram	for	LCSF	
scores:	

	
	 This	was	generated	using	SPSS,	which	provides	the	option	of	superimposing	a	
hypothetical	normal	curve.	This	can	be	helpful	to	determine	whether	the	data	are	
approximated	well	by	a	normal	distribution.	More	will	be	said	about	shapes	of	distributions	
shortly.	
	 Another	graphical	display	for	quantitative	data	is	a	density	plot,	which	is	basically	a	
smoothed	version	of	a	histogram.	Though	SPSS	does	not	generate	density	plots,	other	
programs	do.	Here’s	an	example	for	LCSF	scores:	

	
	 Not	only	does	a	density	plot	reveal	the	shape	of	a	distribution	at	least	as	clearly	as	a	
histogram,	but	also	it	is	simpler	to	sketch	or	read.	Rather	than	plotting	a	series	of	bars,	a	
single,	smooth	curve	is	plotted.	Because	a	density	plot	is	scaled	such	that	the	area	under	the	
curve	equals	1,	the	y	axis	doesn’t	correspond	to	frequencies	(as	it	does	for	a	bar	chart	or	
histogram).	You	can	safely	ignore	the	scale	along	the	y	axis	of	a	density	plot;	only	the	shape	
is	important.	
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Shapes of Distributions and Descriptive Statistics 
	 Though	the	distribution	of	scores	for	a	variable	could	take	an	infinite	variety	of	forms,	a	
handful	of	shapes	are	especially	common.	When	reading	or	writing	about	research,	it’s	
important	to	know	the	terminology	used	to	describe	the	shapes	of	distributions.	Also,	the	
most	appropriate	kinds	of	descriptive	statistics	used	to	summarize	the	data	depend	on	the	
shape	of	the	distribution.	The	most	common	distributions	are	considered	in	this	chapter,	
along	with	measures	of	central	tendency	and	variability	to	use	with	each.	

Normal 
	 Probably	the	best-known	distribution	in	statistics	is	the	normal	curve,	also	known	as	a	
bell	curve	or	more	technically	as	a	Gaussian	distribution.	The	normal	curve	is	
symmetric,	meaning	it’s	a	mirror	image	of	itself	from	left	to	right.	There	is	a	single	peak,	
and	the	frequency	of	scores	tapers	off	as	you	approach	the	tails	of	the	distribution	(the	far	
left	and	far	right	portions).	Here’s	an	example	of	a	normal	distribution:	

	
	 Some	variables’	distributions	do	follow	a	normal	curve	(e.g.,	height	of	adult	men	or	
adult	women),	but	many	others	do	not.	Just	because	statistical	analyses	often	assume	that	
scores	are	drawn	from	a	normal	distribution,	that	doesn’t	make	it	true.	It’s	important	to	
check	the	shape	of	a	distribution	to	see	whether	the	assumption	is	satisfied.	
	 The	best	way	to	summarize	a	normal	distribution	of	scores	numerically	is	to	report	its	
mean	and	standard	deviation.	The	mean	(M)	is	a	familiar	measure	of	central	tendency,	
calculated	simply	as	the	sum	of	all	scores	divided	by	the	number	of	scores:	

	 M	=	SX	/	N,		

where	X	is	an	individual	score	and	N	is	the	sample	size.	For	example,	for	the	set	of	five	
scores	1,	2,	3,	4,	5,	you’d	get	M	=	(1	+	2	+	3	+	4	+	5)	/	5	=	3.		
	 The	term	“mean”	usually	refers	to	what	is	more	precisely	called	the	arithmetic	mean	or,	
in	everyday	language,	the	“average”.	There	are	actually	many	kinds	of	averages	or	means	
that	can	be	calculated.	For	example,	you	can	multiply	all	N	scores	and	then	take	the	Nth	root	
of	the	product,	and	this	is	known	as	the	geometric	mean.9	Unless	otherwise	specified,	you	
can	assume	that	“mean”	refers	to	the	arithmetic	mean.	For	a	normal	distribution	of	scores,	
the	mean	is	the	most	stable	measure	of	central	tendency.		

																																																								
9	Whereas	the	arithmetic	mean	of	the	three	scores	1,	5,	25	=	31	/	3	=	10.33,	the	geometric	mean	is	the	cube	
root	of	1	´	5	´	25,	which	equals	5.00.	
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	 The	standard	deviation	(SD)	is	the	typical	distance	from	a	score	to	the	mean.	In	other	
words,	if	you	were	to	select	a	score	from	a	distribution	at	random,	a	good	guess	as	to	how	
far	it	will	be	from	the	mean	is	one	SD.	Though	the	term	“standard	deviation”	might	seem	a	
bit	off-putting	at	first,	this	measure	is	actually	very	well-named.	“Standard”	means	typical,	
and	“deviation”	refers	to	distance.	The	formula	for	the	SD	shows	this	more	precisely:	

	 SD	=	sqrt(S(X	–	M)2	/	(N	–	1))	

	 To	understand	how	this	formula	produces	a	measure	of	“typical	distance”	between	a	
score	and	the	mean,	it	can	be	broken	down	into	the	following	steps:	
1.	 Calculate	each	score’s	deviation	score,	or	distance	to	the	mean.	That’s	what	X	–	M	

represents.	

2.	 Square	the	deviation	scores.	That’s	what	(X	–	M)2	represents.	The	reason	we	square	the	
deviation	scores	is	so	that	they	won’t	just	cancel	out	when	we	average	them	(in	the	next	
step).	Some	deviation	scores	are	negative	(to	the	left	of	the	mean),	some	are	positive	(to	
the	right	of	the	mean),	and	if	you	average	them	you’ll	get	0.	Squaring	them	first	solves	
that	problem.	

3.	 Take	the	average	of	the	squared	deviation	scores.	That’s	what	the	expression	S(X	–	M)2	
/	(N	–	1)	accomplishes.	Basically,	you’re	adding	up	squared	deviation	scores	and	
dividing	by	the	number	of	them.	If	you’re	curious	about	why	we	divide	by	N	–	1	rather	
than	N	to	take	this	average,	check	the	footnote.10	

4.	 Finally,	take	the	square	root	of	the	average	of	the	squared	deviation	scores.	This	step	
simply	reverses	the	effect	of	squaring	the	deviation	scores	back	in	step	2.	What	you’re	
left	with	is	the	typical	distance	from	a	score	to	the	mean.	

	 Here’s	what	this	looks	like	for	scores	of	1,	2,	3,	4,	and	5	(for	which	N	=	5	and	M	=	3).	

1.	 Calculate	deviation	scores:		1	–	3	=	-2;	2	–	3	=	-1;	3	–	3	=	0;	4	–	3	=	1;	5	–	3	=	2.	
2.	 Square	the	deviation	scores:		(-2)2	=	4;	(-1)2	=	1;	02	=	0;	12	=	1;	22	=	4.	

3.	 Average	the	squared	deviation	scores:		(4	+	1	+	0	+	1	+	4)	/	(5	–	1)	=	2.50.	

4.	 Take	the	square	root	of	this	average:		sqrt(2.50)	=	1.58.	This	is	the	SD.	
	 Like	the	mean,	the	stability	of	the	standard	deviation	is	excellent	for	a	normal	
distribution.		
	 In	the	parole	data,	the	M	and	SD	would	be	good	measures	of	central	tendency	and	
variability	for	LCSF	scores	because	they	were	approximately	normally	distributed.	In	this	
case,	M	=	6.93	and	SD	=	3.16.	In	other	words,	the	middle	of	the	distribution	is	near	a	value	
of	7,	and	the	typical	distance	from	a	score	to	the	mean	is	about	3.	

																																																								
10	The	reason	we	divide	by	N	–	1,	rather	than	just	N,	to	take	the	average	of	the	squared	deviation	scores	is	
that	the	SD	as	a	descriptive	statistic	is	a	biased	estimator	of	its	population	parameter.	In	the	highly	unusual	
situation	in	which	you’re	calculating	the	standard	deviation	for	a	population	of	scores,	you’d	divide	by	N.	In	
the	much	more	common	situation	in	which	you’re	calculating	the	standard	deviation	for	a	sample	of	scores,	
you	divide	by	N	–	1	to	correct	for	the	bias.	Most	computer	programs	always	divide	by	N	–	1,	assuming	you’re	
working	with	a	sample	rather	than	a	population	of	scores.	
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Uniform 
	 Another	symmetric	distribution	is	referred	to	as	uniform.	This	occurs	when	there	are	
fairly	equal	numbers	of	cases	at	each	score,	and	it	produces	a	flat	or	rectangular	shape	
when	graphed.	Here’s	an	example	of	a	uniform	distribution:	

	
	 Uniform	distributions	don’t	tend	to	occur	as	often	as	normal	distributions.	Variables	
measured	on	an	ordinal	scale	sometimes	have	uniform	distributions.	This	happens	when	
the	ranks	represent	the	position	within	a	full	set	of	scores	(e.g.,	ranks	of	1,	2,	3,	…,	N	for	N	
scores).	Sometimes	data	are	converted	to	ranks	in	order	to	achieve	a	uniform	distribution.	
For	example,	when	a	variable’s	distribution	badly	violates	the	assumption	of	normality	that	
underlies	many	statistical	analyses,	it	can	be	helpful	to	convert	it	to	ranks.	This	at	least	
ensures	symmetry,	and	a	uniform	distribution	may	be	closer	to	normality	than	the	original	
distribution.	
	 The	mean	and	standard	deviation	remain	good	measures	of	central	tendency	and	
variability	for	uniform	distributions.	

Skewed 
	 Asymmetric	distributions	are	also	known	as	skewed,	and	the	direction	of	the	
asymmetry	is	indicated	as	well.	If	most	of	the	scores	are	low,	with	a	long,	thin	tail	spreading	
out	across	higher	scores,	this	is	known	as	positive	skew,	also	described	as	a	right-skewed	
distribution	or	one	that	is	skewed	to	the	right.	Here’s	an	example	of	a	positively	skewed	
distribution:	
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	 If	instead	most	scores	are	high	and	the	long,	thin	tail	spreads	out	across	lower	scores,	
this	is	known	as	negative	skew,	also	described	as	a	left-skewed	distribution	or	one	that	is	
skewed	to	the	left.	Here’s	an	example	of	a	negatively	skewed	distribution:	

	
	 One	way	to	remember	the	distinction	between	positive	and	negative	skew	is	to	think	
about	which	direction	the	long,	thin	tail	is	pointing.	If	it	points	toward	positive	numbers	
that’s	positive	skew,	and	if	it	points	toward	negative	numbers	that’s	negative	skew.	
	 Many	variables	are	at	least	somewhat	skewed.	For	example,	timed	variables	tend	to	be	
skewed.	When	measuring	reaction	time	to	a	stimulus,	most	people	will	be	reasonably	
quick.	A	few	will	take	much	longer,	perhaps	because	of	inattention	or	impairment.	That	
produces	a	positively	skewed	distribution.	In	contrast,	the	time	students	take	to	complete	a	
classroom	test	is	likely	to	be	negative	skewed.	Most	students	will	use	all	or	most	of	the	time	
allowed,	but	a	few	will	finish	substantially	earlier.	Both	of	these	timed	variables	are	also	
bounded	on	one	side,	a	feature	that	tends	to	produce	a	skewed	distribution.	Reaction	time	
cannot	be	less	than	0,	and	time	to	complete	a	test	must	be	less	than	the	class	period.	
	 The	degree	of	skew	can	be	very	slight,	or	it	can	be	enormous.	There’s	no	accepted	
standard	for	determining	when	a	distribution	no	longer	qualifies	as	approximately	normal	
and	should	be	considered	skewed.	That’s	a	judgment	call.	It	can	be	helpful	to	use	qualifiers	
such	as	slightly	skewed,	moderately	skewed,	or	strongly	skewed	to	express	the	amount	of	
asymmetry	perceived	in	a	distribution.	
	 When	it	comes	to	descriptive	statistics	for	skewed	distributions,	the	mean	and	standard	
deviation	are	poor	choices.	Both	can	be	heavily	influenced	by	extreme	scores	on	one	side	of	
a	distribution,	or	by	a	skewed	distribution	even	if	there	are	no	outliers.	The	mean	tends	to	
be	pulled	in	the	direction	of	a	long,	thin	tail	or	extreme	scores.	To	help	understand	why	this	
is	so,	consider	that	if	you	were	to	build	a	physical	model	of	a	histogram,	the	mean	would	be	
the	balancing	point.	Try	to	balance	your	model	on	any	point	to	the	left	or	right	of	the	mean,	
and	it	would	tip	to	one	side	or	the	other.	If	you	add	an	extreme	score	to	a	distribution,	the	
mean	has	to	move	pretty	far	in	that	direction	to	maintain	the	balance.	Likewise,	the	long,	
thin	tail	of	a	skewed	distribution	also	forces	the	mean	in	that	direction	to	maintain	balance.	
For	similar	reasons,	the	standard	deviation	can	be	affected	quite	a	bit	by	outliers	or	skew.	
	 Whereas	the	stability	of	the	mean	and	standard	deviation	is	mathematically	optimal	for	
a	normal	distribution	and	good	for	pretty	much	any	symmetric	distribution	(e.g.,	uniform),	
it’s	much	poorer	as	the	amount	of	skew	or	the	severity	of	outliers	increases.	
	 Fortunately,	alternative	measures	of	central	tendency	and	variability	are	more	stable	
with	asymmetry	or	outliers.	These	alternatives	are	based	on	positions	within	a	distribution	
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rather	than	averages	or	distances.	The	median	(Mdn)	is	defined	as	the	middle	score	or,	if	
there	is	an	even	number	of	scores,	the	mean	of	the	middle	two	scores.	The	simplest	way	to	
calculate	this	is	to	rank-order	a	set	of	scores,	then	cross	off	pairs	at	both	ends	until	all	that	
remains	is	a	single	score	in	the	middle	(if	N	is	odd)	or	two	scores	in	the	middle	that	need	to	
be	averaged	(if	N	is	even).	This	yields	a	stable	measure	of	central	tendency	that’s	highly	
robust	to	outliers	or	asymmetry.	For	example,	you	could	multiply	the	largest	data	point	by	
1,000,000	and	this	would	have	no	effect	on	the	median.	It’s	based	only	on	the	middle	score	
(or,	if	N	is	even,	the	middle	pair	of	scores).	
	 A	good	measure	of	variability	to	accompany	the	median	is	the	interquartile	range	
(IQR),	which	spans	the	middle	50%	of	scores.	Put	another	way,	it’s	the	range	that	runs	from	
the	first	quartile	(Q1,	below	which	lies	25%	of	the	scores)	to	the	third	quartile	(Q3,	above	
which	lies	25%	of	the	scores).	You	can	calculate	the	IQR	as	Q3	–	Q1,	or	you	can	report	it	in	a	
more	informative	way	as	running	from	Q1	to	Q3.	This	yields	a	stable	measure	of	variability	
that’s	highly	robust	to	outliers	or	asymmetry.	For	example,	multiplying	the	largest	data	
point	by	1,000,000	would	have	no	effect	on	the	IQR.	
	 The	median	and	interquartile	range	are	not	only	robust	to	skew	and	outliers,	but	also	
they’re	pretty	easy	to	understand.	If	you	list	scores	in	order,	the	median	is	the	one	in	the	
middle.	The	interquartile	range	encloses	the	middle	half	of	the	scores.	
	 In	the	parole	data,	the	IQR	would	be	a	good	measure	of	variability	for	LCSF-Criminal	
scores	because	they	were	positively	skewed:	

	
	 In	addition	to	reporting	that	the	median	value	was	2,	the	IQR	was	0	to	4.	

Bimodal and Multimodal 
	 A	final	type	of	distribution	worth	knowing	is	bimodal,	which	refers	to	a	curve	with	two	
peaks.	Technically,	to	qualify	as	bimodal	the	peaks	need	to	reach	equal	heights.	Here’s	an	
example	of	such	a	bimodal	distribution:	
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	 Most	researchers	would	be	willing	to	describe	any	distribution	with	two	clearly	distinct	
peaks	as	bimodal,	even	if	the	heights	of	these	peaks	differ.	Here’s	another	example	of	a	
bimodal	distribution,	this	time	with	peaks	of	unequal	height:	

	
	 Bimodality	occurs	when	there	is	a	mixture	of	two	subgroups	of	subjects	whose	scores	
differ	substantially.	The	relative	heights	of	the	two	peaks	correspond	to	the	relative	sizes	of	
the	two	groups.	The	first	bimodal	distribution	(above)	shows	what	you’d	expect	with	
equal-sized	groups,	and	the	second	shows	what	you’d	expect	if	there	were	many	more	
people	in	the	lower-scoring	than	the	higher-scoring	group.	
	 Even	though	subgroups	are	mixed	all	the	time	in	samples	of	data,	bimodal	distributions	
are	relatively	rare.	The	reason	is	that	the	groups	have	to	differ	by	a	lot	for	bimodality	to	
occur.	For	example,	simply	mixing	adult	men	and	women	in	a	sample	and	measuring	their	
heights	will	not	produce	a	bimodal	distribution.	Even	though	men	are	taller	than	women,	
on	average,	there	is	too	much	overlap	in	the	heights	of	these	groups	to	produce	a	bimodal	
distribution.	When	you	do	see	a	bimodal	distribution,	that	means	that	the	groups	differ	
substantially.	
	 It	is	possible	not	only	to	have	bimodal	distributions,	but	also	to	have	curves	with	more	
than	two	peaks,	or	multimodal	distributions.	Because	the	subgroups	would	have	to	differ	
by	a	lot	for	more	than	two	peaks	to	emerge,	multimodality	occurs	even	less	often	than	
bimodality.	
	 When	considering	the	possibility	of	multiple	modes,	it’s	important	not	to	overinterpret	
the	“lumpiness”	of	chance.	Any	distribution,	especially	in	a	small	sample,	will	have	peaks	
and	valleys.	When	making	a	judgment	about	the	shape	of	a	curve,	look	at	the	big	picture	
and	try	not	to	jump	to	conclusions	of	bimodality	or	multimodality	based	on	small	
differences	in	height	between	adjacent	bars	in	a	histogram.	A	density	plot	can	be	helpful	in	
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avoiding	the	temptation	to	perceive	meaningful	peaks,	which	correspond	to	subgroups,	
where	only	chance	variation	exists.	
	 For	example,	look	back	at	the	histogram	for	LCSF	scores	shown	earlier.	There	are	three	
places	where	the	height	of	one	bar	is	less	than	that	of	its	neighbors	on	both	sides	(at	scores	
of	4,	6,	and	11).	It	would	be	mistaken	to	conclude	that	this	is	a	multimodal	distribution	
based	only	on	these	relatively	minor	fluctuations.	Rather	than	reporting	that	subgroups	
differ	substantially	from	one	another,	it’s	much	more	reasonable	to	conclude	that	this	
distribution	is	approximately	normal.	The	deviations	from	normality	are	fairly	minor	and	
to	be	expected	given	the	modest	sample	size.	Reading	the	density	plot	underscores	this	
conclusion.	The	curve	is	fairly	symmetrical,	with	no	large	gaps.	There	is	somewhat	of	a	
lump	on	the	right	side,	but	this,	too,	is	to	be	expected	given	the	sample	size.	Peaks	would	
need	to	be	much	better-defined	to	indicate	bimodality	or	multimodality.	
	 If	you	do	conclude	that	a	distribution	has	two	or	more	modes,	it	might	be	misleading	to	
report	either	the	mean	or	the	median	as	a	measure	of	central	tendency.	Though	these	
measures	would	identify	the	middle	of	the	distribution	(as	long	as	it’s	fairly	symmetric),	
they	would	not	represent	a	typical	score.	For	example,	in	the	first	bimodal	curve	shown	
above,	the	mean	(and	median)	would	be	2.	That’s	actually	a	somewhat	unusual	score,	as	
most	scores	are	closer	to	either	0	or	4.	Reporting	the	locations	of	the	separate	modes	is	a	
better	approach.	For	example,	you	might	report	that	the	first	distribution	shown	above	is	
bimodal,	with	about	equal	numbers	of	scores	clustered	around	values	of	0	and	4.	Likewise,	
you	might	report	that	the	second	distribution	shown	above	is	bimodal,	with	many	scores	
clustered	around	a	value	of	0	and	a	smaller	number	of	scores	clustered	around	a	value	of	4.	
Once	you	have	identified	the	modes,	no	measure	of	variability	is	particularly	useful.	

Symmetry, the Mean, and the Median 
	 A	final	note	on	the	relationship	between	symmetry,	the	mean,	and	the	median	can	be	
helpful	to	keep	in	mind.	In	a	symmetric	distribution,	the	mean	will	equal	the	median.	In	an	
asymmetric	distribution,	on	the	other	hand,	the	mean	will	be	drawn	toward	the	long,	thin	
tail.	The	greater	the	degree	of	skew,	the	further	apart	the	mean	and	median	will	be.	Thus,	if	
all	you	know	is	the	mean	and	median	of	a	distribution,	you	can	infer	something	about	
whether,	and	to	what	extent,	it’s	skewed.	For	example,	if	the	mean	and	median	of	a	large	set	
of	IQ	scores	are	140	and	110,	respectively,	you	can	tell	that	this	distribution	is	highly	
positively	skewed.	Some	individuals	with	very	high	IQs	must	be	pulling	up	the	mean,	
relative	to	the	median.	If,	instead,	the	mean	and	median	of	a	large	set	of	IQ	scores	are	118	
and	121,	respectively,	this	would	suggest	that	there	is	only	the	slightest	negative	skew	in	
the	distribution.	This	doesn’t	necessarily	indicate	that	the	distribution	is	normal,	but	it	does	
suggest	it’s	highly	symmetric.	

Problems 
	 Suppose	that	you	observe	the	following	frequencies	(and	percentages)	for	40	college	
students’	majors:	
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Major	 Frequency	 Percent	

Natural	science	 9	 22.5%	

Social	science	 5	 12.5%	

Humanities	 9	 22.5%	

Business	 11	 27.5%	

Undeclared	 6	 15.0%	

Total	 40	 100.0%	

1.	 Are	these	data	qualitative	or	quantitative?	

2.	 Would	it	be	appropriate	to	report	any	measures	of	central	tendency	or	variability	for	
these	data?	If	so,	which	ones	would	you	report?	If	not,	why	not?	

3.	 Write	a	brief	description	of	these	data.	

*	*	*	

	 The	following	problems	refer	to	these	scores	on	a	high	school	biology	test:	
	 60,	65,	70,	70,	75,	80,	80,	85,	85,	85,	90,	90,	90,	95,	95,	95,	95,	95,	100,	100	

4.	 What	is	the	mean	(M)	for	these	scores?	
5.	 What	is	the	standard	deviation	(SD)	for	these	scores?	

6.	 What	is	the	median	(Mdn)	for	these	scores?	

7.	 What	is	the	interquartile	range	(IQR)	for	these	scores?	
8.		 If	you	were	to	graph	this	distribution,	what	would	its	shape	be?	(Hint:	Consider	the	

relationship	between	symmetry,	the	mean,	and	the	median.)	

9.	 Construct	a	histogram	for	these	scores.	On	the	x	axis	of	your	graph,	label	scores	of	60,	
65,	70,	75,	…	90,	95,	100.	On	the	y	axis	of	your	graph,	label	frequencies	from	0	to	
whatever	is	the	largest	frequency	you	observe	for	any	score	in	the	sample.	

10.	Based	on	the	shape	of	the	distribution	shown	in	your	histogram,	what	would	be	the	best	
measures	of	central	tendency	and	variability	for	these	data?	Why?		

11.	Why	might	someone	want	to	use	a	different	measure	of	central	tendency?	Consider	who	
has	an	interest	in	test	scores	and	why	they	might	like	to	see	a	high	or	a	low	average.	

*	*	*	
	 On	a	survey	distributed	to	a	large,	random	sample	of	students	at	a	four-year	college,	one	
of	the	questions	asked	the	students	to	indicate	their	class	year	(freshman,	sophomore,	
junior,	or	senior).	
12.	If	you	were	to	plot	a	histogram	of	the	responses,	what	would	you	expect	its	shape	to	be?		

13.	Based	on	the	shape	of	the	distribution	you	expect	to	observe	in	your	histogram,	what	
would	be	the	best	measures	of	central	tendency	and	variability	for	these	data?	Why?	
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	 On	the	same	survey,	another	question	asked	the	students	to	indicate	their	attitude	
toward	abortion	on	a	7-point	Likert	scale	ranging	from	1	(“Strongly	pro-life”)	to	7	
(“Strongly	pro-choice”).	
14.	If	you	were	to	plot	a	histogram	of	the	responses,	what	would	you	expect	its	shape	to	be?		

15.	Based	on	the	shape	of	the	distribution	you	expect	to	observe	in	your	histogram,	what	
would	be	the	best	measures	of	central	tendency	and	variability	for	these	data?	Why?	

*	*	*	

16.	Members	of	a	local	union	threaten	to	go	on	strike	for	higher	pay.	The	union’s	president	
reports	they’re	paid,	on	average,	$50,000.	The	governor’s	office	reports	that	the	state	
pays	them,	on	average,	$80,000.	Assuming	both	statistics	are	correct,	what	could	cause	
this	discrepancy?	(Hint:	Consider	how	“average	pay”	might	be	operationalized.)	

17.	Suppose	that	you	could	obtain	data	on	the	annual	income	(i.e.,	salaries,	wages,	tips)	of	
every	U.S.	citizen.	What	would	you	expect	the	shape	of	the	income	distribution	to	be?	
Why?	

18.	Suppose	that	you	could	accurately	adjust	the	income	data	to	remove	all	taxes	paid	and	
add	in	the	dollar	value	of	benefits	(e.g.,	welfare	payments,	rent	subsidies,	food	stamps).	
How	would	you	expect	the	shape	of	this	adjusted	income	distribution	to	compare	to	
that	of	the	original	income	distribution?	

Problems 1 – 11 are due at the beginning of class. 
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3. Overview of SPSS and APA Style 

Overview 
	 SPSS	is	a	user-friendly	program	for	managing,	exploring,	and	analyzing	data.	There	are	
three	types	of	SPSS	files,	each	appearing	in	its	own	window:	data,	syntax,	and	output.	This	
chapter	shows	how	to	use	them,	followed	by	a	brief	review	of	APA	style	for	reporting	
statistical	results.	

SPSS Data Files 
	 In	SPSS,	data	are	stored	in	a	spreadsheet	with	one	row	per	subject,	one	column	per	
variable.	A	new	data	file	will	simply	be	a	blank	spreadsheet	into	which	you	can	enter	data	
or	copy	and	paste	it	from	another	spreadsheet	program,	such	as	Excel.	
	 Any	data	that	you	want	to	analyze	should	be	entered	numerically.	Use	numerical	codes	
to	represent	categories.	For	example,	you	can	code	experimental	conditions	as	1	=	
treatment,	2	=	control.	This	will	work	for	any	number	of	categories,	and	it	makes	no	
difference	what	codes	you	choose	for	each	category.	Entering	data	using	codes	is	quicker	
and	less	error-prone	than	using	text,	but	the	codes	will	not	be	memorable	or	meaningful.	
Fortunately,	you	can	enter	value	labels.	Each	value	label	is	text	that	corresponds	to	one	of	
your	code	numbers;	you	only	have	to	enter	the	labels	once.	Value	labels	are	stored	with	the	
data	file	and	used	in	any	output	you	generate.	For	example,	notice	that	the	frequency	table	
for	race,	shown	earlier,	doesn’t	list	categories	of	1,	2,	and	3;	instead,	it	uses	the	value	labels	
of	“White”,	“Black”,	and	“Other”.	
	 SPSS	also	stores	and	displays	labels	for	variables.	For	example,	“LCSF”	is	a	variable	in	
this	dataset,	but	that	abbreviation	is	not	as	informative	as	the	variable	label	“Lifestyle	
Criminality	Screening	Form”.	It’s	a	good	habit	to	enter	a	variable	label	for	every	variable	
in	a	dataset,	even	when	the	meaning	might	seem	obvious.	
	 The	easiest	way	to	set	up	a	new	data	file	is	to	begin	in	the	“Variable	View”.	You	can	get	
there	via	a	tab	near	the	bottom	of	the	data	window.	This	is	not	the	data	spreadsheet	itself,	
but	a	table	that	lists	the	variables	in	the	dataset	and	their	characteristics.	Start	by	entering	
variable	names,	with	no	spaces	allowed,	one	variable	per	row	in	this	table.	Then,	for	each	
variable,	enter	a	variable	label	in	the	“Label”	column	of	the	table.	Finally,	for	each	
categorical	variable,	enter	the	value	labels.	Clicking	on	a	cell	in	the	“Values”	column	causes	
a	“…”	button	to	appear,	and	clicking	on	that	button	brings	you	to	a	dialogue	box	in	which	
you	can	add,	edit,	or	remove	value	labels	for	that	variable.	
	 Once	you’ve	set	up	the	data	file	in	the	“Variable	View”,	go	back	to	the	“Data	View”	via	a	
tab	near	the	bottom	of	the	data	window.	You’ll	see	that	your	variables	appear	as	column	
headings,	and	if	you	place	the	pointer	on	one	of	them	for	a	moment,	the	variable	label	will	
appear.	This	spreadsheet	is	where	you	enter	the	data.	Remember	that	it’s	organized	such	
that	all	each	row	will	contain	the	data	for	one	subject.	Leave	cells	blank	to	indicate	any	
missing	data.	
	 SPSS	saves	data	files	with	a	.sav	extension.	You	can	use	the	“Save	As…”	option	to	save	
your	data	in	other	formats,	such	as	an	Excel	file.	
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SPSS Syntax Files 
	 The	syntax	window	is	where	you	tell	SPSS	what	you	want	it	to	do	with	your	data.	From	
the	“File”	menu,	choose	“New”	and	then	“Syntax”	to	open	a	new	syntax	window.	This	will	be	
a	blank	text	file	into	which	you	can	enter	commands.	SPSS	saves	a	syntax	file	with	a	.sps	
extension,	but	it	contains	nothing	other	than	plain	text.	
	 Throughout	this	book,	commands	for	managing,	exploring,	and	analyzing	data	will	be	
introduced	and	illustrated.	For	example,	the	“freq”	command	(short	for	“frequencies”)	can	
be	used	to	generate	frequency	tables,	histograms,	and	descriptive	statistics.	For	a	
qualitative	variable	X,	the	following	command	would	generate	a	frequency	table:	

	 freq	vars	=	X	

	 For	a	quantitative	variable	Y,	the	following	command	would	generate	more	output:	
	 	 freq	vars	=	Y	
	 	 /histogram	normal	
	 	 /stats	all	
	 	 /per	25	75	

	 In	addition	to	a	frequency	table,	the	first	subcommand	(each	subcommand	begins	with	
a	“/”)	generates	a	histogram;	adding	“normal”	after	“histogram”	requests	a	superimposed,	
hypothetical	normal	curve	that	can	help	you	judge	the	extent	to	which	this	approximates	
the	observed	distribution.	The	second	subcommand	generates	a	table	of	descriptive	
statistics	that	would	include	the	mean,	standard	deviation,	and	median.	The	third	
subcommand	includes	the	25th	percentile	(Q1)	and	the	75th	percentile	(Q3)	in	the	table	of	
descriptive	statistics.	These	define	the	interquartile	range,	which	you’d	want	to	report	if	
you	decide	to	use	the	median	as	your	measure	of	central	tendency.		
	 You	can	also	list	multiple	variables	on	the	“freq”	command.	For	example,	if	you	have	
three	variables	X,	Y,	and	Z,	any	of	these	variations	on	the	first	line	of	the	“freq”	command	
(leaving	subcommands	the	same	as	before)	will	provide	full	output	for	all	three	variables:	

	 	 freq	vars	=	X	Y	Z	
	 	 freq	vars	=	X	to	Z	

	 	 freq	vars	=	all	
	 Many,	but	not	all,	SPSS	commands	can	be	accessed	via	pull-down	menus	and	dialogue	
boxes.	For	several	reasons,	using	commands	is	a	smarter	choice:	

•	 Typing	commands	can	be	much	easier	than	navigating	your	way	through	menus	and	
dialogue	boxes.	This	is	especially	true	as	you	learn	to	use	SPSS,	because	you	can	
copy	and	paste	commands	from	another	source	(such	as	this	book)	and	skip	the	
menus	and	dialogue	boxes	altogether.		

•	 Because	SPSS	seldom	changes	its	commands,	even	as	it	changes	its	menus	and	
dialogue	boxes	all	the	time,	working	with	the	commands	now	will	prove	helpful	if	
you	need	to	use	SPSS	in	the	future.		

•	 Finally,	saving	a	syntax	file	provides	you	with	a	record	of	what	you	have	done	and	a	
way	to	easily	re-run	analyses	if	you	later	add	(or	remove)	some	data.		
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	 Typing	a	command	in	the	syntax	window	has	no	effect	until	you	run	it.	You	can	run	one	
command	at	a	time,	or	a	lengthy	series	of	commands,	by	highlighting	what	you	want	to	run	
and	either	pressing	Ctrl-R,	clicking	the	green	► button	near	the	top	of	the	syntax	window,	
or	selecting	an	option	from	the	“Run”	menu.	

SPSS Output Files 
	 The	objects—text,	tables,	and	graphs—produced	by	running	SPSS	commands	are	
displayed	in	the	output	window.	This	will	be	opened	for	you	when	you	run	the	first	
command	of	an	SPSS	session.	You	can	save	an	output	file,	which	would	have	a	.spo	
extension,	but	that	is	neither	necessary	nor	convenient	for	most	purposes.	An	output	file	
can	only	be	opened	by	SPSS,	so	you’d	have	to	be	running	the	program	to	access	your	
output.	If	you	are	running	the	program,	it’s	probably	easier	to	simply	re-run	a	command	to	
recreate	the	output	you	want	rather	than	searching	for	it	in	what	might	be	a	very	lengthy	
output	file.	As	you’ll	see,	SPSS	sometimes	generates	a	lot	of	output.	
	 When	using	SPSS	to	view	your	output,	you	can	click	within	the	pane	on	the	left	to	move	
directly	to	a	particular	object.	You	can	highlight	objects	to	print	by	selecting	them	in	either	
the	listing	pane	on	the	left	or	the	display	pane	on	the	right.	Alternatively,	you	can	copy	and	
paste	objects	into	Word	or	another	program	to	save	or	print	them	more	conveniently.	

APA Style for Reporting Statistical Results 
	 This	section	contains	an	overview	of	most	elements	of	APA	style	that	you	need	to	know	
to	report	statistical	results.	For	more	detailed	information,	see	the	latest	edition	of	the	
Publication	Manual	(especially	pp.	32-35	and	111-123).	The	page	numbers	provided	in	
brackets	below	refer	to	locations	in	the	6th	edition,	published	in	2009.	
	 Computer	software	often	has	default	settings	that	are	inconsistent	with	some	elements	
of	APA	style.	For	example,	if	you	don’t	change	settings	on	Word,	you’ll	probably	break	rules	
#2	and	#3,	below.	It’s	your	job	to	adhere	to	APA	style.	Computer	defaults	are	no	excuse.	
	 In	the	list	provided	below,	the	first	seven	items	about	format	apply	throughout	a	paper	
in	APA	style.	The	remaining	items	are	more	specific	to	the	reporting	of	statistical	results.	
Many	of	the	items	on	this	list	refer	to	concepts	or	statistics	appearing	in	later	chapters,	so	
don’t	be	concerned	if	you’re	unfamiliar	with	them	now.	

General Guidelines 

1.	 Font.	Use	a	standard,	readable	font,	such	as	Times	New	Roman	in	12-point	size.	[p.	228]	
2.	 Margins.	Leave	margins	of	1”	on	all	sides	of	the	page.	[p.	229]	

3.	 Line	spacing.	Double-space	all	text,	with	no	extra	space	around	headings	or	between	
paragraphs.	[p.	229]	

4.	 Justification.	Do	not	right	justify	text.	[p.	229]	

5.	 Indenting.	New	paragraphs	are	indented	½”.	[p.	229]	
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6.	 Bold	print,	underlining.	Bold	print	is	used	only	for	matrix	variables	or	headings,	do	not	
use	it	for	any	other	purpose.	Likewise,	do	not	underline	anything;	use	italics	for	
emphasis.	[pp.	104-106,	118]	

7.	 Capitalization.	Do	not	capitalize	names	of	groups	or	conditions	in	a	study.	[p.	104]	

Statistics Guidelines 

8.	 Italics.	Statistics	such	as	N,	M,	SD,	Mdn,	IQR,	t,	F,	p,	d,	and	r	are	italicized.	Do	not	italicize	
Greek	letters	(e.g.,	μ,	s,	α,	η2	and	χ2)	or	numbers	or	symbols	appearing	along	with	
statistical	results	(e.g.,	“(M	=	4.37,	SD	=	2.13)”,	not	“(M	=	4.37,	SD	=	2.13)”).	[pp.	119-123]	

9.	 Decimals	and	rounding.	The	general	rule	is	to	report	statistics	to	two	decimal	places;	
there	are	several	specific	guidelines	worth	noting.	[pp.	113-114]		

A.	 You	don’t	need	to	add	decimals	to	whole	numbers	that	are	not	statistics	(e.g.,	report	
that	there	were	“23	men	and	45	women”,	not	“23.00	men	and	45.00	women”;	state	
that	a	scale	ranged	from	“1	(strongly	disagree)	to	7	(strongly	agree)”,	not	“1.00	
(strongly	disagree)	to	7.00	(strongly	agree)”).	

B.	 If	computer	output	contains	fewer	decimal	places	than	you	will	report,	add	zeros	as	
needed	(e.g.,	“M	=	4.2”	becomes	“M	=	4.20”	and	“M	=	4”	becomes	“M	=	4.00”).	

C.	 Provide	exact	p	values	(to	3	decimal	places)	rather	than	writing	“p	<	.05”	or	“p	>	.05.”	
If	computer	output	gives	a	p	value	of	.000,	report	this	as	“p	<	.001”	because	p	cannot	
literally	equal	0.	

D.	 When	extra	decimal	places	are	available,	do	not	drop	the	extra	digits—round	off	to	
the	nearest	value	(e.g.,	“M	=	1.866”	becomes	“M	=	1.87”,	not	“M	=	1.86”).	

E.	 When	a	statistical	value	is	less	than	0,	place	a	0	before	a	decimal	point	only	if	the	
statistic	can	exceed	1	(e.g.,	“d	=	0.70”),	not	otherwise	(e.g.,	“p	=	.028”).		

10.	Spaces.	Leave	one	space	between	statistical	symbols,	punctuation,	and	numerical	values	
(e.g.,	“M	=	4.37”,	not	“M=4.37”),	but	no	space	between	statistical	abbreviations	(such	as	
t,	F,	r),	and	the	parentheses	that	include	the	degrees	of	freedom	(e.g.,	“t(35)	=	2.12”,	not	
“t	(35)	=	2.12”).	[p.	118]	

11.	Numbers	that	begin	sentences.	Write	out	any	number	that	begins	a	sentence	(e.g.,	“Two	
hundred	and	fifty	responses…”,	not	“250	responses…”).	[p.	112]	

12.	SPSS	variable	names.	Do	not	use	SPSS	variable	names	in	your	writeup,	unless	the	
variable	name	happens	to	be	identical	to	the	clearest	way	to	identify	the	variable	(e.g.,	a	
variable	named	“age”).	

13.	Names	of	statistical	tests.	Unless	you	are	using	an	unusual	test—and	nothing	in	this	
book	qualifies—do	not	state	what	statistical	test	was	used.	This	should	be	clear	from	
the	context.	[pp.	116-117]	

14.	Statistical	information.	Provide	all	pertinent	statistical	information	for	each	test.	For	
example,	t	test	results	include	the	t	value,	df,	p	value,	and	Cohen’s	d;	F	test	results	
include	the	F	value,	both	df,	p	value,	and	η2;	correlation	results	include	the	r	value,	df,	
and	p	value.	[pp.	33-34,	116-17]	
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15.	Explanation.	Explain	the	nature	of	any	statistically	significant	differences.	Simply	stating	
that	an	effect	was	observed	is	insufficient.	For	comparisons	across	multiple	conditions,	
the	M	and	SD	for	each	one	should	be	included.	For	an	interaction	effect,	describe	how	
the	factors	combined	to	predict	the	outcome.	[pp.	33,	116]	

APA Style for Describing Data 
	 As	an	illustration	of	writing	in	APA	style,	consider	how	to	describe	data.	The	clearest,	
most	concise	way	to	do	so	depends	on	the	type	of	data.	For	qualitative	variables,	you	can	
report	the	number	and	percentage	of	subjects	in	each	category.	For	quantitative	variables,	
you	can	report	the	range	of	scores,	the	shape	of	the	distribution,	and	the	appropriate	
measures	of	central	tendency	and	variability.	If	it	is	not	obvious,	the	way	that	each	variable	
was	defined	and	assessed	should	be	explained	along	the	way.	
	 The	following	paragraph	shows	how	one	might	describe	some	of	the	parole	data	in	APA	
style.	Note	that	when	referring	to	the	size	of	a	total	sample	the	abbreviation	is	N,	and	when	
referring	to	the	size	of	a	subsample	of	cases	the	abbreviation	is	n.	

	 Among	the	inmates	(N	=	114)	at	a	federal	corrections	facility	who	were	released	on	

parole,	the	most	common	race	was	black	(n	=	70;	61.4%),	followed	by	white	(n	=	28;	

26.4%),	and	other	(n	=	16;	14.0%).	The	Lifestyle	Criminality	Screening	Form	(LCSF)	

contains	14	items,	and	scores	can	range	from	0	to	22.	In	this	sample,	scores	ranged	from	0	

to	15	in	an	approximately	normal	distribution	(M	=	6.93,	SD	=	3.16).	Scores	on	the	LCSF-

Criminal	subscale,	which	contains	only	crime-related	items,	ranged	from	0	to	7	in	a	

positively	skewed	distribution	(Mdn	=	2,	IQR	=	0	to	4).	

Problems 
1.	 What	are	the	three	types	of	SPSS	files	and	what	is	each	one	used	for?	

2.	 What	are	the	steps	to	setting	up	a	new	SPSS	data	file?	
3.	 Suppose	you	have	three	variables	that	indicate	the	number	of	diagnostic	criteria	met	for	

Major	Depressive	Disorder,	Generalized	Anxiety	Disorder,	and	Post-Traumatic	Stress	
Disorder.	The	variables	are	MDD,	GAD,	and	PTSD.		
a.	 If	all	you	want	are	tables	of	frequencies	for	the	three	variables,	what	would	the	

command	look	like?	
b.		 If	you	also	want	histograms,	statistics,	and	quartiles	for	the	three	variables,	what	

would	the	command	look	like?		
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4.	 The	following	statistical	report	contains	many	mistakes	with	respect	to	APA	style:		

 40 people completed a survey, including 25.00 ( 62.50 % ) Women and 
15.00 ( 37.50 % ) Men.When asked about their political party affiliation, 
17.00 people ( 42.50 % ) chose the democratic party, 15.00 ( 37.50 % ) chose 
the republican party, and 8.00 ( 20.00 % ) indicated that they were 
independents. 

 Individuals’ ages ranged from 22 to 82 in a positively skewed 
distribution (Mdn= 44.1, IQR= 36.2 to 50.5). After removing three 
outliers (ages 78, 81, and 82, well above the next highest age of 63), the 
distribution was approximately normal (M= 42.3052, SD= 9.8117). 

	 a.	 Explain	which	of	the	guidelines	described	in	this	chapter	were	violated.	
	 b.	 Based	on	the	problems	you	identified,	retype	this	report	in	APA	style.	

*	*	*	

5.	 Create	a	new	SPSS	data	file	and	set	it	up	to	contain	three	variables,	labeled	as	follows:	

	 •	 SAT	=	SAT	Score	(Math	+	Verbal)	

	 •	 Classper	=	HS	Class	Percentile	

	 •	 Major	=	Type	of	Major	

	 	 	 1	=	Natural	Science	
	 	 	 2	=	Social	Science	
	 	 	 3	=	Humanities	
	 	 	 4	=	Business	
	 	 	 5	=	Undeclared	
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6.	 Enter	data	for	40	students	and	save	the	data	file	as	“Academics.sav”.	
	 SAT	Score	 HS	Class	 Type	of	
	 (Math	+	Verbal)	 Percentile	 Major	

	 1170	 92	 4	
	 1290	 89	 3	
	 1190	 96	 5	
	 1080	 85	 4	
	 1100	 95	 2	

	 1160	 94	 4	
	 1330	 90	 1	
	 1180	 81	 4	
	 1140	 92	 3	
	 1190	 76	 1	

	 1190	 87	 5	
	 1100	 63	 1	
	 1140	 89	 3	
	 1190	 71	 3	
	 1430	 96	 3	

	 1050	 87	 4	
	 1200	 81	 5	
	 1170	 79	 4	
	 1250	 89	 3	
	 1280	 84	 1	

	 SAT	Score	 HS	Class	 Type	of	
	 (Math	+	Verbal)	 Percentile	 Major	

	 1400	 58	 2	
	 1340	 90	 5	
	 1270	 94	 2	
	 1110	 96	 1	
	 1120	 81	 4	

	 1050	 79	 4	
	 1530	 88	 5	
	 1250	 74	 2	
	 1190	 90	 1	
	 1330	 95	 1	

	 1030	 85	 1	
	 1290	 92	 2	
	 1360	 91	 3	
	 1400	 91	 3	
	 1010	 88	 4	

	 1300	 98	 3	
	 1270	 82	 5	
	 890	 85	 4	
	 1130	 86	 4	
	 1320	 95	 1	

7.	 Open	a	new	SPSS	syntax	file.	Enter	and	run	the	“freq”	command	to	generate	a	frequency	
table	for	type	of	major.	Enter	and	run	the	“freq”	command	to	generate	a	frequency	table,	
histogram	(with	normal	curve),	and	descriptive	statistics	for	SAT	score	and	class	
percentile.	Save	the	syntax	file	as	“Academics.sps”.	

8.	 Examine	the	results.	Are	some	majors	more	popular	than	others?	What	are	the	shapes	
of	the	distributions	for	SAT	scores	and	class	percentiles?	Based	on	these	shapes,	what	
would	be	the	most	appropriate	measures	of	central	tendency	and	variability	for	each	
variable?	

9.	 Write	a	report	in	APA	style	that	describes	all	three	variables.	

Problems 1 – 4 are due at the beginning of class. 
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4. Standard Scores 

Overview 
	 From	study	to	study,	and	even	from	one	variable	to	another	within	a	study,	it	can	be	
difficult	to	compare	scores	to	one	another.	What’s	missing	is	a	common	metric.	In	this	
chapter,	we’ll	learn	how	to	convert	scores	to	a	common	scale	using	z	scores.	In	addition,	
we’ll	see	how	to	quantify	how	rare	or	how	common	a	particular	score	is	within	a	normal	
distribution.		
	 As	useful	as	that	can	be,	it’s	even	more	useful	to	do	the	same	thing	for	a	sample	of	
scores.	This	chapter	will	extend	the	use	of	z	scores	to	sample	means,	which	forms	a	bridge	
from	descriptive	to	inferential	statistics.	We	can	develop	expectations	for	what	will	happen	
if	samples	are	drawn	at	random	from	a	population	and	then	determine	whether	the	sample	
we	actually	observe	deviates	from	these	expectations.	A	z	score	for	a	sample	can	tell	us	
whether	it	seems	to	be	unusual,	and	therefore	whether	something	other	than	random	
sampling	is	required	to	account	for	research	findings.	

Standard Scores 
	 Suppose	someone	takes	an	IQ	test	and	scores	120.	Many	people	know	that	the	average	
scores	on	an	IQ	test	is	100,	so	120	is	above	average.	By	how	much?	Is	this	a	very	rare	score,	
or	fairly	common?	The	IQ	scale	isn’t	sufficiently	familiar	to	nonspecialists,	in	the	way	that	
measures	of	height	or	weight	are,	to	provide	an	intuitive	sense	for	how	exceptional	or	
commonplace	an	individual’s	score	is.	
	 The	solution	to	this	problem	is	to	convert	a	raw	score,	the	value	as	measured,	to	a	
standard	score,	a	value	on	a	common	metric.	The	most	popular	type	of	standard	score	is	
the	z	score,	which	is	defined	such	that	the	mean	is	0	and	the	standard	deviation	is	1.	The	
sign	of	a	z	score	indicates	whether	the	score	is	above	average	(a	positive	z	score)	or	below	
average	(a	negative	z	score).	The	absolute	value	of	a	z	score	indicates	how	far	the	score	is	
from	the	average,	in	SD	units.	A	z	score	of	+1.00	means	that	someone	scored	one	SD	above	
average.	
	 	To	convert	a	raw	score	X	to	a	z	score,	use	the	following	formula:	

	 	 z	=	(X	–	µ)	/	s,	

where	µ	is	the	population	mean	and	s	is	the	population	standard	deviation.11	For	example,	
IQ	tests	are	scored	such	that	in	the	general	population,	µ	=	100	and	s	=	15.	To	convert	the	
raw	score	of	X	=	120	into	a	z	score:	

	 	 z	=	(120	–	100)	/	15	=	20	/	15	=	1.33	
	 The	sign	is	positive,	so	this	represents	an	above-average	score.	The	absolute	value	tells	
us	that	the	score	is	1.33	SDs	above	average.	 	

																																																								
11	The	Greek	letters	µ	and	s	are	pronounced	“mu”	and	“sigma”,	respectively.	
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	 As	another	example,	consider	an	IQ	score	of	70,	the	threshold	applied	to	help	diagnose	
mental	retardation.	Converting	this	to	a	z	score	reveals	how	far	below	average	this	is:	

	 	 z	=	(70	–	100)	/	15	=	-30	/	15	=	-2.00	
	 The	sign	is	negative,	confirming	that	this	is	a	below-average	score,	and	the	absolute	
value	shows	that	this	is	2	SDs	below	average.	How	rare	is	such	a	score?	The	next	step	in	
helping	to	quantify	that	requires	an	assumption	that	IQ	scores	are	normally	distributed	in	
the	population.	

Normal Curves 
	 Though	people	sometimes	refer	to	“the	normal	curve,”	there	is	actually	a	family	of	
normal	curves,	not	just	one.	All	normal	curves	share	an	identical	form,	the	classic	bell	
shape.	Most	scores	are	located	close	to	the	center,	with	frequencies	tapering	off	toward	the	
tails.	A	normal	curve	is	symmetric,	and	nearly	all	scores	lie	within	a	few	SDs	on	either	side	
of	the	mean.	Here’s	a	density	plot	for	a	normal	distribution	of	z	scores:	

	
	 The	dotted	lines	are	not	part	of	the	normal	curve	itself.	They’ve	been	added	to	highlight	
some	helpful	reference	points	within	the	distribution.	Specifically,	they’re	plotted	at	each	
SD	unit	along	the	x	axis.	These	reference	points	correspond	to	a	few	percentages	that	are	
worth	remembering.	First,	about	68%	of	scores	fall	within	1	SD	of	the	mean	(i.e.,	in	the	
range	from	z	=	-1.00	to	z	=	1.00).	That’s	roughly	two-thirds	of	scores	in	the	±1	SD	range.	
Here’s	what	this	looks	like:	

	

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

z

D
en
si
ty

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

z

D
en
si
ty



	 40	

	 Another	useful	approximation	to	remember	is	that	about	95%	of	all	scores	fall	within	
the	±2	SD	range.	In	other	words,	it’s	fairly	unusual	for	a	score	to	be	more	than	2	SD	away	
from	the	mean.	Here’s	what	this	looks	like:	

	
By	the	time	you	extend	this	to	the	±3	SD	range,	about	99.7%	of	all	scores	are	included.	
Here’s	what	this	looks	like:	

	
	 All	normal	curves	share	an	identical	shape	and	include	the	same	proportions	of	scores	
within	the	same	SD	intervals.	Normal	curves	differ	from	one	another	according	to	the	scale	
along	the	x	axis,	which	is	determined	by	µ	and	s.	For	example,	a	normal	distribution	of	IQ	
scores	looks	like	this:	
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	 The	only	difference	between	this	and	the	normal	curve	for	z	scores	is	that	instead	of	
using	µ	=	0	and	s	=	1,	we	now	use	µ	=	100	and	s	=	15.	The	shape	of	the	curve	is	unchanged.	
	 Now	we	can	revisit	the	question	of	how	unusual	a	particular	IQ	score	is.	For	an	IQ	of	
120,	which	corresponds	to	a	z	score	of	1.33,	we	can	estimate	its	percentile	based	on	a	
simple	approximation.	First,	take	a	look	at	a	graph	plotting	this	value:	

	
	 We	know	that	50%	of	all	scores	fall	below	the	mean.	That	leaves	the	region	extending	
from	the	mean	to	z	=	1.33.	If	about	68%	of	scores	fall	within	±1	SD	of	the	mean,	then	half	of	
them	(34%)	fall	between	the	mean	and	z	=	1.00.	Adding	this	to	the	50%	of	scores	below	the	
mean	gives	84%	of	all	scores	below	a	z	score	of	1.00.	A	z	score	of	1.33	is	a	little	higher	still,	
so	the	percentile	might	be	closer	to	90%.	In	other	words,	an	IQ	of	120	is	higher	than	the	IQ	
scores	for	about	90%	of	the	population.	In	a	moment,	we’ll	see	how	to	identify	the	precise	
value.	
	 For	an	IQ	of	70,	which	corresponds	to	a	z	score	of	-2.00,	we	can	even	more	easily	
estimate	its	percentile	based	on	an	approximation.	If	95%	of	all	scores	fall	within	±2	SD	of	
the	mean,	then	only	5%	lie	beyond	this	region,	with	about	2.5%	in	the	upper	tail	and	2.5%	
in	the	lower	tail.	In	other	words,	about	2.5%	of	IQ	scores	in	the	population	are	below	70.	

Unit Normal Table 
	 Though	we	can	estimate	the	percent	of	scores	in	various	regions	of	a	normal	
distribution	using	some	approximate	values,	it’s	not	hard	to	obtain	a	precise	value.	The	
final	tool	for	doing	this	is	called	the	unit	normal	table,	which	lists	the	proportion	of	the	
normal	curve	in	the	tail	beyond	any	particular	z	score	(see	Appendix	A).	This	is	called	a	unit	
normal	table	because	it’s	based	specifically	on	the	normal	distribution	for	a	population	
with	µ	=	0	and	s	=	1,	the	scale	of	z	scores.	The	fact	that	s	=	1	puts	the	“unit”	in	“unit	normal	
table”.	
	 To	look	up	a	z	score	in	this	table,	you	go	to	the	row	that	contains	the	beginning	of	the	z	
score	(whole	number	and	first	decimal	place)	and	the	column	that	contains	its	second	
decimal	place.	For	example,	we	calculated	earlier	that	an	IQ	score	of	120	equals	a	z	score	of	
1.33.	If	you	look	in	the	row	labeled	“1.30”	and	the	column	labeled	“.03”,	which	combine	to	
form	the	z	score	of	1.33,	the	value	listed	in	the	table	is	.09176.	Remember,	though,	that	this	
is	the	proportion	of	scores	in	the	tail	of	the	distribution,	which	in	this	case	means	the	
proportion	of	scores	falling	above	z	=	1.33.	To	calculate	the	proportion	that	falls	below	
1.33,	simply	subtract	the	tail	from	the	area	under	the	whole	curve,	which	is	1.00.	This	gives	
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1.00	–	.09176	=	.90834.	To	convert	that	proportion	into	a	percent,	just	move	the	decimal	
two	places	to	the	right	to	get	90.834%.	That’s	very	close	to	the	percentile	that	was	
estimated	earlier.	It’s	reassuring	to	see	this	correspondence,	and	doing	a	rough	
approximation	before	calculating	anything	is	always	a	good	idea.	If	your	calculated	answer	
is	far	from	your	estimation,	this	suggests	that	you	calculated	something	wrong.	For	
example,	it’s	easy	to	misplace	a	decimal	point	or	negative	sign.	But	if	you	make	a	mistake	
like	that,	your	answer	is	likely	to	be	way	off,	and	you’ll	notice	the	mistake	because	it	doesn’t	
come	close	to	your	approximation.	
	 We	can	use	the	same	table	to	find	the	percentile	for	an	IQ	of	70,	which	can	be	graphed	
like	this:	

	
	 Earlier	we	calculated	that	z	=	-2.00,	so	we	look	in	the	row	labeled	“2.00”	and	the	column	
labeled	“.00”,	which	combine	to	form	2.00.	Because	the	normal	curve	is	symmetric	around	z	
=	0,	the	unit	normal	table	works	the	same	way	for	positive	or	negative	z	scores.	The	
proportion	of	scores	below	z	=	-2.00	is	listed	as	.02275.	Moving	the	decimal	two	places	to	
the	right	converts	that	to	a	percentile	of	2.275%,	once	again	close	to	what	was	estimated	
earlier	(2.5%).	

Standardizing and Normalizing 
	 There’s	an	easy	mistake	to	make	when	thinking	about	what	happens	when	an	entire	
distribution	of	scores	is	converted	to	z	scores,	or	standardized.	Specifically,	it’s	easy	to	
mistakenly	believe	that	once	raw	scores	have	been	converted	to	z	scores,	their	distribution	
becomes	normal.	In	fact,	the	act	of	standardizing	a	distribution	has	no	effect	on	the	shape	of	
a	distribution.	If	the	raw	scores	were	skewed,	the	standardized	scores	will	skewed,	too.		
	 Standardizing	scores	is	a	linear	transformation,	which	means	that	the	equation	of	a	
straight	line	is	used	to	turn	a	raw	score	into	a	z	score.	This	preserves	not	only	the	rank-
ordering	of	cases,	but	also	their	relative	distances	from	one	another.	If	none	of	the	scores	
are	squeezed	closer	together	or	spread	further	apart	from	one	another,	the	shape	of	the	
distribution	will	not	be	affected	by	the	transformation.	All	that	would	happen	is	that	the	
scale	on	the	x	axis	of	a	histogram	or	density	plot	would	change.	For	example,	here	are	
histograms	for	the	LCSF-Criminal	scores	from	the	parole	dataset.	First	is	the	distribution	of	
raw	scores,	followed	by	the	distribution	of	standardized	scores:	
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	 Naturally,	standardizing	scores	will	change	the	M	and	SD	of	the	distribution.	If	raw	
scores	are	converted	to	z	scores,	for	example,	the	new	values	will	be	M	=	0	and	SD	=	1,	by	
definition.	But	this	doesn’t	mean	that	the	distribution	itself	becomes	normal	in	shape.	No	
matter	how	much	a	distribution	diverges	from	normality,	standardizing	it	will	yield	M	=	0	
and	SD	=	1	within	the	new,	equally	non-normal	distribution.	
	 The	reason	this	is	important	to	understand	is	that	the	existence	of	a	z	score	doesn’t	
necessarily	mean	you	can	use	the	unit	normal	table	to	calculate	what	proportion	of	scores	
fall	above	or	below	it.	Using	this	table	requires	the	assumption	of	a	normal	distribution.	
	 If	the	goal	is	to	normalize	a	set	of	scores,	to	change	the	shape	of	the	distribution	so	that	
it	better	approximates	normality,	then	a	nonlinear	transformation	is	required.	Some	
scores	will	be	squeezed	closer	together,	and	others	spread	apart	relative	to	one	another.	
For	example,	taking	the	square	root	of	all	scores	would	have	a	more	pronounced	effect	on	
the	larger	ones	than	on	the	smaller	ones.	Scores	of	1,	4,	9,	16,	25	would	become	1,	2,	3,	4,	5.	
The	distances	between	successive	scores	changed	from	3,	5,	7,	and	9	to	1,	1,	1,	and	1.	All	
gaps	shrunk,	but	larger	gaps	shrunk	more.	This	could	be	helpful	if,	for	example,	an	original	
distribution	was	positively	skewed	and	you	wanted	to	reduce	the	skew.		
	 There	are	an	infinite	variety	of	nonlinear	transformations	that	one	might	use	to	try	to	
normalize	a	distribution.	Determining	when	and	how	to	use	them	is	not	the	goal	here.	The	
point	is	simply	to	understand	the	critical	difference	between	standardizing—which	
changes	only	the	scaling	of	a	variable,	not	the	shape	of	its	distribution—and	normalizing—
which	changes	the	scaling	of	a	variable	and	the	shape	of	its	distribution.	Don’t	be	fooled	by	
the	presence	of	z	scores	into	assuming	a	variable	is	normally	distributed,	that’s	something	
that	still	has	to	be	checked.	

Sampling Distributions 
	 Standard	scores	are	an	extremely	useful	way	to	place	individual	scores	into	context	and	
help	determine	how	common	or	rare	they	are.	Because	research	seldom	involves	the	study	
of	single	subjects,	it’s	even	more	useful	to	convert	the	mean	for	an	entire	sample	of	subjects	
into	a	standard	score.	
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	 To	see	how	this	is	done,	let’s	begin	with	a	simple	hypothetical	question:	What	would	
you	expect	to	happen	if	you	rolled	a	die	an	infinite	number	of	times,	recording	the	number	
rolled	each	time?	What	would	the	distribution	of	scores	look	like?	With	a	moment’s	
thought,	this	isn’t	very	difficult	to	figure	out.	The	distribution	would	be	uniform,	with	equal	
frequencies	for	scores	of	1,	2,	3,	4,	5,	and	6.	Here’s	a	histogram	that	shows	the	scores	
according	to	their	probability,	or	relative	frequency,	of	occurring:	

	
	 This	is	a	theoretical	distribution,	what	you’d	expect	for	a	population.	What	would	be	the	
central	tendency	and	variability	of	the	distribution?	That’s	not	as	simple	as	figuring	out	the	
shape	of	the	distribution,	but	it’s	not	that	hard,	either.	The	distribution	is	symmetric,	so	a	
good	choice	of	measures	would	be	the	mean	and	standard	deviation.	The	former	is	easy	to	
calculate:	Because	the	scores	are	all	equally	likely,	µ	=	(1	+	2	+	3	+	4	+	5	+	6)	/	6	=	3.50.	
Calculating	s	isn’t	so	hard,	either,	though	there	are	more	steps.	As	explained	in	an	earlier	
chapter,	you’d	need	to	follow	a	four-step	process	to	calculate	that	s	=	1.71.12	
	 What	we’ve	done	is	established	a	theoretical	distribution	that	shows	us	what	we	would	
expect	to	happen	if	we	sampled	from	it	at	random.	In	this	case,	we’ve	sampled	individual	
scores.	Rolling	one	die	is	like	studying	one	person.	What	happens	if	we	roll	a	pair	of	dice	
and	record	their	mean?	That’s	like	taking	a	sample	of	N	=	2	people	in	a	study,	and	
examining	their	average	response.	
	 What	we’re	doing	now	is	looking	at	what’s	called	a	sampling	distribution.	This	shows	
us	how	a	statistic	is	distributed	if	you	calculate	it	for	many	samples	from	the	same	
population.	It	allows	us	to	see	how	much	sampling	error	there	would	be,	how	much	
random	variation	would	occur	just	due	to	the	luck	of	the	draw	based	on	which	cases	
happen	to	be	selected	for	a	study.	The	standard	deviation	of	a	sampling	distribution	is	
called	the	standard	error	of	that	statistic.	Just	like	the	standard	deviation	for	a	sample	is	
the	typical	distance	from	a	score	to	the	mean,	the	standard	error	for	a	sampling	
distribution	is	the	typical	distance	from	a	statistic	(calculated	in	a	sample)	to	the	
population	mean	for	that	statistic.	
	 For	example,	if	we	graph	a	distribution	of	sample	means,	the	average	of	those	is	labeled	
µM.	The	“µ”	indicates	we’re	taking	a	population	mean	of	something,	and	the	subscript	“M”	
indicates	that	the	statistic	whose	mean	we’re	examining	is	sample	means.	The	standard	
error	of	this	distribution	is	labeled	sM.	The	notation	is	the	same	as	for	µM	in	that	“s”	
																																																								
12	We’re	using	µ	and	s	rather	than	M	and	SD	because	this	is	a	population,	not	a	sample.	Remember	that	this	
means	we’d	divide	by	N	rather	than	N	–	1	to	calculate	the	standard	deviation.	
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indicates	we’re	taking	a	population	standard	deviation	of	something	and	the	subscript	“M”	
indicates	the	statistic	whose	variability	we’re	examining	is	sample	means.	
	 So	let’s	get	back	to	the	smallest	samples	possible,	N	=	2,	and	see	what	happens	when	we	
roll	two	dice.	Here’s	the	histogram	for	this	sampling	distribution	of	the	mean:	

	
	 Notice	that	the	x	axis	is	now	labeled	with	a	statistic—in	this	case,	“Mean”—rather	than	
“Score”.	This	shows	that	we’re	no	longer	looking	at	a	distribution	of	individual	scores.	This	
is	a	distribution	of	sample	means.	
	 Three	things	about	this	sampling	distribution	deserve	mention.	First,	whereas	the	
population	distribution	of	individual	scores	was	uniform,	the	sampling	distribution	of	the	
mean	is	not.	There’s	only	a	single	way	to	get	an	average	roll	of	1.00	(1	+	1)	or	6.00	(6	+	6),	
but	there	are	six	ways	to	get	an	average	roll	of	3.50	(1	+	6,	2	+	5,	3	+	4,	4	+	3,	5	+	2,	or	6	+	1).	
Thus,	the	distribution	is	peaked	in	the	center	and	tapers	off	toward	both	ends.	
	 Second,	µM	equals	µ.	The	average	of	all	the	sample	means	is	the	same	as	the	average	in	
the	original	population	of	scores	from	which	the	samples	are	drawn.	
	 Third,	sM	is	smaller	than	s.	Sample	means	very	less	than	do	individual	scores.	For	
example,	roll	a	die	once	and	there’s	a	1	in	6	chance	of	getting	a	1	or	a	6.	Roll	two	dice	and	
there’s	only	a	1	in	36	chance	that	their	average	will	be	1.00	or	6.00.	Extreme	scores	become	
less	common	as	sample	size	increases.	
	 Let’s	look	at	a	few	more	graphs	to	see	these	patterns	develop.	Here’s	the	histogram	
showing	what	you’d	expect	if	you	rolled	N	=	3	dice:	

	
	 Next,	let’s	jump	up	to	what	you’d	expect	if	you	rolled	N	=	10	dice:	

1 2 3 4 5 6

0.
00

0.
05

0.
10

0.
15

Mean

P
ro
ba
bi
lit
y

N=2 µM=3.5
σM=1.21

1 2 3 4 5 6

0.
00

0.
04

0.
08

0.
12

Mean

P
ro
ba
bi
lit
y

N=3 µM=3.5
σM=0.99



	 46	

	
	 Finally,	here’s	what	you’d	expect	if	you	rolled	N	=	25	dice:	

	
	 Several	patterns	become	clear.	In	the	following	subsections,	three	important	
observations	about	the	sampling	distribution	of	the	mean	are	described.	Collectively,	these	
are	referred	to	as	the	central	limit	theorem.	

Shape 
	 With	larger	samples,	the	sampling	distribution	of	the	mean	becomes	more	normal	in	
shape.	Importantly,	this	will	happen	regardless	of	the	shape	of	the	population	distribution	
from	which	scores	are	sampled.	In	the	example	shown	above,	even	though	the	population	
distribution	is	uniform,	by	the	time	you	get	to	samples	of	N	=	25,	the	sampling	distribution	
of	the	mean	is	almost	perfectly	normally	distributed.	
	 If	the	population	distribution	is	itself	normal,	then	even	with	the	smallest	of	samples	
the	sampling	distribution	will	also	be	normal.	To	the	extent	that	the	population	distribution	
deviates	from	normality,	such	as	being	skewed,	larger	samples	will	be	needed	for	the	
sampling	distribution	of	the	mean	to	approximate	normality	well.	One	rule	of	thumb	is	that	
this	usually	happens	by	the	time	you	reach	N	=	30.	

Central Tendency 
	 The	center	of	the	sampling	distribution	of	the	mean	will	always	be	the	population	mean	
(µM	=	µ).	Sample	means	will	vary	from	one	to	the	next,	but	they	are	an	unbiased	estimate	of	
the	population	mean.	In	each	of	the	histograms	shown	above	for	rolling	dice,	µM	=	µ	=	3.50.	

1 2 3 4 5 6

0.
00

0.
02

0.
04

0.
06

0.
08

Mean

P
ro
ba
bi
lit
y

N=10 µM=3.5
σM=0.54

1 2 3 4 5 6

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Mean

P
ro
ba
bi
lit
y

N=25 µM=3.5
σM=0.34



	 47	

Standard Error 
	 The	variability	of	the	sampling	distribution	of	the	mean	decreases	with	sample	size.	In	
other	words,	sample	means	estimate	population	means	more	accurately	when	they’re	
based	on	larger	samples.	Collecting	more	data	reduces	the	amount	of	sampling	error.	The	
usual	relationship	between	sampling	error	and	sample	size	holds	here:	The	standard	error	
of	the	mean	(sM)	decreases	as	a	function	of	the	square	root	of	the	sample	size.	Specifically,	
sM	=	s	/	sqrt(N).	You	can	easily	verify	that	this	formula	yields	the	variability	shown	in	each	
of	the	histograms	shown	above	for	rolling	dice.	For	example,	with	samples	of	N	=	25,	sM	=	
1.71	/	sqrt(25)	=	0.34.	

z Scores for Samples 
	 Recall	that	for	an	individual	score	X,	we	can	convert	it	to	a	z	score	using	this	formula:	

	 	 z	=	(X	–	µ)	/	s	

	 This	tells	us	how	many	standard	deviations	above	or	below	the	population	mean	the	
score	is.	For	a	sample	mean	M,	the	z	score	formula	is	adapted	like	this:	

	 	 z	=	(M	–	µ)	/	sM	

	 The	sample	mean	(M)	is	substituted	for	an	individual’s	score	(X),	and	the	standard	error	
of	the	mean	(sM)	is	substituted	for	the	standard	deviation	(s).	The	resulting	value	for	z	tells	
us	how	many	standard	errors	above	or	below	the	population	mean	a	sample	mean	is.	
	 For	example,	earlier	we	found	that	an	IQ	score	of	120	is	higher	than	about	90.8%	of	
normally	distributed	scores	in	the	population	with	µ	=	100	and	s	=	15.	We	calculated	that	
by	converting	the	IQ	score	to	a	z	score	(1.33	in	this	case)	and	using	the	unit	normal	table	to	
find	the	proportion	of	scores	below	that	level.	Suppose	we	take	a	random	sample	of	N	=	25	
people	from	this	population	and	find	their	mean	IQ	to	be	120.	Is	this	likely	to	occur?	If	not,	
can	we	say	anything	about	how	rare	an	outcome	this	would	be?	
	 The	first	step,	once	again,	is	to	calculate	z.	To	do	that,	we	need	to	know	the	standard	
error	of	the	mean	for	N	=	25.	That’s	easily	calculated:	

	 	 sM	=	s	/	sqrt(N)	=	15	/	sqrt(25)	=	3.00	

	 The	next	step	is	to	calculate	z:	

	 	 z	=	(M	–	µ)	/	sM	=	(120	–	100)	/	3.00	=	6.67	

	 The	final	step	is	to	find	out	what	proportion	of	scores	are	below	that	level.	Thanks	to	
the	central	limit	theorem,	we	can	safely	assume	that	the	sampling	distribution	of	the	mean	
is	normally	distributed.	Because	of	that,	we	can	use	the	unit	normal	table.	In	this	case,	as	
you	can	see,	the	table	doesn’t	even	have	entries	for	z	scores	more	extreme	than	±4.00.	The	
reason	is	that	the	proportion	of	scores	in	the	tail	is	vanishingly	close	to	0	when	you	get	that	
far	from	the	mean.	For	our	z	value	of	6.67,	the	proportion	in	the	tail	is	very	close	to	0.	That	
means	it’s	next	to	impossible	for	this	to	happen,	for	a	random	sample	to	score	this	high	or	
higher.		
	 An	IQ	score	of	120	or	higher	is	somewhat	exceptional	for	an	individual.	Just	under	10%	
of	all	people	in	a	population	with	µ	=	100	and	s	=	15	will	have	IQs	that	high.	But	if	we	take	a	
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random	sample	of	25	people	from	this	same	population,	it’s	almost	impossible	for	their	
mean	to	be	as	high	as	120.	You	can	see	the	same	thing	happening	with	the	illustrations	
involving	rolling	dice	presented	earlier.	The	chance	of	rolling	a	1	on	a	single	die	is	1/6,	or	a	
probability	of	.17.	The	chance	of	getting	a	mean	of	1.00	when	rolling	N	=	10	or	N	=	25	dice	is	
extremely	close	to	0.	
	 The	important	point	is	that,	all	else	being	equal,	the	larger	the	sample	size,	the	less	
likely	it	is	for	an	extreme	sample	mean	to	occur	by	chance.	And	we	can	quantify	just	how	
unlikely	it	is	to	observe	a	sample	mean	as	or	more	extreme	than	any	particular	value.	This	
is	how	we’ll	begin	to	use	inferential	statistics	to	test	hypotheses	in	the	next	chapter.	

Problems 
	 The	following	problems	refer	to	Zeke’s	test	scores	in	five	different	classes:	

Class	 Score	 µ	 s	

Chemistry	 80	 65	 10	

English	Lit.	 85	 79	 12	

History	 87	 75	 16	

Psychology	 85	 70	 15	

Social	Work	 86	 90	 12	

1.	 Why	are	µ	and	s	listed	in	this	table,	rather	than	M	and	SD?	

2.	 In	a	sense,	Zeke	seems	to	have	done	very	well	on	the	test	in	his	Social	Work	class.	In	
another	sense,	why	might	it	be	misleading	to	say	that?	

3.	 For	each	class,	sketch	a	normal	curve	with	the	class	µ	and	s.	Then,	add	a	vertical	line	to	
mark	where	Zeke’s	score	falls.	Shade	the	region	of	the	graph	below	Zeke’s	score.	Finally,	
estimate	what	percentage	of	the	graph	has	been	shaded.	This	is	a	visual	estimate	of	the	
percentile.	Even	if	you	do	this	only	roughly,	it	will	be	very	helpful	in	checking	the	
answers	you	get	later	by	doing	calculations.	

4.	 Calculate	a	z	score	for	Zeke’s	performance	in	each	class.	

5.	 Use	the	unit	normal	table	to	calculate	the	percentile	for	each	of	these	test	scores.	
Remember	that	the	proportion	listed	in	the	table	is	for	the	tail	of	the	distribution,	which	
for	positive	z	scores	will	be	the	proportion	of	scores	above	(not	below)	that	point.	
Check	your	answers	against	the	estimates	you	made	in	#3.	Minor	discrepancies	are	
expected,	but	if	the	answer	is	very	far	from	the	estimate	you	should	double-check	your	
work	to	figure	out	what	went	wrong.	

6.	 Based	on	the	percentiles,	in	which	class	did	Zeke	score	highest	relative	to	the	other	
students	in	that	class?	

7.	 Based	on	the	percentiles,	in	which	class	did	Zeke	score	lowest	relative	to	the	other	
students	in	that	class?	
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8.	 Based	on	the	percentiles,	in	which	class	did	Zeke	score	closest	to	the	average	of	the	
other	students	in	that	class?	

9.	 Based	on	the	µ	and	s	for	the	Social	Work	class,	how	can	you	tell	whether	the	
distribution	of	scores	is	symmetric	or	skewed?	

10.	Suppose	that	scores	in	the	Social	Work	class	are	standardized	by	converting	to	z	scores.	
How	would	that	affect	the	shape	of	the	distribution?	

*	*	*	
	 The	following	problems	refer	to	a	study	in	a	parapsychology	laboratory.	The	
investigator	would	like	to	test	for	a	particular	type	of	ESP	known	as	“precognition.”	He	uses	
a	deck	of	Zener	cards,	which	is	popular	in	ESP	research:	five	cards	each	of	five	different	
symbols	(shown	below),	for	a	total	of	25	cards.	A	subject	is	shown	the	deck	of	cards	and	
then	asked	to	shuffle	them.	Once	shuffled,	the	task	is	to	“see”	in	advance	what	symbol	is	on	
each	card	as	the	experimenter	picks	it	up	from	the	pile.	Each	prediction	is	recorded,	and	
then	the	card	is	revealed	to	the	subject	so	that	the	prediction	can	be	scored	correct	or	
incorrect.	If	ESP	did	not	exist,	and	subjects	simply	guessed	a	symbol	at	random	on	each	
trial,	you	would	expect	the	average	number	of	correct	responses	to	be	µ	=	5.00	(25	cards	×	
20%	chance	of	guessing	correctly	for	each	=	5),	with	a	standard	deviation	of	s	=	2.00.13	

	
11.	Suppose	that	an	individual	scores	X	=	8	cards	correct.	What	is	the	z	score	for	this	

person’s	level	of	performance?	
12.	What	is	the	probability	of	doing	at	least	this	well	if	the	person	was	only	guessing?	Use	

the	unit	normal	table	to	figure	this	out.	
13.	Based	on	your	answer	to	#12,	does	this	impress	you	as	unusually	good	performance,	

better	than	guessing	cards	at	random?	Why	or	why	not?	

14.	Suppose	that	a	sample	of	N	=	9	individuals	averages	M	=	8	cards	correct.	What	is	the	z	
score	for	this	level	of	performance?	

15.	What	is	the	probability	of	doing	at	least	this	well	if	these	individuals	were	only	
guessing?	Use	the	unit	normal	table	to	figure	this	out.	

16.	Based	on	your	answer	to	#15,	does	this	impress	you	as	unusually	good	performance,	
better	than	guessing	cards	at	random?	Why	or	why	not?	

17.	Revisit	the	design	and	procedure	of	this	research.	Can	you	think	of	any	ways	that	
subjects	could	“cheat,”	or	score	more	than	5	cards	correct	even	though	they	do	not	
possess	ESP?		

																																																								
13	For	the	curious,	this	is	calculated	as	sqrt(N	´	p	´	q),	where	N	is	the	number	of	trials	(here,	25	cards	per	
subject),	p	is	the	probability	of	a	correct	guess	on	each	trial,	and	q	=	1	–	p.	Thus,	sqrt(25	´	.20	´	.80)	=	2.00.	
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18.	How	can	the	design	and	procedure	be	improved	to	prevent	the	tricks	you	identified	in	
#17?		

*	*	*	
19.	In	statistics,	we	learn	to	use	z	scores	because	they	so	clearly	communicate	(1)	whether	

a	score	is	above	or	below	average	(the	sign	of	the	z	score	shows	this)	and	(2)	how	far	
from	average	(the	size	of	the	z	score	shows	this).	On	the	other	hand,	standardized	tests	
(e.g.,	SAT,	ACT,	IQ)	usually	are	scaled	such	that	for	the	population	of	individuals	who	
take	the	test,	score	distributions	will	approximate	normality	with	µ	much	larger	than	0	
and	s	much	larger	than	1.	Why	are	standardized	tests	never	scaled	in	z	score	units?	

Problems 1 – 16 are due at the beginning of class. 
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5. Statistical Decision Making 

Overview 
	 With	a	way	to	determine	how	much	a	sample	mean	differs	from	a	population	mean,	
we’re	now	in	a	position	to	begin	to	test	hypotheses.	The	key	question	to	ask	is	whether	the	
difference	we	observe	between	the	means	is	more	than	we’d	expect	due	to	sampling	error	
alone.	In	simpler	terms,	could	chance	account	for	our	findings?	If	not,	then	we	have	some	
evidence	that	something	more	than	chance,	something	systematic,	is	responsible.	This	
chapter	introduces	the	framework	that	will	be	used	for	all	inferential	statistics.	
	 As	a	running	example,	we’ll	revisit	the	precognition	experiment	from	an	earlier	chapter.	
Using	an	improved	procedure	in	which	subjects	are	not	allowed	to	touch	the	cards,	which	
remain	face	down	until	all	25	guesses	have	been	recorded,	Zeke	tests	16	subjects	who	
believe	they	possess	precognitive	ability	(the	type	of	ESP	that	involves	seeing	the	future).	
Here	are	their	scores,	the	number	of	correct	responses:	

	 	 3,	8,	8,	9,	6,	6,	5,	4,	5,	6,	8,	8,	6,	3,	5,	2	
	 In	what	follows,	we’ll	examine	how	inferential	statistics	are	used	to	reach	a	decision	
about	whether	these	data	support	Zeke’s	hypothesis	that	precognition	exists.	The	test	we’ll	
use	is	called	a	one	sample	z	test,	and	we’ll	see	it	put	into	practice	in	the	four	steps	of	
statistical	decision	making.		

Step 1: Construct the Statistical Hypotheses 
	 The	first	step	in	statistical	testing	is	to	establish	the	statistical	hypotheses.	It’s	
important	to	understand	that	these	are	not	the	same	as	what	one	might	be	called	the	
researcher’s	hypothesis,	what	the	researcher	is	actually	proposing.	In	this	case,	the	
researcher’s	hypothesis	is	that	precognition	exists.	The	statistical	hypothesis	that	will	be	
tested	using	data	is	called	the	null	hypothesis	(H0),	and	it	corresponds	to	the	absence	of	
any	systematic	effect.	In	this	case,	the	null	hypothesis	is	that	guessing	at	random	can	
account	for	subjects’	performance,	that	neither	ESP	nor	any	other	systematic	effect	is	
required.	Naturally,	Zeke	hopes	to	obtain	data	inconsistent	with	H0,	which	would	allow	him	
to	reject	it.	If	that	happens,	he	would	tentatively	accept	the	alternative	hypothesis	(H1),	
which	corresponds	to	the	presence	of	a	systematic	effect.	
	 In	this	case,	H0	would	represent	performance	no	better	than	chance-level	guessing.	How	
many	cards	would	someone	be	expected	to	get	right	just	by	guessing?	Well,	with	5	types	of	
cards,	you’d	have	a	1	in	5	chance	of	guessing	one	correctly.	Guessing	for	all	25	cards	would	
yield	an	expected	µ	=	25	´	(1/5)	=	5	cards	correct.	H0,	then,	would	include	any	value	less	
than	or	equal	to	5.	H1	would	represent	performance	better	than	this,	including	any	value	
greater	than	5.	The	statistical	hypotheses	can	be	stated	concisely:	

	 	 H0:	µ	£	5	
	 	 H1:	µ	>	5	

	 Several	important	points	about	this	notation	need	to	be	understood.	
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Population Parameters 
	 Statistical	hypotheses	involve	population	parameters	(here,	µ)	and	not	sample	statistics	
(such	as	M).	This	is	what	it	means	to	do	inferential	statistics:	We	use	statistics	calculated	
for	a	sample	of	data	to	test	hypotheses	that	deal	with	populations.	That’s	why	it	would	be	
mistaken	to	define	the	statistical	hypotheses	as	H0:	M	£	5	and	H1:	M	>	5.	If	all	we	wanted	to	
know	is	whether	a	sample	mean	is	greater	than	5,	we	wouldn’t	need	inferential	statistics	at	
all.	We’d	just	calculate	the	sample	mean	(M	=	5.75	for	these	16	subjects),	compare	it	to	5,	
and	reach	a	conclusion.	But	that	ignores	the	whole	point	of	doing	a	statistical	test,	to	
examine	the	role	of	sampling	error.	Is	the	finding	that	M	=	5.75	really	far	enough	from	µ	=	5	
to	reject	H0?	Might	these	means	differ	purely	because	of	sampling	error?	We	need	to	ask	
whether	the	observed	difference	is	more	than	we’d	expect	by	chance.	If	the	possibility	of	
this	being	a	fluke	is	sufficiently	small,	then	we	can	reject	H0	and	tentatively	accept	H1.		

All Possible Outcomes 
	 Statistical	hypotheses	must	cover	all	possible	outcomes.	In	this	case,	if	µ	is	less	than	or	
equal	to	5,	that	would	support	H0.	If	µ	is	greater	than	5,	that	would	support	H1.	All	
possibilities	are	covered.	It	would	be	mistaken	to	define	the	statistical	hypotheses	as	H0:	µ	
<	5	and	H1:	µ	>	5.	This	fails	to	account	for	the	possibility	of	µ	=	5.	

Directional and Nondirectional Hypotheses 
	 Many	statistical	tests—including	the	z	test—allow	you	to	construct	either	directional	
or	nondirectional	hypotheses.	As	the	names	imply,	the	key	is	whether	you’re	predicting	
the	direction	of	an	effect.	In	this	case,	we’d	use	directional	hypotheses	because	only	
performance	better	than	chance	would	support	the	existence	of	precognition.	Performance	
equal	to	or	worse	than	chance	defines	H0:	µ	£	5.	This	leaves	performance	above	chance	to	
define	H1:	µ	>	5.	
	 The	present	example	is	actually	unusual	in	that	nondirectional	hypotheses	are	far	more	
common	in	data	analysis.	They’re	the	default.	This	is	partly	because	it’s	wise	to	be	open	to	
the	possibility	that	an	effect	might	occur	in	either	direction	(e.g.,	even	a	well-intentioned	
treatment	might	cause	harm),	and	partly	because	it	keeps	researchers	honest.	Scientists	
are	only	human,	and	they’re	subject	to	the	same	kinds	of	cognitive	and	motivational	biases	
as	anyone	else.	They	like	to	obtain	support	for	their	hypotheses.	The	problem	with	
directional	hypotheses	is	that	you	never	know	whether	someone	predicted	the	direction	
before	looking	at	the	data.	As	we’ll	see,	there’s	an	unfair	statistical	advantage	if	one	looks	at	
the	data	first,	notes	the	direction	of	the	results,	and	then	“predicts”	that	with	a	directional	
hypothesis.	Because	it’s	seldom	possible	to	know	for	sure	whether	an	investigator	made	a	
directional	prediction	before	seeing	the	data,	making	nondirectional	hypotheses	the	norm	
prevents	anyone	from	taking	advantage	of	this	kind	of	statistical	cheating.	
	 Nondirectional	statistical	hypotheses	would	take	the	form	of	H0:	µ	=	5	and	H1:	µ	¹	5.	In	
this	case,	that	really	wouldn’t	make	sense	because	it	would	entail	rejecting	H0	even	if	
performance	was	worse	than	chance-level	guessing.	This	is	a	rare	instance	where	logical	
considerations	argue	against	using	nondirectional	hypotheses	and	you	could	justify	using	
directional	hypotheses	instead.	In	short,	consider	nondirectional	hypotheses	the	default,	
and	only	use	directional	hypotheses	if	you	believe	there	is	very	strong	justification.	
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Equality and H0 
	 H0	includes	equality.	It’s	called	the	null	hypothesis	for	just	this	reason,	that	it	includes	
the	possibility	of	no	effect.	Whether	you	use	directional	or	nondirectional	hypotheses,	the	
possibility	of	µ	=	5	must	be	included	as	part	of	H0.		

Defining H0 and H1 
	 A	final	point	may	seem	superficial,	but	it’s	important	nonetheless.	Writing	“H0:”	means	
“the	null	hypothesis	is	defined	as…”	A	common	mistake	is	to	write	something	like	“H0	=	5”.	
This	is	meaningless	because	it	contains	no	population	parameters.	The	null	hypothesis	
itself	is	not	a	numerical	value.	Rather,	it’s	an	expression	stated	in	terms	of	one	or	more	
population	parameters.	

Step 2: Establish the Decision Threshold 
	 The	second	step	in	statistical	testing	is	to	establish	a	decision	threshold.	How	strong	
do	the	results	have	to	be	to	reject	H0?	Consider,	by	analogy,	the	decision	that	a	jury	must	
reach	in	a	criminal	trial.	The	defendant	is	considered	innocent	until	proven	guilty	“beyond	
a	reasonable	doubt”.	The	null	hypothesis	is	innocence,	and	it	can	only	be	rejected	if	the	
evidence	surpasses	this	decision	threshold.	
	 Whereas	that’s	a	subjective	decision,	in	statistical	testing	we	set	an	objective	threshold	
using	what’s	called	an	a	level.14	The	a	level	is	the	probability	that	a	result	could	occur	by	
chance	if	H0	is	true.	This	is	where	sampling	distributions	come	into	play.	We	know	what	
results	we’d	expect	to	observe	for	randomly	selected	samples	from	a	specified	population.	
If	the	results	for	our	sample	of	data	fall	well	out	in	one	of	the	tails	of	this	distribution,	that	
suggests	they’re	incompatible	with	H0.	For	example,	earlier	we	saw	that	although	it’s	
possible	to	roll	10	dice	and	get	an	average	score	of	6.00,	that’s	extremely	unlikely.	In	fact,	
the	only	way	it	could	happen	is	if	all	10	dice	came	up	as	6s,	and	there’s	only	a	(1/6)10	
chance	of	that,	which	is	a	probability	of	.0000000165.	When	we	see	such	a	minute	
probability	that	something	would	happen	by	chance,	we	conclude	that	something	other	
than	chance	is	responsible.	In	this	case,	perhaps	the	dice	are	loaded.	
	 In	research,	we	don’t	require	a	probability	as	low	as	.0000000165	to	reject	H0.	Usually	a	
is	set	at	.05,	meaning	that	if	the	probability	of	obtaining	results	as	(or	more)	extreme	than	
what	we	observe	is	less	than	.05,	we’ll	reject	H0.	Sometimes,	to	be	more	rigorous,	the	a	
level	is	set	at	.01.	This	makes	it	harder	to	reject	H0,	but	it	also	means	that	when	we	do	reject	
H0	we	have	stronger	evidence	against	it.	More	will	be	said	about	this	trade-off	later.	
	 Once	you’ve	chosen	your	a	level—and	you	should	use	.05	unless	there’s	a	strong	reason	
to	lower	it—you	determine	the	critical	region	of	the	sampling	distribution	of	expected	
results	if	H0	is	true.	The	critical	region	is	where	the	results	must	fall	to	enable	you	to	reject	
H0.	For	a	z	test,	you	want	to	know	how	large	z	must	be	to	reject	H0.	
	 Recall	that	a	nondirectional	hypothesis,	also	known	as	a	2-tailed	test,	is	the	norm.	This	
means	that	the	critical	region	falls	in	both	tails	of	the	sampling	distribution,	each	containing	
a	proportion	of	scores	equal	to	a	/	2.	For	a	nondirectional	test	with	a	=	.05,	that	would	
leave	a	proportion	of	.025	in	each	tail.	Using	the	unit	normal	table,	you’d	look	for	the	entry	

																																																								
14	The	Greek	letter	a	is	pronounced	“alpha”.	
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closest	to	.025	and	find	that	this	corresponds	to	z	=	1.96.	Because	this	is	a	2-tailed	test,	the	
critical	region	includes	the	left	tail	(z	<	-1.96)	and	the	right	tail	(z	>	1.96).	The	simplest	way	
to	express	the	critical	region	for	the	nondirectional	z	test	with	a	=	.05	would	be	|z|	>	1.96.	
The	absolute	value	notation	indicates	that	the	size	of	z	must	exceed	1.96,	regardless	of	sign,	
thereby	including	both	tails.	For	a	nondirectional	z	test	with	a	=	.01,	the	critical	region	
would	be	|z|	>	2.58.	
	 For	a	directional	hypothesis,	also	known	as	a	1-tailed	test,	you’d	locate	the	z	score	
beyond	which	the	proportion	of	cases	equals	your	a	level.	For	a	directional	z	test	with	a	=	
.05,	this	would	be	a	z	score	of	1.64	(or	-1.64,	depending	on	which	direction	you’re	
predicting.)	The	critical	region	would	be	defined	as	z	>	1.64	(or	z	<	-1.64).	For	a	=	.01,	the	
critical	region	would	be	a	z	>	2.33	(or	z	<	-2.33).	
	 Notice	that	the	decision	thresholds	for	1-tailed	tests	are	less	extreme	than	those	for	2-
tailed	tests.	With	a	=	.05,	you’d	only	need	to	find	z	>	1.64	rather	than	z	>	1.96	to	reject	H0.	
This	is	the	statistical	advantage	of	using	directional	hypotheses.	The	same	is	true	for	using	
larger	rather	than	smaller	a	levels.	For	2-tailed	z	tests,	using	a	=	.05	means	you’d	only	need	
to	find	|z|	>	1.96	to	reject	H0,	but	using	a	=	.01	means	you’d	need	to	find	|z|	>	2.58.	This	is	
the	statistical	advantage	of	using	larger	a	levels.	So	why	don’t	researchers	tend	to	use	1-
tailed	tests	with	larger	a	levels?	The	short	answer	is	that	this	could	be	abused.	
	 If	we	could	trust	that	researchers	would	never	look	at	the	data	before	performing	their	
statistical	tests,	1-tailed	tests	and	larger	a	levels	might	be	more	acceptable,	more	common.	
But	we	can’t	be	sure	that	everyone	will	be	so	honest.	The	scientific	method,	which	includes	
the	practice	of	statistical	decision	making,	is	designed	to	prevent	human	biases	from	
affecting	conclusions	to	the	greatest	extent	possible.	To	keep	us	from	fooling	ourselves,	we	
restrict	the	options	in	statistical	testing.	This	minimizes	the	impact	of	any	temptation	to	
peek	at	the	data	and	then	establish	a	decision	threshold	that	allows	us	to	reject	H0.	Thus,	2-
tailed	tests	with	a	=	.05	are	expected	unless	you	can	provide	a	strong	justification	for	doing	
otherwise.	These	are	arbitrary	norms—particularly	the	choice	of	a	=	.05,	which	is	not	
special	in	any	way—but	following	them	supports	the	integrity	of	the	scientific	method.	

Step 3: Collect Data and Compute the Statistic 
	 The	first	two	steps	in	statistical	testing	can,	and	arguably	should,	be	done	in	advance	of	
data	collection.	You	don’t	need	to	have	any	data	in	hand	to	state	the	statistical	hypotheses	
and	establish	a	decision	threshold.	The	third	step	is	to	gather	your	data	and	calculate	the	
statistic.	
	 To	calculate	a	z	value	for	our	data,	we	use	the	equation	from	an	earlier	chapter:	

	 	 z	=	(M	–	µ)	/	sM	

	 The	numerator	is	simple,	that’s	5.75	–	5	=	0.75.	This	represents	the	difference	between	
what	we’ve	observed	in	our	data	and	what	we	expect	in	the	population	if	precognition	
doesn’t	exist.	For	the	denominator,	recall	that	sM	=	s	/	sqrt(N).	In	this	case,	s	=	2,	so	the	
denominator	is	2	/	sqrt(16)	=	0.50.	This	represents	the	typical	distance	between	a	sample	
mean	and	the	population	mean	if	precognition	doesn’t	exist.	The	ratio	between	the	
observed	difference	between	the	means	of	0.75	and	the	typical	distance	to	the	population	
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mean	of	0.50	gives	us	a	z	value	of	0.75	/	0.50	=	1.50.	In	other	words,	the	difference	between	
the	means	we	observed	in	our	data	is	1.50	times	as	large	as	what	we’d	expect	by	chance.		

Step 4: Reach a Decision 
	 The	final	step	in	statistical	testing	is	to	make	a	decision.	This	is	based	entirely	on	
whether	the	statistic	falls	in	the	critical	region.	Recall	that	for	a	1-tailed	z	test	with	a	=	.05,	z	
needs	to	exceed	1.64	to	reject	H0.	We	found	that	z	=	1.50,	therefore	we	do	not	reject	H0.	By	
retaining	H0,	we	acknowledge	that	chance-level	guessing	can	account	for	our	results.	
	 Whenever	we	reach	a	statistical	decision,	there’s	some	possibility	that	it’s	mistaken.	
This	is	because	we’re	using	probability,	which	will	not	provide	us	with	certainty.	There	are	
two	kinds	of	mistakes	that	we	can	make.	
	 If	we	reject	H0	when	it’s	actually	true,	this	is	known	as	a	Type	I	error.	We’d	be	
concluding	that	a	systematic	effect	exists	when	really	it	does	not.	This	is	analogous	to	a	
false	alarm,	such	as	when	a	smoke	detector	sounds	the	alarm	when	there’s	no	fire.	
Perhaps	the	smoke	detector	is	too	sensitive	to	small	amounts	of	smoke	that	can	occur	when	
there’s	no	fire	(e.g.,	crumbs	in	the	toaster	oven	giving	off	some	smoke	during	routine	
operation).	The	same	thing	can	happen	in	statistics:	By	using	a	=	.05,	we’re	tacitly	accepting	
that	even	when	H0	is	true,	we’ll	reject	it	5%	of	the	time.	The	usual	practice	in	statistical	
testing	provides	some	sensitivity	to	detect	real	effects,	but	it	will	result	in	a	lot	of	false	
alarms	when	there	are	not.	
	 If	we	retain	H0	when	it’s	actually	false,	this	is	known	as	a	Type	II	error.	We’d	be	
concluding	that	there	is	no	systematic	effect	when	really	there	is.	This	is	analogous	to	a	
miss,	such	as	when	a	smoke	detector	fails	to	sound	the	alarm	when	there	is	a	fire.	Perhaps	
the	smoke	detector	isn’t	sensitive	enough	to	the	smoke	produced	by	a	fire	(e.g.,	the	battery	
needs	replacing).	The	same	thing	can	happen	in	statistics:	By	requiring	that	results	be	in	
the	critical	region	in	order	to	reject	H0,	we’ll	fail	to	reject	it	sometimes	even	when	it’s	really	
false.	Especially	in	small	samples,	statistical	testing	is	fairly	insensitive	to	real	effects,	
missing	them	quite	often.	

Minimizing Type I and Type II Errors 
	 Because	we	rely	on	probabilities	to	reach	statistical	decisions,	we	cannot	eliminate	the	
possibility	of	making	Type	I	and	Type	II	errors.	However,	we	can	take	steps	to	minimize	the	
risks	of	one,	the	other,	or	both	kinds	of	error.	

Setting the a Level 
	 When	you	choose	an	a	level,	you’re	implicitly	making	a	trade-off	between	Type	I	and	
Type	II	errors.	Changing	a	can’t	reduce	both	risks	at	the	same	time,	but	it	does	trade	a	
lower	likelihood	of	one	kind	of	mistake	for	a	greater	likelihood	of	the	other.	Normally,	you	
leave	a	at	.05,	but	there	are	circumstances	under	which	you	might	adjust	it.	
	 If	you’re	doing	exploratory	research,	you	might	be	more	concerned	with	missing	effects	
that	deserve	further	study	(Type	II	errors)	than	with	suggesting	further	study	for	apparent	
effects	that	turn	out	to	be	mistaken	(Type	I	errors).	If	the	primary	goal	is	to	suggest	ideas	
rather	than	to	rigorously	test	them,	you	might	consider	using	a	larger	a	level.	For	example,	
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if	you	raise	a	from	.05	to	.10,	you’re	demanding	weaker	evidence	to	reject	H0.	For	a	2-tailed	
z	test,	the	size	of	the	critical	region	increases	from	|z|	>	1.96	(fairly	small	tails)	to	|z|	>	1.64	
(somewhat	larger	tails).	By	making	it	easier	to	reject	H0,	you	reduce	the	chance	of	a	Type	II	
error.	At	the	same	time,	though,	you	increase	the	chance	of	a	Type	I	error.	It’s	like	adjusting	
your	smoke	detector	so	that	it’s	more	sensitive	to	smoke:	You	won’t	miss	as	many	fires,	but	
you’ll	get	more	false	alarms.	
	 If	you’re	doing	hypothesis-testing	research,	you	might	be	most	concerned	with	
providing	false	support	for	nonexistent	effects	(Type	I	errors).	If	the	primary	goal	is	to	
rigorously	test	ideas,	you	might	consider	using	a	smaller	a	level.	For	example,	if	you	lower	
a	from	.05	to	.01,	you’re	demanding	stronger	evidence	to	reject	H0.	For	a	2-tailed	z	test,	the	
size	of	the	critical	region	shrinks	from	|z|	>	1.96	(fairly	small	tails)	to	|z|	>	2.33	(even	
smaller	tails).	By	making	it	harder	to	reject	H0,	you	reduce	the	chance	of	a	Type	I	error.	At	
the	same	time,	though,	you	increase	the	chance	of	a	Type	II	error.	It’s	like	adjusting	your	
smoke	detector	so	that	it’s	less	sensitive	to	smoke:	You	won’t	get	as	many	false	alarms,	but	
you’ll	miss	more	actual	fires.	

Increasing Sample Size 
	 When	you	collect	more	data,	you	reduce	the	amount	of	sampling	error.	This	makes	it	
easier	to	detect	an	effect	if	one	really	exists,	meaning	that	you	reduce	the	chances	of	a	Type	
II	error.	The	probability	of	making	a	Type	I	error	is	controlled	entirely	by	the	choice	of	an	a	
level,	so	increasing	sample	size	is	a	way	to	reduce	the	chance	of	one	kind	of	mistake	
(missing	a	real	effect)	without	increasing	the	chance	of	the	other	kind	of	mistake	(a	false	
alarm).	This	is	one	of	many	reasons	why	it’s	desirable	to	collect	as	much	data	as	is	feasible	
in	research.	

Replication 
	 Another	way	to	curb	the	number	of	mistaken	decisions	is	through	the	practice	of	
replication.	This	is	a	cornerstone	of	scientific	method	precisely	because	it	can	help	to	root	
out	mistaken	conclusions.	In	statistics,	there’s	always	some	sampling	error.	Ultimately,	the	
best	way	to	see	whether	an	effect	exists	or	not	is	to	test	it	many	times	and	look	for	
consistency	in	the	results.	There	are	many	ways	to	check	the	consistency	of	results.	You	can	
repeat	a	study	precisely,	called	exact	replication,	to	see	whether	the	findings	hold	up	
within	a	tolerable	margin	of	error.	Alternatively,	you	can	change	the	methodology	so	that	
important	constructs	are	operationalized	differently,	sometimes	called	conceptual	
replication.	Even	within	a	single	study,	you	can	incorporate	multiple	measures	of	key	
variables	to	check	for	consistency	in	the	results.	
	 The	results	of	a	single	statistical	test	should	never	be	considered	strong	evidence	for	or	
against	a	researcher’s	hypothesis.	Far	more	persuasive	is	consistent	evidence	observed	
across	many	tests,	especially	if	these	involve	different	measures	obtained	in	different	
samples	in	studies	performed	using	different	designs	by	members	of	different	research	
labs.	Each	qualitative	difference	in	methodology	helps	to	rule	out	the	possibility	that	an	
apparent	effect	is	an	artifact	some	element	of	the	research.	Consistency	of	results	across	
diversity	of	methods	provides	the	most	compelling	evidence.	
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p Values 
	 Rather	than	specifying	an	a	level	to	identify	the	critical	region,	computerized	data	
analysis	is	easier.	SPSS,	for	example,	simply	provides	what’s	called	a	p	value.	This	is	the	
probability	of	obtaining	results	as	or	more	extreme	than	those	observed	in	your	sample	of	
data.	Using	the	data	from	this	chapter,	the	z	value	of	1.50	corresponds	to	a	p	of	.067.	How	is	
this	calculated,	and	what	does	it	mean?	
	 It’s	calculated	by	using	the	unit	normal	table	and	finding	what	proportion	of	all	z	scores	
are	beyond	z	=	1.50.	Here’s	the	relevant	graph,	with	the	upper	tail	shaded:	

	
	 The	area	in	one	tail,	found	in	the	table	for	z	=	1.50,	is	.06681.	What	this	means	is	that	if	
you	select	samples	of	N	=	16	from	a	population	of	scores	with	µ	=	5	and	s	=	2,	only	about	
6.7%	of	those	samples	would	have	z	>	1.50.		
	 How	is	this	easier	than	identifying	a	critical	region?	You	don’t	need	to	use	the	unit	
normal	table	at	all.	You	just	compare	the	p	value	directly	to	your	a	level.	The	decision	rule	
is	simple,	and	it	will	apply	to	all	the	inferential	statistics	we	review	in	this	book:	

	 	 Statistical	decision	rule:	If	p	<	a	you	reject	H0,	otherwise	you	retain	H0	

	 A	statistic	that	falls	far	out	into	the	tail	of	a	sampling	distribution	that	represents	H0	
yields	a	low	p	value.	This	means	it’s	unlikely	to	have	occurred	just	due	to	chance,	so	you	can	
reject	H0.	On	the	other	hand,	if	a	statistic	falls	closer	to	the	middle	of	the	sampling	
distribution	expected	under	H0,	it	yields	a	large	p	value.	That	means	it	might	very	well	have	
occurred	by	chance,	so	you	retain	H0.	
	 One	final	note	is	that	whereas	we’ve	done	a	1-tailed	test	for	these	data,	2-tailed	tests	are	
the	norm.	For	a	2-tailed	test,	the	p	value	represents	the	area	in	both	the	upper	and	lower	
tails	of	the	sampling	distribution.	Because	this	sampling	distribution	is	symmetric,	all	that	
you	have	to	do	is	double	the	area	in	one	tail.	In	this	case,	for	example,	.06681	´	2	=	.13362.	
The	means	the	p	value	for	a	2-tailed	test	would	have	been	.134	rather	than	.067.	Either	way,	
we	would	retain	H0	because	both	of	these	p	values	are	larger	than	a	=	.05.	

APA Style 
	 For	a	one	sample	z	test,	you	should	include	the	sample	M	and	SD,	the	population	µ	that	
represents	H0	plus	the	value	of	s	used	in	the	statistical	test,	the	z	value,	the	p	value,	and	
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Cohen’s	d.	This	last	value	is	a	measure	of	effect	size,	and	it	will	be	described	in	the	next	
chapter.		
	 The	key	to	reporting	statistical	results	clearly	and	concisely	is	to	begin	by	writing	in	
plain	English,	and	then	adding	statistical	details	as	support.	Whenever	possible,	try	putting	
these	details	in	parentheses	or	tacked	onto	the	end	of	the	sentence.	Treat	them	like	you	
would	citations	or	footnotes.	Tuck	them	away	where	an	interested	reader	can	find	them,	
but	don’t	let	them	intrude	or	distract	from	what	you’re	really	trying	to	say.	
	 For	any	inferential	statistic,	you	should	indicate	whether	or	not	the	test	result	is	
statistically	significant.	To	be	statistically	significant	means	that	your	decision	is	to	reject	
H0.	When	you	retain	H0,	the	result	is	not	statistically	significant.	
	 Any	z	test	can	be	reported	in	a	single	sentence.	Here’s	an	example	for	these	data:	

The	number	of	cards	correctly	identified	by	a	sample	of	16	subjects	(M	=	5.75,	SD	=	

2.08)	was	not	statistically	significantly	better	than	what	would	be	expected	for	

random	guessing	(µ	=	5,	s	=	2),	z	=	1.50,	p	=	.067,	d	=	0.38.	

	 Notice	that	the	phrasing	of	the	results—“was	not	statistically	significantly	better”—
indicates	a	1-tailed	test	was	used.	Had	this	been	a	2-tailed	test,	it	could	be	written	like	this:	

The	number	of	cards	correctly	identified	by	a	sample	of	16	subjects	(M	=	5.75,	SD	=	

2.08)	did	not	differ	statistically	significantly	from	what	would	be	expected	for	

random	guessing	(µ	=	5,	s	=	2),	z	=	1.50,	p	=	.134,	d	=	0.38.	

	 This	time,	the	phrasing	of	the	results—“did	not	differ	statistically	significantly”—
indicates	a	2-tailed	test	was	used.	

Problems 
	 The	following	problems	refer	to	the	academics	data	set	introduced	earlier,	for	which	N	
=	40.	For	the	SAT	variable,	M	=	1210.50	and	SD	=	129.06.	

1.	 Suppose	you	want	to	test	whether	these	SAT	scores	differ	from	the	mean	of	all	test-
takers	(µ	=	1000,	s	=	160).		

a.	 State	the	statistical	hypotheses	(H0	and	H1).	
b.	 Did	you	choose	directional	or	a	nondirectional	hypotheses?	Why?	

c.	 What	a	level	would	you	use	for	this	test?	Why?	

d.	 What	is	the	critical	region	for	your	test?	

e.	 What	is	the	z	value	for	these	data?	What	does	the	z	value	mean?	
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f.	 What	is	the	p	value	for	this	test?	Use	the	unit	normal	table	to	find	the	proportion	in	
the	tail	for	the	z	value,	and	multiply	this	by	2	if	you’re	doing	a	nondirectional	(2-
tailed)	test.	What	does	the	p	value	mean?	

g.	 Do	these	results	this	lead	you	to	reject	or	retain	H0?	Why?	

h.	 What	type	of	error—Type	I	or	Type	II—might	you	be	making?	

i.	 In	a	single	sentence,	report	the	results	of	this	test	in	APA	style.	
2.	 Repeat	parts	(a)	through	(i),	this	time	supposing	that	you	want	to	test	whether	these	

SAT	scores	differ	from	the	mean	of	all	applicants	to	selective	colleges	nationwide	(µ	=	
1100,	s	=	150).	As	you	answer	each	part	of	the	question,	indicate	whether	your	
response	is	the	same	or	different	for	#1	vs.	#2,	and	explain	why.	

3.	 SPSS	and	other	computer	software	that	performs	statistical	analyses	will	sometimes	
provide	a	p	value	of	.000.	Keeping	in	mind	what	a	p	value	represents,	explain	why	it	
cannot	equal	0.	How	should	you	report	a	p	value	that	SPSS	lists	as	.000	in	APA	style?	
(See	the	APA	style	guidelines	summarized	in	an	earlier	chapter.)	

4.	 A	car	manufacturer	claims	that	a	new	hybrid	model	will	get	50	MPG.	Several	magazines	
for	consumers	and	car	enthusiasts	publish	the	results	of	their	own	independent	tests,	
each	performed	under	realistic	driving	conditions.	Here	are	the	MPG	results	they	
report:	

	 45,	48,	43,	52,	47,	47,	40	

	 Perform	a	statistical	test	of	the	manufacturer’s	claimed	fuel	economy,	allowing	a	margin	
of	error	of	±10%	(s	=	5)	for	acceptable	variation	under	realistic	driving	conditions.	Do	
parts	(a)	through	(i),	above.	

Problems 1 – 3 are due at the beginning of class. 
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6. Effect Size 

Overview 
	 There	is	an	important	difference	between	statistical	significance	and	practical	
significance.	Statistical	significance	deals	with	whether	you	can	reject	H0.	If	so,	you	
conclude	that	there	is	a	systematic	effect	of	some	kind,	that	something	other	than	sampling	
error	is	needed	to	explain	the	findings.	However,	a	statistically	significant	effect	is	not	
necessarily	practically	significant,	meaning	that	it	may	not	be	very	important.	A	statistically	
significant	but	practically	unimportant	finding	might	be	due	to	a	flaw	in	the	design	of	the	
study	(e.g.,	failure	to	control	for	placebo	effects,	statistical	regression,	or	other	threats	to	
internal	validity	by	including	a	control	group	and	assigning	subjects	to	conditions	
randomly).	This	is	why	it’s	so	important	to	consider	threats	to	internal	validity	when	
interpreting	results.	Statistical	significance	alone	doesn’t	necessarily	lend	support	to	a	
researcher’s	hypothesis.	
	 Another	way	in	which	statistically	significant	results	may	not	be	practically	significant	
is	if	they’re	too	small	to	matter	(e.g.,	a	tiny	difference	across	conditions	that	wouldn’t	be	
worth	the	time,	effort,	or	expense	of	treatment).	This	is	why	you	should	always	calculate	a	
measure	of	effect	size	to	help	inform	your	judgment	about	whether	the	results	are	
practically	significant.	This	chapter	shows	how	to	calculate	and	interpret	a	common	
measure	of	effect	size.	Other	measures	will	be	introduced	in	later	chapters.	

Measures of Effect Size 
	 There	are	many	different	measures	of	effect	size,	most	of	which	use	a	common	scale	to	
make	it	easy	to	apply	rules	of	thumb	and	report	effects	as	small,	medium,	or	large.	The	
choice	of	an	appropriate	measure	depends	on	the	research	design	and	statistical	analysis.	
	 Whenever	you	want	to	compare	the	difference	between	two	means,	Cohen’s	d	is	a	good	
choice	of	an	effect	size	measure.	The	difference	between	the	two	means	is	the	numerator,	
and	to	place	this	difference	on	a	common	scale	you	divide	it	by	the	standard	deviation.	This	
standardizes	the	mean	difference	in	the	same	way	that	calculating	a	z	score	for	an	
individual	standardizes	his	or	her	score.	It	removes	the	unit	of	measurement	in	a	particular	
study	and	places	the	score	onto	a	standard	scale	with	µ	=	0	and	s	=	1.	
	 To	calculate	d,	you	need	to	know	which	means	to	subtract	in	the	numerator,	and	which	
standard	deviation	to	place	in	the	denominator.	This	depends	on	the	type	of	design	and	
analysis.	We’ll	see	several	versions	of	d	in	the	coming	chapters.	When	you’re	doing	a	one	
sample	z	test,	the	formula	for	d	looks	like	this:	

	 	 d	=	(M	–	µ)	/	s	

	 This	is	very	much	like	the	formula	for	a	z	score:	

	 	 z	=	(X	–	µ)	/	s	

	 The	key	difference	is	that	a	z	score	is	calculated	for	an	individual	score	(X),	and	d	is	
calculated	for	a	sample	mean	(M).	Otherwise,	they’re	interpreted	the	same	way.	A	z	score	of	
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1.00,	for	example,	indicates	that	a	score	falls	one	standard	deviation	above	the	mean.	A	d	
score	of	1.00	indicates	that	a	sample	mean	scores	one	standard	deviation	above	the	
population	mean.	
	 Like	a	z	score—but	unlike	a	z	test—Cohen’s	d	does	not	take	into	account	sample	size.	
This	is	important	because	we	want	an	estimate	of	the	size	of	the	effect	to	be	independent	of	
sample	size.	The	goal	is	to	estimate	how	large	a	difference	exists	between	the	means	being	
compared.	Collecting	more	data	will	improve	the	precision	with	which	d	estimates	the	true	
effect	size	in	the	population,	but	having	a	small	sample	will	not	bias	d	upward	or	
downward.	In	short,	the	more	data	the	better,	but	N	is	not	part	of	the	calculation	of	d.	
	 To	illustrate	Cohen’s	d,	recall	the	results	for	the	precognition	data	from	an	earlier	
chapter:	

The	number	of	cards	correctly	identified	by	a	sample	of	16	subjects	(M	=	5.75,	SD	=	
2.08)	was	not	statistically	significantly	better	than	what	would	be	expected	for	
random	guessing	(µ	=	5),	z	=	1.50,	p	=	.067,	d	=	0.38.	

	 Here’s	how	the	d	value	was	calculated:	

	 	 d	=	(M	–	µ)	/	s		=	(5.75	–	5)	/	2		=	0.38	

	 The	d	value	tells	us	that	the	sample	mean	differed	from	the	population	mean	by	0.38	
standard	deviations.	Is	this	a	large	effect,	a	small	one,	or	someplace	in	between?	

Interpreting Effect Size 
	 Based	on	his	extensive	experience	with	the	findings	in	many	areas	of	psychological	
research,	Cohen	(1992)15	suggested	rules	of	thumb	for	what	can	be	considered	small,	
medium,	and	large	effect	sizes	when	they’re	measured	using	his	d	statistic:	
	 	 0.20	=	small	
	 	 0.50	=	medium	
	 	 0.80	=	large	
	 Of	course,	the	interpretation	of	any	research	result	depends	on	the	context.	For	
example,	even	statistically	small	effects	can	be	important	if	the	outcome	itself	matters	a	
great	deal	(e.g.,	risk	of	disease	or	death)	or	if	the	effect	accumulates	(e.g.,	small	differences	
in	athletic	ability	can	add	up	to	huge	differences	in	performance	over	the	course	of	a	game,	
a	season,	or	a	career).	Cohen	intended	his	rules	of	thumb	to	be	rough	guidelines	that	
provide	for	a	common	understanding,	not	hard-and-fast	thresholds	to	apply	rigidly.	
	 The	smallest	value	that	d	can	take	is	0.00—when	there	is	no	difference	between	the	two	
means	being	compared—and	anything	less	than	0.20	can	be	considered	very	small.	
Anything	above	0.80	can	be	considered	very	large,	and	there	is	no	largest	value	that	d	can	
take.16	In	practice,	it’s	rare	to	find	d	>	2.00	or	so	in	social	and	behavioral	science.	
	 It’s	also	important	to	note	that	d	can	be	positive	or	negative.	The	sign	indicates	only	the	
direction	of	the	effect,	which	mean	was	larger.	This	is	usually	already	obvious	from	looking	
at	the	data.	The	absolute	value	of	d	is	what	indicates	the	size	of	the	effect.	
																																																								
15	Cohen,	J.	(1992).	A	power	primer.	Psychological	Bulletin,	112,	155-159.	
16	In	theory,	the	standard	deviation	could	approach	0,	in	which	case	d	could	approach	infinity.	
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	 The	value	for	the	precognition	data,	d	=	0.38,	falls	between	a	small	and	a	medium	effect.	
It	can	be	helpful	to	show	what	this	looks	like.	Imagine	you	have	a	normally	distributed	
sample	of	scores,	and	their	M	differs	from	µ	by	d	=	0.38.	Here’s	a	density	plot	for	that	effect	
size,	with	µ	=	0	plotted	as	a	solid	line	and	M	=	0.38	plotted	as	a	dotted	line:	

	
	 You	can	see	the	extent	of	the	difference	between	the	means,	relative	to	the	variability	
among	all	the	scores.	This	is	what	Cohen	would	consider	to	be	right	in	between	a	small	and	
a	medium	effect.	Here’s	a	graph	for	a	small	effect:	

	
	 Here’s	a	graph	for	a	medium	effect:	

	
	 Finally,	here’s	a	graph	for	a	large	effect:	
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	 You	can	see	the	effect	size	becoming	larger	as	d	increases.	It’s	worth	keeping	in	mind,	
though,	just	how	much	variation	remains.	Even	for	large	effects,	there	are	many	individual	
exceptions	to	the	general	trend	observed	in	a	sample.	When	d	=	0.80,	for	example,	only	
84.1%	of	the	scores	fall	above	µ,	with	the	other	15.9%	falling	below	µ.	It	would	be	foolish	to	
presume	that	the	trend—scores	in	the	sample	were	generally	above	the	population	mean—
applies	to	every	individual.	
	 Any	new	metric	takes	some	time	and	experience	to	become	familiar.	For	example,	if	you	
were	to	switch	from	measures	of	miles,	pounds,	and	degrees	Fahrenheit	to	the	metric	
measures	of	kilometers,	kilograms,	and	degrees	Centigrade,	everything	would	be	pretty	
confusing	for	a	while.	At	first,	you’d	convert	metric	values	back	into	the	old,	familiar	
measures	(e.g.,	each	kilometer	is	about	0.62	miles,	each	kilogram	about	2.20	pounds),	but	
over	time	you’d	become	just	as	comfortable	using	the	metric	units	themselves.	The	same	
applies	to	effect	size	measures.	As	you	encounter	more	values	of	Cohen’s	d,	you’ll	develop	a	
sense	for	what	it	means	to	be	a	small,	medium,	or	large	effect.	Because	most	of	us	are	at	
least	somewhat	familiar	with	the	magnitude	of	sex	differences,	they	can	provide	some	
intuitive	guideposts	when	expressed	using	d.	
	 A	review	of	many	meta-analyses17	(a	research	method	described	in	the	next	section)	
found	that	for	sex	differences	in	cognitive	abilities,	communication,	social	and	personality	
variables,	and	psychological	well-being,	about	one-half	of	the	studies	reported	small	effects	
(i.e.,	|d|	»	0.20)	and	another	third	of	the	studies	reported	virtually	nonexistent	effects	(i.e.,	
|d|	»	0).	In	contrast,	sex	differences	in	adult	height	are	very	large:	In	the	U.S.,	the	mean	
difference	of	nearly	6”	is	about	double	the	within-group	SD	of	nearly	3”	(d	»	2.00).	

Meta-Analysis 
	 The	traditional	way	to	synthesize	the	findings	across	a	large	number	of	studies	is	
through	a	narrative	literature	review.	Often,	the	reviewer	tallies	the	number	of	studies	that	
reported	statistically	significant	results,	as	well	as	the	number	that	did	not,	to	see	whether	
the	evidence	supports	the	existence	of	a	certain	effect.	This	can	be	very	useful,	but	there	are	
two	major	problems.		

																																																								
17	Hyde,	J.	S.	(2005).	The	gender	similarities	hypothesis.	American	Psychologist,	60,	581-592.	
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	 The	first	problem	is	that	in	individual	studies,	a	real	effect	can	be	missed.	Especially	
when	investigators	use	small	samples,	the	risk	of	such	Type	II	errors	can	be	large.	This	can	
bias	the	tally	in	a	literature	review,	masking	the	existence	of	an	effect.	
	 The	second	problem	is	that	results	can	appear	inconsistent	across	studies	due	to	
ordinary	sampling	error.	In	other	words,	the	apparent	differences	in	results	from	study	to	
study	can	mask	an	underlying	similarity.	Reviewers	might	be	tempted	to	provide	
explanations	for	the	apparent	differences,	stating	them	either	as	hypotheses	to	be	tested	
further	or	conclusions	supported	by	the	review	itself.	
	 The	availability	of	standardized	measures	of	effect	size,	such	as	Cohen’s	d,	helps	to	solve	
both	of	these	problems	through	meta-analysis.	A	meta-analysis	is	a	quantitative	synthesis	
of	research,	which	can	supplement	or	replace	a	narrative	review.	The	nuts	and	bolts	of	
meta-analysis	will	not	be	covered	here.18	What	follows	is	a	conceptual	overview	of	the	
method	and	its	benefits.	
	 To	perform	a	meta-analysis,	the	first	step	is	to	calculate	a	common	measure	of	effect	
size	for	each	study.	Cohen’s	d	is	a	popular	choice.	Next,	a	weighted	average	of	the	effect	
sizes	is	calculated	across	all	studies.	The	weights	are	based	on	sample	size,	which	means	
that	larger	studies	count	more	toward	the	overall	average	than	do	smaller	studies.	This	
weighted	average	is	based	on	all	available	data,	so	it	reflects	the	single	best	estimate	of	the	
size	of	the	effect.	
	 At	this	stage,	the	meta-analyst	can	perform	a	test	of	the	statistical	significance	of	this	
average	effect	size.	If	it	differs	from	the	null	hypothesis	value	of	0,	that	supports	the	
existence	of	an	effect.	Because	the	meta-analytic	test	is	based	on	all	the	data	in	the	research	
literature,	it’s	highly	sensitive	and	unlikely	to	lead	to	a	Type	II	error.	If	the	effect	exists,	it	
should	be	detected	in	a	meta-analysis.	
	 In	addition,	meta-analysis	can	be	used	to	test	for	moderators,	or	variables	that	
influence	the	size	of	the	effect.	Rather	than	subjectively	judging	whether	there	appear	to	be	
important	differences	in	effects	across	studies,	more	objective	statistical	tests	can	be	
performed.	
	 An	illustration	might	help	to	clarify	the	benefits	of	performing	a	meta-analysis.	For	
many	decades,	there	was	heated	debate	in	the	literature	about	IQ	as	a	predictor	of	job	
performance.	Dozens,	perhaps	hundreds,	of	studies	had	been	conducted.	Each	sampled	
from	a	different	type	of	job	and	measured	performance	in	its	own	way.	Various	measures	of	
IQ	were	used,	too.	Most	of	the	studies	were	fairly	small.	It	should	come	as	no	surprise	that	
results	appeared	to	vary	substantially	across	studies.	Different	reviewers	reached	different	
conclusions,	with	many	explanations	proposed	to	explain	the	pattern	of	results.	
	 Beginning	in	the	1980s,	the	method	of	meta-analysis	was	applied	to	these	data.	In	short	
order,	two	conclusions	emerged.	First,	across	a	wide	range	of	jobs,	IQ	was	one	of	the	
strongest	predictors	of	performance.	Much	of	the	apparent	inconsistency	was	due	to	
normal	sampling	error,	and	Type	II	errors	were	common	in	individual	studies.	Second,	
there	was	one	important	trend	in	the	data	all	along.	The	strength	of	the	association	
between	IQ	and	job	performance	was	moderated	by	job	complexity.	IQ	predicted	
performance	for	all	kinds	of	jobs,	but	the	association	was	stronger	for	more	cognitively	
																																																								
18	An	excellent	guide	to	meta-analysis	is	Hunter,	J.	E.,	&	Schmidt,	F.	L.	(2004).	Methods	of	meta-analysis:	
Correcting	error	and	bias	in	research	findings	(2nd	ed.).	Thousand	Oaks,	CA:	Sage.	
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demanding	jobs.	For	example,	the	IQs	of	auto	mechanics	are	a	stronger	predictor	of	their	
job	performance	than	are	the	IQs	of	workers	on	assembly	lines	that	manufacture	auto	
parts.	It	takes	considerably	more	knowledge	and	decision-making	capacity	for	auto	
mechanics	to	diagnose	and	solve	problems	with	complex	mechanical	and	electrical	systems	
than	it	does	to	perform	the	comparatively	rote	tasks	on	an	assembly	line.	Whereas	
narrative	reviews	of	this	literature	failed	to	achieve	consensus,	the	meta-analytic	
conclusions	are	now	widely	accepted.19	

APA Style 
	 The	Publication	Manual	of	the	APA	strongly	recommends	reporting	effect	sizes.	Usually,	
this	is	done	by	appending	an	appropriate	measure	of	effect	size	to	the	end	of	the	results	for	
each	statistical	test.	As	shown	in	an	earlier	chapter,	using	the	precognition	data,	the	value	
for	Cohen’s	d	can	be	listed	after	the	results	for	the	statistical	test:	

	 The	number	of	cards	correctly	identified	by	a	sample	of	16	subjects	(M	=	5.75,	SD	=	

2.08)	was	not	statistically	significantly	better	than	what	would	be	expected	for	random	

guessing	(µ	=	5,	s	=	2),	z	=	1.50,	p	=	.067,	d	=	0.38.	

Problems 
1.	 Explain	the	difference	between	statistical	significance	and	practical	significance.	

Provide	your	own	example	of	a	situation	in	which	these	might	differ.	

2.	 Using	the	SAT	scores	from	the	academics	data	introduced	in	an	earlier	chapter	(M	=	
1210.50),	what	is	the	size	of	the	effect	for	a	test	of	whether	these	SAT	scores	differ	from	
the	mean	of	all	test-takers	(µ	=	1000,	s	=	160)?	According	to	Cohen’s	rules	of	thumb,	
how	would	you	describe	this	effect	size?		

3.	 Using	the	same	data,	what	is	the	size	of	the	effect	for	a	test	of	whether	these	SAT	scores	
differ	from	the	mean	of	all	applicants	to	selective	colleges	nationwide	(µ	=	1100,	s	=	
150)?	According	to	Cohen’s	rules	of	thumb,	how	would	you	describe	this	effect	size?	

4.	 Using	the	data	for	the	hybrid	car’s	fuel	economy	(from	a	problem	in	an	earlier	chapter;	
M	=	46.00),	what	is	the	size	of	the	effect	for	a	test	of	whether	the	manufacturer’s	
claimed	fuel	economy	is	true	within	a	tolerable	margin	of	error	(µ	=	50,	s	=	5)?	
According	to	Cohen’s	rules	of	thumb,	how	would	you	describe	this	effect	size?	

*	*	*	

																																																								
19	An	outstanding	review	is	provided	by	Schmidt,	F.	L.,	&	Hunter,	J.	E.	(1998).	The	validity	and	utility	of	
selection	methods	in	personnel	psychology:	Practical	and	theoretical	implications	of	85	years	of	research	
findings.	Psychological	Bulletin,	124,	262-274.	
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	 The	following	problems	refer	to	the	results	for	eight	studies	evaluating	treatments	for	
depression.	In	each	study,	a	sample	of	individuals	seeking	treatment	was	administered	12	
sessions	of	therapy.	Though	depression	was	measured	using	several	different	scales,	lower	
scores	always	represent	better	outcomes	(fewer	depressive	signs	or	symptoms).	The	
values	of	µ	and	s	represent	the	expected	level	of	depression	without	treatment.	

Study	#	 N	 M	 µ	 s	 z	 p	 H0	 d	 N	´	d	

1	 22	 27.3	 30	 8	 	 	 	 	 	

2	 23	 18.1	 22	 6	 	 	 	 	 	

3	 17	 26.5	 30	 8	 	 	 	 	 	

4	 14	 16.6	 22	 6	 	 	 	 	 	

5	 17	 15.8	 22	 6	 	 	 	 	 	

6	 30	 18.7	 22	 6	 	 	 	 	 	

7	 15	 47.5	 50	 10	 	 	 	 	 	

8	 20	 48.2	 50	 10	 	 	 	 	 	

5.	 Calculate	z	for	each	study	and	write	it	in	the	“z”	column.	Use	the	following	formula:	

	 	 z	=	(M	–	µ)	/	(s	/	sqrt(N))	

6.	 Determine	the	p	value	for	a	2-tailed	z	test	with	a	=	.05	for	each	study	and	write	it	in	the	
“p”	column.	Use	the	unit	normal	table.	Look	up	a	z	value	to	find	the	proportion	in	the	tail	
(the	value	listed	in	the	table),	and	multiply	by	2	for	a	2-tailed	p	value.	

7.	 For	each	study,	determine	whether	you	would	reject	or	retain	H0	by	comparing	the	p	
value	to	your	a	level	(.05).	Write	“Reject”	or	“Retain”	in	the	“H0”	column.	

8.	 Based	on	the	results	for	all	8	studies,	what	general	conclusions	can	you	reach	about	
these	treatments	for	depression?		

Problems	5	–	8	are	what	would	normally	be	done	in	individual	studies	plus	a	traditional,	
narrative	style	of	literature	review.	Problems	9	–	12	resemble	what	would	be	done	in	a	
meta-analysis;	some	of	the	steps	are	simplified,	but	the	general	idea	is	to	synthesize	
research	using	effect	sizes.	

9.	 Calculate	Cohen’s	d	for	each	study	and	write	it	in	the	“d”	column.	Use	the	following	
formula:	

	 	 d	=	(M	–	µ)	/	s	

10.	Calculate	a	weighted	average	value	of	d.	Use	these	three	steps:	

	 a.	 Multiply	N	´	d	for	each	study.	

	 b.	 Sum	the	8	values	of	N	´	d.		

	 c.	 Divide	this	sum	by	the	total	N	for	all	8	studies.	
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11.	How	do	your	effect	size	calculations	help	you	to	refine	the	conclusions	you	reached	in	
#8?	

12.	Suppose	that	studies	#1,	3,	7,	and	8	used	interpersonal	therapy,	and	studies	#2,	4,	5,	
and	6	used	cognitive-behavioral	therapy.	Repeat	the	steps	in	#10	to	calculate	a	
weighted	average	value	of	d	for	each	kind	of	therapy.	What	conclusions	can	you	draw	
from	these	findings?	

*	*	*	

13.	Suppose	that	a	meta-analyst	finds	that	the	added	risk	of	a	crash	while	using	a	cell	phone	
is	statistically	significant,	but	the	size	of	the	effect	is	small.	Would	you	consider	this	to	
be	practically	significant?	Why	or	why	not?	

14.	Research	shows	that	men	are	more	likely	than	women	to	negotiate	for	higher	pay,	both	
when	they	are	first	hired	and	periodically	throughout	their	working	careers.	The	initial	
difference	in	pay	is	approximately	3-5%,	but	that	grows	over	time.	Would	you	consider	
this	to	be	practically	significant?	Why	or	why	not?	

Problems 1 – 10 are due at the beginning of class. 
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7. Statistical Power 

Overview 
	 Statistical	power	is	the	probability	of	correctly	rejecting	a	false	H0.	Put	more	simply,	
it’s	the	probability	of	detecting	an	effect	that	does	exist.	You	can	think	of	statistical	power	
as	analogous	to	the	probability	that	a	smoke	detector	will	alert	you	when	an	actual	fire	
occurs.	Historically,	researchers	have	focused	on	protecting	against	Type	I	errors,	or	false	
alarms.	For	example,	low	a	levels	have	been	used	to	reduce	the	chance	of	rejecting	a	true	
H0,	and	thereby	making	a	Type	I	error.	Because	precautions	against	Type	I	errors	often	
involve	a	trade-off	with	Type	II	errors,	investigators	frequently	perform	studies	with	weak	
statistical	power.	
	 Cohen	(1962)	calculated	estimates	of	statistical	power	for	studies	published	in	a	leading	
psychology	journal	and	found	that	the	average	power	was	only	.50.20	This	means	that	even	
when	a	researcher’s	hypotheses	was	correct,	that	there	was	a	systematic	effect,	the	chance	
of	detecting	it	statistically	was	equivalent	to	the	toss	of	a	coin.	Researchers	weren’t	giving	
their	hypotheses	a	strong	chance	of	being	supported.	This	mediocre	power	was	observed	
for	studies	published	in	an	excellent	journal.	The	power	of	studies	in	the	much	more	
numerous	and	less	selective	journals	might	have	been	even	lower.	After	about	25	years	in	
which	methodologists	tried	to	raise	awareness	of	this	serious	problem	in	research	design,	
two	investigators	repeated	Cohen’s	power-estimation	study.21	They	found	that	the	average	
statistical	power	of	articles	published	in	journals	comparable	to	those	that	Cohen	had	
studied	was	still	only	about	.50.	
	 This	chapter	examines	the	factors	that	influence	statistical	power,	the	benefits	of	
performing	a	power	analysis	when	planning	research,	and	ways	to	maximize	power.	

Factors That Affect Statistical Power 
	 Though	we	will	not	delve	into	the	details	of	how	statistical	power	is	calculated	for	every	
type	of	research	design	and	statistical	analysis,	it	is	helpful	to	understand	that	there	are	
always	three	factors	that	affect	power.		

Sample Size 
	 The	first	factor	that	affects	statistical	power	is	sample	size.	Larger	samples	increase	
power	because	they	reduce	sampling	error	and	provide	more	precise	estimates	of	
population	parameters.	Whereas	genuine	effects	can	easily	be	masked	by	sampling	error	in	
small	samples,	this	is	less	likely	to	happen	with	increases	in	sample	size.	This	is	one	of	
many	reasons	why	it’s	a	smart	idea	to	collect	as	much	data	as	possible.	
	

																																																								
20	Cohen,	J.	(1962).	The	statistical	power	of	abnormal-social	psychological	research:	A	review.	Journal	of	
Abnormal	and	Social	Psychology,	65,	145-153.	
21	Sedlmeier,	P.,	&	Gigerenzer,	G.	(1989).	Do	studies	of	statistical	power	have	an	effect	on	the	power	of	
studies?	Psychological	Bulletin,	105,	309-316.	
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Decision Threshold 
	 The	second	factor	that	affects	statistical	power	is	the	decision	threshold.	This	is	
determined	by	the	choice	of	an	a	level,	plus	the	choice	of	whether	to	perform	a	1-tailed	or	
2-tailed	test.	A	higher	a	level	increases	the	size	of	the	critical	region,	which	makes	it	easier	
to	reject	H0.	Presuming	one	has	predicted	the	correct	direction	of	an	effect,	using	a	1-tailed	
test	achieves	the	same	thing,	enlarging	the	critical	region	where	an	effect	is	expected.	This	
gain	in	statistical	power,	however,	comes	at	the	expense	of	a	corresponding	risk	of	making	
more	Type	I	errors.	In	other	words,	by	raising	a	or	using	a	1-tailed	test,	you	increase	power	
if	your	hypothesis	is	correct	(and	H0	is	false)	but	you	increase	the	chance	of	a	false	alarm	if	
your	hypothesis	is	mistaken	(and	H0	is	true).	In	addition	to	keeping	themselves	honest	in	
data	analysis,	the	trade-off	with	Type	I	errors	is	another	reason	why	researchers	seldom	
use	1-tailed	tests	or	raise	the	a	level	beyond	the	conventional	value	of	.05.	

Effect Size 
	 The	third	factor	that	affects	statistical	power	is	effect	size.	It	is	easier	to	detect	a	large	
effect	than	a	small	one,	which	means	that	power	is	influenced	to	some	extent	by	what	you	
choose	to	study.	If	you’re	studying	sex	differences	in	height,	you’ll	have	a	pretty	easy	time	
rejecting	H0	and	correctly	concluding	that	men	are	taller	than	women	because	the	effect	
size	is	quite	large.	In	contrast,	if	you’re	studying	sex	differences	in	cognitive	abilities,	you’ll	
have	a	much	more	difficult	time	detecting	these	very	small	effects.	Though	there	are	some	
ways	to	maximize	the	size	of	the	effect	measured	in	research,	for	the	most	part	this	is	out	of	
our	hands.	The	reality	is	that	some	effects	are	small,	others	are	large.	
	 To	illustrate	the	operation	of	all	three	factors,	recall	the	precognition	study	introduced	
earlier.	Subjects	tried	to	identify	the	shape	on	each	of	25	Zener	cards.	Given	the	sample	size	
(N	=	16),	decision	threshold	(1-tailed	test	with	a	=	.05),	and	effect	size	(d	=	0.38),	statistical	
power	can	be	calculated	to	be	.323.22	That	means	that	even	if	a	precognition	effect	of	this	
magnitude	exists,	a	study	of	this	size,	with	the	data	analyzed	in	this	way,	holds	only	a	32%	
chance	of	correctly	rejecting	H0.	That’s	not	very	good.	A	rough	rule	of	thumb	that	has	
emerged	in	the	literature	is	that	a	power	of	.80	is	considered	pretty	good.	Naturally,	higher	
values	are	even	better.	Soon	we’ll	see	how	to	maximize	power,	but	first	let’s	review	the	
benefits	of	estimating	it	in	the	first	place.	

Benefits of Power Analysis 
	 Because	there	are	only	three	factors	that	affect	statistical	power,	it’s	not	very	hard	to	
estimate	it.	We	won’t	deal	with	the	specifics	because	they	depend	on	the	statistical	test	
that’s	used,	which	in	turn	depends	on	the	design	of	the	study.	The	investigators	cited	
earlier	in	this	chapter	calculated	power	for	published	studies	to	demonstrate	that	it’s	often	
weak	in	psychological	science.	Performing	a	power	analysis	at	the	planning	stages	is	not	
quite	as	simple,	but	it	can	be	extremely	informative.	
	 The	challenge	in	estimating	power	while	planning	a	study	is	that	you	can’t	know	in	
advance	how	large	an	effect	is.	If	you	knew	the	true	effect	size,	you	probably	wouldn’t	need	

																																																								
22	This	text	won’t	show	how	to	perform	power	calculations,	which	can	be	done	most	easily	via	any	number	of	
statistical	test-specific	calculators	found	online.	
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to	do	the	study	in	the	first	place.	However,	you	can	make	an	educated	guess	about	the	likely	
effect	size,	or	you	can	even	consider	a	plausible	range	of	values	(e.g.,	worst-	and	best-case	
scenarios)	to	estimate	a	range	of	power	levels.	Prior	research	on	related	topics	often	
provides	clues	about	effect	size.		
	 The	table	in	Appendix	B,	adapted	from	Cohen	(1992),	shows	the	sample	size	required	to	
achieve	a	predetermined	statistical	power	for	many	common	research	designs	and	
measures	of	effect	size.	When	you	examine	the	sample	size	requirements	in	the	table,	you	
might	be	surprised	to	learn	how	large	a	study	you	would	need	to	perform	to	have	pretty	
good	statistical	power.	This	is	especially	true	if	you	are	studying	a	phenomenon	that	
corresponds	to	a	small	effect.	Consulting	a	table	like	this	is	the	most	rudimentary	type	of	
power	analysis,	but	even	this	can	be	quite	useful.	There	are	several	questions	that	you	can	
address	through	power	analysis	at	the	planning	stage	of	research.	

Does My Study Have a Good Chance of Yielding Informative Results?  
	 If	you’re	willing	to	make	a	rough	estimate	of	the	size	of	the	effect	you’re	hypothesizing,	
and	you	know	how	much	data	you’ll	be	able	to	collect,	you	can	estimate	statistical	power.	
The	level	of	power	corresponds	to	the	likelihood	that	your	study	will	yield	informative	
results.	If	your	hypothesis	is	correct,	you	might	get	lucky	and	be	able	to	reject	H0.	However,	
you	might	be	unlucky	and	fail	to	reject	H0.	That’s	not	a	very	informative	result	because	of	
the	inherent	ambiguity.	There’s	no	way	to	tell	if	your	hypothesis	is	mistaken	or	you	were	
the	victim	of	an	underpowered	study,	with	sampling	error	masking	the	effect	you	expected	
to	see.	The	higher	your	statistical	power,	the	more	likely	it	is	that	luck	will	be	on	your	side.	
There’s	no	sense	taking	a	poor	gamble	when	so	much	of	your	time	and	other	resources	will	
be	on	the	line.	There	are	always	better	things	to	do	than	underpowered	research.	

How Large a Sample Will I Need?  
	 Of	the	three	factors	that	affect	power,	you	usually	have	the	most	control	over	sample	
size.	Performing	a	power	analysis	can	help	you	make	an	informed	decision	about	how	
much	data	to	collect.	Alternatively,	if	you	find	that	you	will	be	unable	to	collect	as	much	
data	as	you’d	need	to	achieve	an	acceptable	level	of	statistical	power,	you	might	not	want	to	
do	this	study	after	all.	If	a	study	is	doomed	by	low	power,	it’s	better	to	know	in	advance	
rather	than	wasting	the	time	and	other	resources	required	to	go	through	with	it.	

How Small an Effect Will I Be Able to Detect? 
	 If	there	are	limits	on	how	much	data	you	can	collect,	you	can	use	power	analysis	to	
determine	how	small	an	effect	will	be	detectable	with	an	acceptable	level	of	statistical	
power.	This,	too,	can	be	helpful	in	deciding	whether	the	study	is	worth	doing.	

Is It Reasonable to Fund This Research?  
	 Increasingly,	granting	agencies	require	investigators	to	perform	power	analyses	to	
demonstrate	that	if	their	hypotheses	are	correct,	their	planned	research	will	find	statistical	
support	for	them.	Considering	how	many	well-qualified	applicants	are	competing	for	the	
limited	funds	available	for	research	grants,	it	makes	very	little	sense	to	fund	research	with	
low	power.		
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How to Maximize Statistical Power 
	 To	review	and	extend	the	discussion	of	statistical	power,	here	are	ways	that	it	can	be	
maximized.	Some	of	these	should	be	fairly	obvious,	but	others	are	a	bit	more	subtle.	

Collect as Much Data as Possible 
	 The	more	data,	the	less	sampling	error,	and	the	stronger	the	statistical	power.	The	usual	
way	to	collect	more	data	is	to	increase	sample	size,	but	that’s	not	the	only	possibility.	
Sometimes	you	can	increase	the	number	of	trials	in	an	experiment.	In	the	precognition	
study,	for	example,	you	could	do	both:	Recruit	more	than	16	subjects,	and	have	each	
predict	the	shape	on	more	than	25	Zener	cards.	Why	not	run	through	the	deck	multiple	
times?	That	provides	a	more	rigorous	test,	and	it	would	increase	power	by	providing	a	
more	sensitive	measure	of	performance	for	each	subject.	Whether	by	recruiting	more	
subjects	or	testing	each	one	more	often,	it	becomes	easier	to	identify	a	systematic	effect	
when	the	background	noise	of	chance	is	minimized	by	gathering	more	data.	

Use the Right Decision Threshold 
	 Whenever	you	can	justify	it,	you’ll	maximize	power	by	creating	as	large	a	critical	region	
as	you	can.	This	can	be	accomplished	not	only	by	using	as	large	an	a	level	as	possible,	but	
also	by	performing	a	1-tailed	test.	Both	of	these	ways	to	increase	power	come	at	the	cost	of	
increasing	the	chance	of	making	Type	I	errors,	though.	In	the	precognition	study,	a	1-tailed	
test	is	justifiable,	which	increases	the	power	of	that	analysis	relative	to	the	usual	2-tailed	
test.	There	is	usually	no	good	reason	to	increase	a	above	.05,	though,	so	that’s	about	the	
best	that	can	be	done	with	the	precognition	data	to	maximize	power.	

Choose Your Subject Matter Wisely 
	 Investigators	are	free	to	choose	what	they	want	to	study.	Whether	by	good	fortune	or	
guided	by	educated	guesses,	those	who	target	effects	that	are	larger	will	have	greater	
statistical	power.		

Use the Most Reliable Measures 
	 All	variables	are	subject	to	some	measurement	error,	however	slight,	but	some	
measures	are	much	more	reliable	than	others.	Measurement	error	acts	in	much	the	same	
way	as	sampling	error,	adding	random	noise	to	the	data	that	serves	to	mask	genuine	
effects.	Choosing	the	most	reliable	measures	will	reduce	measurement	error	and	maximize	
statistical	power.	For	example,	the	more	Zener	cards	whose	shape	a	subject	is	asked	to	
identify,	the	more	reliable	a	measure	of	precognitive	ability	is	provided.	This	is	how	
increasing	the	number	of	trials	improves	power,	by	increasing	the	reliability	of	
measurement.		

Do Not Split Cases Into Groups 
	 An	unfortunately	common	practice	in	research	is	to	divide	scores	on	a	quantitative	
measure	into	two	groups,	often	according	to	whether	they	fall	above	or	below	a	certain	
value	(e.g.,	the	mean	or	median).	This	simplifies	the	data,	creating	two	groups	that	can	be	
compared	rather	than	allowing	subjects	to	vary	along	the	full	continuum	of	scores.	It	can	
make	it	easier	to	analyze	the	data	or	to	communicate	the	results.	However,	it’s	a	bad	idea	
because	it	throws	away	a	great	deal	of	information	and	can	greatly	reduce	statistical	power.	
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	 To	understand	the	problems	with	splitting	cases	into	groups,	suppose	that	you	have	a	
normal	distribution	of	IQ	scores	with	M	=	100	and	SD	=	15.	If	you	split	this	at	the	mean	(or	
the	median)	of	100,	that	creates	two	groups,	low-IQ	and	high-IQ.	In	the	density	plot	shown	
below,	the	groups	are	shaded	differently:	

	
	 The	first	problem	with	this	split	is	that	scores	that	are	very	far	apart	are	treated	as	
identical.	For	example,	individuals	with	IQ	scores	of	55	and	99	would	both	be	lumped	
together	in	the	low-IQ	group,	and	individuals	with	IQ	scores	of	101	and	145	would	both	be	
lumped	together	in	the	high-IQ	group.	A	great	deal	of	potentially	meaningful	variation	
within	each	group	is	lost.	This	is	analogous	to	using	a	less	reliable	measure.	
	 The	second	problem	with	this	split	is	that	many	scores	that	are	very	close	together	are	
treated	as	different.	For	example,	individuals	with	IQ	scores	of	99	and	101	would	be	
classified	into	different	groups	despite	being	remarkably	similar	to	one	another.	This	will	
happen	quite	often	because	there	are	so	many	scores	clustered	around	the	dividing	line	of	
IQ	=	100.	
	 The	combination	of	treating	very	different	scores	as	identical	and	treating	very	similar	
scores	as	different	has	pernicious	effects	on	statistical	power.	To	illustrate	the	extent	that	
this	can	weaken	the	analysis,	Cohen	(1983)	examined	what	happens	if	you	have	two	
normally	distributed	variables	and	you	want	to	test	their	correlation.	Splitting	one	of	them	
at	the	mean	can	reduce	power	by	one-third	or	more,	and	splitting	both	of	them	at	the	mean	
can	reduce	power	by	about	two-thirds.23	This	is	the	equivalent	of	throwing	away	large	
amounts	of	data,	acting	as	though	you	hadn’t	gone	to	the	trouble	of	testing	many	of	your	
subjects.	Weakening	statistical	power	in	this	way	is	a	remarkably	foolish	thing	to	do.	

Problems 
1.	 What	are	the	three	factors	that	influence	statistical	power?	In	your	own	words,	how	is	

each	one	of	these	factors	related	to	power?	
2.	 What	are	the	benefits	of	estimating	statistical	power	when	planning	research?	Provide	

your	own	example	of	how	this	might	be	helpful	in	a	specific	instance.	
3.	 Using	the	academics	data	introduced	in	a	problem	in	Chapter	5,	which	of	the	following	

two	tests	would	have	higher	statistical	power,	and	why?	

																																																								
23	Cohen,	J.	(1983).	The	cost	of	dichotomization.	Applied	Psychological	Measurement,	7,	249-253.	
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a.	 A	test	of	whether	the	SAT	scores	in	the	sample	differ	from	the	mean	of	all	test-takers	
(µ	=	1000,	s	=	160).	

b.	 A	test	of	whether	the	SAT	scores	in	the	sample	differ	from	the	mean	of	all	applicants	
to	selective	colleges	nationwide	(µ	=	1100,	s	=	150)?	

4.	 Recall	the	data	for	the	hybrid	car’s	fuel	economy,	introduced	in	a	problem	in	Chapter	5.	
What	could	be	done	to	increase	statistical	power?	(There	is	one	answer	that	should	be	
very	easy	to	discover,	and	at	least	one	more	that’s	less	obvious—see	if	you	can	figure	
out	both.)	

5.	 Zeke	develops	a	mnemonic	device	that	can	help	students	learn	vocabulary	words	when	
studying	a	foreign	language.	Suppose	the	effect	on	performance	is,	in	reality,	medium	in	
size	(d	=	0.50).	If	Zeke	does	a	study	that	compares	two	equal-sized	groups—an	
experimental	group	trained	to	use	the	new	technique	and	a	control	group—and	
analyzes	the	data	using	a	2-tailed	t	test	with	α	=	.05,	how	many	people	need	to	
participate	to	have	an	80%	chance	of	statistically	detecting	the	effect?	In	other	words,	
what	N	does	Zeke	need	to	attain	what’s	usually	considered	to	be	acceptable	statistical	
power?	Take	your	best	guess,	do	not	use	any	tools	to	ensure	that	you	answer	this	
correctly.	

6.	 Repeat	#5,	this	time	assuming	that	the	effect	size	is	large	(d	=	0.80).	How	many	people	
need	to	participate	for	statistical	power	to	reach	.80?	

7.	 Repeat	#5	one	last	time,	this	time	assuming	that	the	effect	size	is	small	(d	=	0.20).	How	
many	people	need	to	participate	for	statistical	power	to	reach	.80?	

8.	 Why	is	there	a	0	before	the	decimal	place	for	Cohen’s	d	(e.g.,	d	=	0.80)	but	not	for	
statistical	power	(e.g.,	power	=	.80)?	

9.	 Use	Appendix	B,	specifically	the	upper	section	that	lists	Cohen’s	d	as	a	measure	of	effect	
size	for	comparing	two	groups,	to	find	the	correct	answer	to	#5.	How	does	this	compare	
with	your	best	guess?	

10.	Repeat	#9	for	a	large	effect	size	(d	=	0.80),	this	time	comparing	your	answer	to	#6.	

11.	Repeat	#9	for	a	small	effect	size	(d	=	0.20),	this	time	comparing	your	answer	to	#7.	
12.	Zeke	classifies	each	of	35	students	as	either	high	GPA	(above	3.00)	or	low	GPA	(at	or	

below	3.00)	as	well	as	either	high	SAT	(above	1000)	or	low	SAT	(at	or	below	1000).	He	
performs	a	statistical	test	following	the	usual	conventions	and	finds	that	there	is	no	
statistically	significant	relationship	between	these	variables.	State	any	three	distinct	
ways	that	Zeke	could	improve	the	statistical	power	with	which	he	addresses	this	
research	question.	

Problems 1 – 11 are due at the beginning of class. 
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8. One Sample t Test 

Overview 
	 The	one	sample	z	test	may	be	the	simplest	inferential	statistic,	but	it’s	seldom	used.	The	
reason	is	that	it	requires	knowledge	of	s,	the	population	standard	deviation,	a	parameter	
that	is	usually	unknown.	Fortunately,	we	can	use	SD,	the	sample	standard	deviation,	as	an	
estimate	of	s	to	perform	a	one	sample	t	test.	This	chapter	explores	the	similarities	and	
differences	between	the	z	and	t	tests.	

Using SD to Estimate s 
	 Recall	that	the	formulas	used	to	perform	a	one	sample	z	test	are:	

	 	 sM	=	s	/	sqrt(N)	

	 	 z	=	(M	–	µ)	/	sM	

	 If	we	replace	s	with	SD,	we	get	the	following	formulas	to	perform	a	one	sample	t	test:	

	 	 SDM	=	SD	/	sqrt(N)	

	 	 t	=	(M	–	µ)	/	SDM		

	 Using	SD	as	an	estimate	of	s	opens	up	a	wide	range	of	research	possibilities.	Whereas	s	
is	seldom	known,	we	can	always	calculate	SD	for	a	set	of	data.	For	example,	a	problem	in	an	
earlier	chapter	involved	testing	whether	a	new	hybrid	car	actually	got	50	MPG,	as	claimed	
by	its	manufacturer.	It	was	easy	to	establish	the	appropriate	statistical	hypotheses:	

	 	 H0:	µ	=	50	
	 	 H1:	µ	¹	50	

	 Performing	the	z	test,	however,	required	knowledge	of	s.	For	the	sake	of	the	problem,	
we	defined	a	tolerable	margin	of	error	as	±10%,	meaning	that	s	=	5	(which	is	10%	of	µ	=	
50).	This	was	a	very	arbitrary	decision.	A	better	approach	would	be	to	ask	whether	the	
sample	mean	differs	from	µ	=	50	by	more	than	we	would	expect	by	sampling	error,	or	
chance.	The	t	test	allows	us	to	do	this.	Rather	than	setting	an	arbitrary	value	for	s,	we	use	
the	value	of	SD	calculated	from	the	data	as	an	estimate	of	s.	

Performing the t Test 
	 In	the	case	of	the	new	hybrid	car,	several	magazines	reported	the	fuel	economy	it	
achieved	in	their	test	drives:	45,	48,	43,	52,	47,	47,	and	40	MPG.	Once	you’ve	calculated	the	
M	and	SD	of	these	N	=	7	scores	(M	=	46.00000,	SD	=	3.82971),	the	value	of	t	is	easy	to	
calculate	in	two	steps:	

	 	 SDM	=	SD	/	sqrt(N)	=	3.82971	/	sqrt(7)	=	1.44749	
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	 The	standard	error	(SDM)	tells	us	that	we	would	expect	the	M	for	a	sample	of	7	scores	to	
vary	by	about	±1.45	points	from	µ	by	chance.	

	 	 t	=	(M	–	µ)	/	SDM	=	(46.00000	–	50)	/	1.44749	=	-2.76	

	 The	t	value	is	interpreted	just	like	a	z	value:	It’s	the	ratio	of	how	much	the	means	
actually	differed	to	how	much	we	expect	them	to	differ	by	chance.	In	this	case,	it	tells	us	
that	the	M	for	our	data	differed	from	µ	by	2.76	times	as	much	as	we’d	expect.	
	 Before	we	determine	whether	this	is	a	statistically	significant	difference,	notice	that	the	
values	of	M,	SD,	and	SDM	were	not	rounded	to	two	decimals	(i.e.,	what	we	typically	report	in	
APA	style)	when	calculating	t.	It’s	always	a	good	idea	to	retain	extra	decimal	places	at	
intermediate	stages	of	a	calculation.	If	you	round	off	too	early,	that	rounding	error	can	be	
compounded	in	later	calculations	and	give	a	final	answer	that’s	incorrect.	When	you	use	a	
computer	to	perform	data	analysis,	it	retains	a	very	large	number	of	decimal	places	for	all	
calculations.	When	doing	data	analysis	by	hand,	a	good	rule	of	thumb	is	to	retain	two	or	
three	extra	decimal	places	until	you	have	your	final	answer.	For	example,	as	shown	above	
you	can	keep	five	decimal	places	if	you’ll	be	rounding	to	two	decimals	at	the	end.	

Critical Region 
	 With	the	z	test,	we	consulted	the	unit	normal	table	to	establish	the	critical	region.	With	
the	t	test,	we	can	no	longer	use	the	same	table.	Whereas	there	is	a	single	z	distribution,	
there	is	actually	a	family	of	t	distributions	that	differ	according	to	the	sample	size	of	the	
data	used	to	calculate	the	t	value.	
	 Why	does	sample	size	matter	for	t,	but	not	for	z?	Because	we’re	now	using	a	statistic	
(SD)	calculated	from	data	to	estimate	a	population	parameter	(s).	SD	is	an	unbiased	
estimate	of	s,	but	the	fact	that	it’s	an	estimate	introduces	an	additional	source	of	sampling	
error.	In	a	very	small	sample,	for	example,	the	SD	might	be	quite	far	from	s.	In	a	very	large	
sample,	SD	will	usually	be	quite	close	to	s.	Thus,	the	amount	of	added	sampling	error	
depends	on	the	size	of	the	data	set	used	to	calculate	t.		
	 The	family	of	t	distributions	differs	by	how	far	it	diverges	from	the	z	distribution.	
Hypothetically,	with	an	infinitely	large	sample	size,	t	is	identical	to	z.	That’s	because	an	
infinitely	large	sample	size	eliminates	all	sampling	error	in	estimating	s	from	SD.	As	sample	
size	decreases,	sampling	error	increases,	so	the	t	distribution	diverges	further	from	the	z	
distribution.	We	index	the	size	of	the	sample	using	degrees	of	freedom,	abbreviated	as	df.	
Every	statistical	test	that	will	be	introduced	from	this	point	forward	has	its	own	expression	
for	df,	and	it	always	depends	on	how	many	sample	statistics	are	being	used	to	estimate	
population	parameters.	For	a	one	sample	t	test,	df	=	N	–	1.	We’re	using	one	statistic	(SD)	to	
estimate	a	parameter	(s),	so	we	“give	up”	one	degree	of	freedom.	
	 The	t	table	(see	Appendix	A)	allows	us	to	determine	the	critical	region	for	a	t	test.	We	
need	to	know	three	things	to	use	the	table:	

1.	 Is	this	a	2-tailed	(nondirectional)	or	a	1-tailed	(directional)	test?	
2.	 What	is	the	a	level?	The	t	table	in	the	appendix	allows	choices	of	a	=	.05,	.01,	or	.001.	
3.	 What	is	the	df?	The	t	table	in	the	appendix	lists	df	from	1	to	30,	then	a	few	additional	

values	(40,	60,	120),	and	then	the	hypothetical	limit	at	infinite	df.	
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	 The	four	graphs	below	show	t	distributions	with	df	=	4,	6,	10,	and	40.	Each	graph	plots	
the	critical	region	for	a	2-tailed	t	test	with	a	=	.05.	As	a	point	of	reference,	the	z	distribution,	
and	its	critical	value,	is	plotted	using	dotted	lines.	In	each	case,	the	t	distribution	is	a	little	
shorter	than	the	z	distribution	in	the	middle	and	thicker	in	the	tails:	

	 	
	

	 	
	
	 You	can	see	that	a	much	larger	value	of	t	than	of	z	is	required	to	reject	H0	when	the	
sample	is	small,	but	with	even	modest	sample	size	the	critical	region	for	t	becomes	very	
similar	to	what	it	would	be	for	z.	In	the	hypothetical	limiting	case	of	infinite	df,	the	z	and	t	
distributions	are	identical.24	
	 In	the	case	of	the	new	hybrid	car,	we’d	use	the	t	table	to	find	the	critical	region	for	a	2-
tailed	test	with	a	=	.05	and	df	=	N	–	1	=	7	–	1	=	6.	This	provides	a	value	of	2.447.	Because	
we’re	doing	a	2-tailed	test,	this	refers	to	both	tails	of	the	sampling	distribution.	Our	critical	
region	includes	the	left	tail,	t	<	-2.447,	as	well	as	the	right	tail,	t	>	2.447.	A	simpler	way	to	
express	this	is	|t|	>	2.447.	
	 The	t	value	calculated	from	the	data,	-2.76,	falls	within	the	critical	region,	so	we	would	
reject	H0	and	tentatively	accept	H1.	The	observed	M	=	46.00	MPG	is	statistically	significantly	
different	from	the	value	of	µ	=	50	MPG	claimed	by	the	manufacturer.	

																																																								
24	The	bottom	row	of	the	t	table	provides	a	critical	region	identical	to	a	z	distribution.	Thus,	using	the	bottom	
row	of	the	t	table	is	a	useful	shortcut	when	doing	a	z	test.	
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Effect Size 
	 We	can	use	Cohen’s	d	as	the	measure	of	effect	size,	just	as	we	did	for	the	one	sample	z	
test.	The	only	difference	is	that	we	calculate	this	using	SD,	rather	than	s,	as	the	standard	
deviation	in	the	denominator:	

	 	 d	=	(M	–	µ)	/	SD		

	 The	rules	of	thumb	for	interpreting	d	(0.20	=	small,	0.50	=	medium,	and	0.80	=	large)	
remain	the	same.	For	these	data,	the	effect	is	large:	

	 	 d	=	(46.00000	–	50)	/	3.82971	=	-1.04	
	 Once	again,	notice	that	extra	decimal	places	were	used	for	the	M	and	SD	so	that	the	final	
value	of	d	would	be	correct	when	rounded	to	two	decimals.	

Using SPSS 
	 To	perform	a	one	sample	t	test	in	SPSS,	you	first	enter	your	data	into	a	single	variable	
(column),	here	labeled	“MPG”:	

	
	 Next,	you	use	the	following	command:	
	 	 t-test	vars	=	mpg	
	 	 /testval	=	50	

	 Note	that	you	have	to	provide	the	variable	to	be	tested	(here,	“MPG”)	as	well	as	the	
value	of	µ	(which	SPSS	calls	the	“testval”;	here,	the	test	value	of	µ	=	50).	The	output	appears	
in	two	tables.	The	first	table,	labeled	“One-Sample	Statistics”,	provides	the	M	and	SD:	

	
	 The	second	table,	labeled	“One-Sample	Test”,	provides	the	t	value,	df,	and	the	p	value:		

	
	 Note	that	the	p	value	is	labeled	“Sig.	(2-tailed)”.	In	SPSS,	“Sig.”	stands	for	“significance”,	
as	in	statistical	significance.	SPSS	assumes	you’d	like	a	2-tailed	test.	If	you	want	the	p	value	
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for	a	1-tailed	test,	just	divide	the	p	value	shown	in	the	output	by	2	(e.g.,	for	a	1-tailed	test	of	
these	data	the	p	value	would	be	.016).	

APA Style 
	 You	can	report	the	results	of	any	t	test	in	a	single	sentence.	Here’s	what	that	might	look	
like	for	these	data:	

	 The	fuel	economy	attained	in	test	drives	of	a	new	hybrid	car	(M	=	46.00,	SD	=	3.83)	

differed	statistically	significantly	from	the	manufacturer’s	claim	(µ	=	50),	t(6)	=	-2.76,	p	=	

.033,	d	=	-1.04.	

	 Notice	that	the	df	for	the	t	test	are	provided	in	parentheses	after	t.	Also	notice	that	the	
sentence	was	phrased	in	a	way	that	indicates	this	was	a	2-tailed	test.	Had	this	been	a	1-
tailed	test,	the	sentence	(stripped	of	statistical	results)	might	have	been	phrased	like	this:	
“The	fuel	economy	attained	in	test	drives	of	a	new	hybrid	car	was	statistically	significantly	
less	than	the	manufacturer’s	claim.”	If	your	sentence	states	a	direction,	that	implies	a	
directional	H0	and	a	1-tailed	test.	Normally,	we	use	a	nondirectional	H0	and	a	2-tailed	test,	
so	the	statistical	results	should	be	reported	without	reference	to	a	direction.	Naturally,	
elsewhere	in	the	research	report	your	interpretation	of	the	results	should	take	into	account	
the	direction	of	the	effect.	

Problems 
	 An	investigator	wants	to	test	whether	Alcoholics	Anonymous	(AA)	is	an	effective	
treatment	for	alcoholism.	Thirty	people	who	choose	to	attend	AA	meetings	are	assigned	
sponsors	(recovering	alcoholics	who	attend	AA	meetings	regularly)	at	their	1st	meeting.	
The	sponsor	asks	how	much	the	subject	drinks	in	a	typical	week,	and	records	the	total	
number	of	drinks	(beer,	wine,	and	liquor).	The	average	number	of	drinks	is	treated	as	the	
population	mean	(µ	=	20.00)	against	which	the	success	of	AA	will	be	judged.	When	two	
months	have	passed	since	the	1st	meeting,	each	subject	reports	to	his	or	her	AA	sponsor	
how	many	drinks	were	consumed	in	the	past	week.	N	=	16	of	the	original	subjects	are	still	
attending	AA	meetings	at	this	point,	and	the	number	of	drinks	they	report	that	they	
consumed	in	the	past	week	are:			

	 	 13,	9,	14,	31,	22,	11,	9,	8,	29,	8,	18,	10,	9,	12,	9,	20	
1.	 What	is	the	researcher’s	hypothesis?	

2.	 What	are	the	statistical	hypotheses	(H0	and	H1)?	
3.	 Did	you	choose	to	use	a	2-tailed	or	a	1-tailed	test,	and	why?	

4.	 Should	this	test	be	performed	using	a	=	.05	or	a	=	.01,	and	why?	

5.	 Why	should	a	t	test	be	performed	rather	than	a	z	test?	
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6.	 What	is	df	for	this	t	test?	
7.	 What	is	the	critical	region	for	this	t	test?	(Use	the	t	table	in	Appendix	A	to	identify	the	

critical	region.)	
8.	 Calculate	the	value	of	t	for	this	sample	of	data.	To	help,	note	that	M	=	14.50000	and	SD	=	

7.42967.	

9.	 What	is	your	statistical	decision:	Would	you	reject	or	retain	H0?	
10.	What	kind	of	error—Type	I	or	Type	II—might	you	be	making?	

11.	What	is	the	size	of	the	effect,	using	Cohen’s	d?	According	to	the	usual	rules	of	thumb,	
how	would	you	describe	this?	

12.	Report	the	results	of	this	test	in	APA	style.	

13.	How	would	you	interpret	these	results?	Consider	strengths	and	weaknesses	of	the	
research	methods	used	in	this	study.	There	are	at	least	three	different	interpretations	
that	are	consistent	with	the	results.	

14.	How	could	you	improve	the	design	of	this	study	to	improve	its	internal	validity?	
*	*	*	

	 The	chair	of	a	small	department	administers	an	optimism	test	to	seniors	graduating	
with	this	major	to	see	whether	there	are	changes	in	optimism	from	year	to	year.	Higher	
scores	on	the	test	indicate	greater	levels	of	optimism.	Last	year’s	class	had	a	mean	score	of	
µ	=	15.	This	year’s	graduating	seniors	scored	as	follows:			

	 	 7,	12,	11,	15,	7,	8,	15,	9,	6	
15.	What	is	the	researcher’s	hypothesis?	
16.	What	are	the	statistical	hypotheses	(H0	and	H1)?	

17.	Did	you	choose	to	use	a	2-tailed	or	a	1-tailed	test,	and	why?	

18.	Should	this	test	be	performed	using	a	=	.05	or	a	=	.01,	and	why?	

19.	Why	should	a	t	test	be	performed	rather	than	a	z	test?	

20.	What	is	df	for	this	t	test?	
21.	What	is	the	critical	region	for	this	t	test?	(Use	the	t	table	in	Appendix	A	to	identify	the	

critical	region.)	
22.	Calculate	the	value	of	t	for	this	sample	of	data.	To	help,	note	that	M	=	10.00000	and	SD	=	

3.42783.	

23.	What	is	your	statistical	decision:	Would	you	reject	or	retain	H0?	
24.	What	kind	of	error—Type	I	or	Type	II—might	you	be	making?	

25.	What	is	the	size	of	the	effect,	using	Cohen’s	d?	According	to	the	usual	rules	of	thumb,	
how	would	you	describe	this?	

26.	Report	the	results	of	this	test	in	APA	style.	

*	*	*	
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27.	Use	SPSS	to	analyze	the	fuel	economy	data	from	this	chapter	and	verify	that	you	get	the	
same	results	and	reach	the	same	conclusions.	Notice	that	you	have	to	calculate	Cohen’s	
d	by	hand	because	SPSS	does	not	do	this	for	you.	Check	that	you	get	the	correct	value	
for	d	by	calculating	that	yourself.	

28.	Use	SPSS	to	analyze	the	Alcoholics	Anonymous	data	from	the	first	series	of	problems	
and	verify	that	you	get	the	same	results	and	reach	the	same	conclusions	as	when	you	
did	the	calculations	by	hand.	

29.	Use	SPSS	to	analyze	the	optimism	data	from	the	second	series	of	problems	and	verify	
that	you	get	the	same	results	and	reach	the	same	conclusions	as	when	you	did	the	
calculations	by	hand.	

Problems 1 – 14 are due at the beginning of class. 
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9. Related Samples t Test 

Overview 
	 The	one	sample	t	test	is	more	versatile	than	the	one	sample	z	test	because	we	can	use	
SD	as	an	estimate	of	s.	However,	we’re	still	limited	to	analyzing	data	for	a	single	sample.	
Researchers	often	want	to	compare	results	across	conditions.	This	chapter	shows	how	the	t	
test	can	be	extended	to	within-subjects	designs	to	test	for	differences	across	two	
conditions.	This	is	called	the	related	samples	t	test,	and	it’s	also	known	as	a	paired	
samples	t	test	or	even	simply	a	paired	t	test.	In	the	next	chapter,	we’ll	examine	a	final	
variant	of	the	t	test	that	can	be	used	for	between-subjects	designs.	

Using Difference Scores 
	 Many	research	designs	involve	a	comparison	across	two	conditions.	For	example,	a	
pretest-posttest	design	assesses	the	same	subjects	on	two	occasions	(e.g.,	before	and	after	
treatment),	as	would	a	longitudinal	study	with	measurements	taken	at	two	time	points	
(e.g.,	attitudes	measured	at	ages	20	and	40).	Alternatively,	the	conditions	can	be	two	
variables	measured	at	the	same	point	in	time	(e.g.,	scores	on	SAT	Math	and	Verbal	
sections).	In	a	matching	design,	pairs	of	subjects	are	matched	on	one	or	more	variables	
and	then	assigned	(ideally	at	random)	to	separate	conditions	(e.g.,	treatment	and	control).	
For	purposes	of	data	analysis,	subjects	matched	in	a	pair	can	be	treated	as	the	same	
person.25	
	 In	each	of	these	instances,	a	statistical	comparison	can	be	performed	by	calculating	
difference	scores.	For	each	subject,	a	difference	score	is	calculated	by	subtracting	the	
score	for	one	condition	from	the	score	for	the	other	condition	(e.g.,	posttest	–	pretest,	
attitude	at	age	40	–	attitude	at	age	20,	SAT	Verbal	–	SAT	Math,	treatment	–	control):	

	 	 D	=	Y1	–	Y2	
	 Here,	Y1	and	Y2	refer	to	an	individual’s	scores	in	the	two	conditions	being	compared.	It	
makes	no	difference	which	condition	is	subtracted	from	which,	but	it	is	critical	that	the	
subtraction	is	performed	in	the	same	way	for	every	subject.	For	example,	you	can	use	Y1	=	
SAT	Verbal	and	Y2	=	SAT	Math	or	you	can	use	Y1	=	SAT	Math	and	Y2	=	SAT	Verbal,	but	you	
have	to	pick	one	coding	or	the	other	to	use	for	all	subjects.	
	 Suppose	you	wondered	whether	psychology	majors	tend	to	score	higher	on	the	Math	or	
Verbal	section	of	the	SAT.	Here	are	illustrative	scores	for	10	psychology	majors,	with	
difference	scores	calculated	as	SAT	Math	–	Verbal:	

																																																								
25	As	you	might	imagine,	this	can	be	controversial.	Only	if	subjects	are	matched	very	closely	on	all	relevant	
variables	is	the	calculation	of	difference	scores	and	use	of	the	related	samples	t	test	justified	(and	it’s	often	
called	a	matched	samples	t	test.	To	the	extent	that	the	matching	falls	short	of	this	ideal,	it	can	be	argued	that	
calculating	difference	scores	is	inappropriate	and	the	independent	groups	t	test	should	be	used	instead.	
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	 Notice	that	some	students	tended	to	score	relatively	high	on	both	sections	(e.g.,	the	
student	in	the	last	row:	680	+	750	=	1430),	others	relatively	low	on	both	sections	(e.g.,	the	
student	in	the	first	row:	540	+	590	=	1130).	Individual	differences	like	these	are	irrelevant	
to	the	question	of	whether,	on	average,	students	score	higher	on	the	Math	or	Verbal	
section.	Difference	scores	essentially	treat	each	subject	as	his	or	her	own	control,	removing	
individual	differences	in	overall	cognitive	ability	to	reveal	whether	or	not	there	are	
systematic	differences	across	conditions	in	the	study	(math	and	verbal	abilities).	Despite	
their	individual	differences	in	overall	performance,	the	difference	scores	for	the	students	in	
the	first	and	last	rows	are	highly	similar	(-50	and	-70).		
	 By	removing	individual	differences,	the	difference	scores	reveal	the	consistency	with	
which	psychology	majors	scored	higher	on	the	Verbal	than	the	Math	section	of	the	SAT.	
Within-subjects	designs	usually	provide	greater	statistical	power	than	between-subjects	
designs.	We’ll	see	examples	of	how	big	a	boost	this	can	be	in	the	next	chapter.	

Performing the t Test 
	 Once	you’ve	calculated	difference	scores,	all	you	need	to	do	is	subject	them	to	a	one	
sample	t	test.	If	there	is	no	difference	across	conditions,	the	mean	population	difference	
score	(µD)	will	be	0.	Thus,	the	statistical	hypotheses	for	a	related	samples	t	test	are:	

	 	 H0:	µD	=	0	
	 	 H1:	µD	¹	0	

	 These	hypotheses	are	nondirectional,	which	is	the	norm.	You	could	make	them	
directional	if	there	is	sufficient	justification.	
	 The	only	difference	in	performing	the	t	test	involves	notation.	All	terms	are	subscripted	
with	a	capital	D	to	indicate	that	they	refer	to	difference	scores.		

	 	 SDMD	=	SDD	/	sqrt(N)	

	 	 t	=	(MD	–	µD)	/	SDMD	

	 Because	we’re	testing	µD	=	0,	the	t	formula	simplifies:	

	 	 t	=	MD	/	SDMD	
	 For	the	SAT	data	listed	above,	the	calculations	would	look	like	this:	

	 	 SDMD	=	SDD	/	sqrt(N)	=	41.63332	/	sqrt(10)	=	13.16561	
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	 The	standard	error	(SDMD)	tells	us	that	we	would	expect	the	mean	difference	score	(MD)	
for	a	sample	of	10	subjects	to	vary	by	about	±13.17	points	from	µD	by	chance.	

	 	 t	=	MD	/	SDMD	=	-50.00000	/	13.16561	=	-3.80	

	 The	t	value	tells	us	that	the	MD	for	our	data	differed	from	µD	by	3.80	times	as	much	as	
we’d	expect.	
	 All	that’s	left	is	to	determine	whether	this	falls	in	the	critical	region.	Using	the	t	table	
(see	Appendix	A),	we	find	that	for	a	2-tailed	test	with	a	=	.05	and	df	=	N	–	1	=	10	–	1	=	9,	the	
critical	t	value	is	2.262.	Because	this	is	a	2-tailed	test,	the	critical	region	includes	the	left	tail	
(t	<	-2.262)	and	the	right	tail	(t	>	2.262).	This	is	expressed	most	simply	as	|t|	>	2.262.	The	
absolute	value	of	t,	3.80,	exceeds	2.262,	so	we’d	reject	H0	and	tentatively	accept	H1.	There	is	
a	statistically	significant	difference	between	these	students’	SAT	Verbal	and	Math	scores.	

Effect Size 
	 Recall	that	Cohen’s	d	is	calculated	as	the	difference	between	two	means	divided	by	the	
standard	deviation.	For	one	sample	z	or	t	tests,	the	relevant	means	were	M	and	µ,	and	the	
relevant	standard	deviation	was	either	s	or	SD.	For	related	samples	t	tests,	however,	the	
relevant	means	are	those	for	the	two	conditions	being	compared,	symbolized	as	M1	and	M2.		
	 The	relevant	standard	deviation	must	be	calculated	as	a	type	of	average,	though,	
because	each	condition	has	its	own	standard	deviation,	symbolized	as	SD1	and	SD2.	The	way	
that	these	are	averaged	is	to	square	each	one	to	convert	it	back	to	a	variance,	add	them	up,	
divide	by	2,	and	then	take	the	square	root	to	convert	back	to	a	standard	deviation.	This	is	
called	a	pooled	standard	deviation,	symbolized	as	SDp	and	calculated	as	follows:	

	 	 SDp	=	sqrt((SD12	+	SD22)	/	2)	
	 Whenever	you	calculate	SDp	it’s	worth	checking	to	make	sure	that	it’s	in	between	SD1	
and	SD2.	Because	this	is	a	type	of	average,	it	has	to	fall	between	the	two	values	being	
averaged.	It’s	easy	to	make	calculation	mistakes	with	this	formula,	and	this	quick	check	will	
catch	most	of	them.	
	 Cohen’s	d	is	then	calculated	as	the	mean	difference	divided	by	the	standard	deviation	in	
the	usual	way:	

	 	 d	=	(M1	–	M2)	/	SDp	
	 For	the	SAT	data,	the	calculations	look	like	this:	

	 	 SDp	=	sqrt((69.960312	+	60.964472)	/	2)	=	65.61673	

	 	 d	=	(585.00000	–	635.00000)	/	65.61673	=	-0.76	
	 Note	that	it	makes	no	difference	which	condition	you	treat	as	1	and	which	as	2.	The	only	
difference	would	be	the	sign	of	d,	and	that’s	unimportant	for	interpreting	the	size	of	the	
effect.	In	this	case,	we	treated	Math	as	condition	1	and	Verbal	as	condition	2.	Had	we	
reversed	these	assignments,	we’d	have	calculated	d	=	0.76	rather	than	d	=	-0.76.	Either	way,	
we	can	see	from	the	relevant	means	that	these	psychology	majors	scored	higher	on	the	
Verbal	than	the	Math	section	of	the	SAT,	and	this	is	a	large	effect	(d	is	close	to	0.80).	
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Using SPSS 
	 To	perform	a	related	samples	t	test	in	SPSS,	you	first	enter	your	data	into	separate	
variables	(columns),	here	labeled	“Math”	and	“Verbal”:	

	
	 Next,	you	use	the	following	command:	

	 	 t-test	pairs	=	math	verbal	
	 Note	that	you	have	to	provide	the	variables	representing	the	two	conditions	to	be	
compared	(here,	“Math”	and	“Verbal”).	The	output	you	need	appears	in	two	tables,	though	
there	is	another	table	that	you	should	ignore.	The	first	table,	labeled	“Paired	Samples	
Statistics”,	provides	the	M	and	SD	for	each	condition:	

	
	 The	other	table	you	need,	labeled	“Paired	Samples	Test”,	provides	the	t	value,	df,	and	
the	p	value	(labeled	as	“Sig.	(2-tailed)”,	which	you’d	divide	by	2	if	you	want	a	1-tailed	test):		

	
	 There	is	another	table	that	will	appear	between	these,	labeled	“Paired	Samples	
Correlations”.	This	is	not	shown	here.	The	correlation	between	scores	in	the	two	conditions	
is	an	entirely	separate	statistical	analysis,	and	you	should	ignore	this	table.	In	particular,	be	
careful	not	to	report	the	p	value	in	this	table	because	it	does	not	apply	to	the	t	test.	

APA Style 
	 You	can	report	the	results	of	any	t	test	in	a	single	sentence.	Here’s	what	that	might	look	
like	for	these	data:	

	 Psychology	majors	scored	statistically	significantly	differently	on	the	Math	(M	=	585.00,	

SD	=	69.96)	and	Verbal	(M	=	635.00,	SD	=	60.96)	sections	of	the	SAT,	t(9)	=	-3.80,	p	=	.004,	d	
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=	-0.76.	

	 Notice	that	the	phrasing	indicates	this	was	a	2-tailed	test.	Providing	the	means	for	both	
conditions	clearly	indicates	that	scores	were	higher	on	the	Verbal	than	the	Math	section.	

Problems 
	 The	following	problems	refer	to	a	study	of	two	groups	of	men	who	attend	Alcoholics	
Anonymous	(AA)	meetings.	Members	of	group	1	(volunteers)	choose	to	join	AA	and	attend	
at	least	three	meetings,	and	members	of	group	2	(court-ordered)	are	convicted	of	DUI	and	
ordered	by	a	court	to	attend	at	least	three	meetings.	Prior	to	attending	AA,	subjects	are	
matched	on	their	age,	race,	and	income	level	to	form	12	pairs.	After	the	third	meeting,	each	
subject	is	asked	by	his	AA	sponsor	how	many	drinks	he	consumed	each	day	in	the	past	
week.	The	data	are	shown	below,	with	the	number	of	drinks	for	both	members	of	each	pair	
in	the	same	row.		
1.	 What	is	the	researcher’s	hypothesis?	

2.	 What	are	the	statistical	hypotheses	(H0	and	H1)?	

3.	 Did	you	choose	to	use	a	2-tailed	or	a	1-tailed	test,	and	why?	

4.	 Should	this	test	be	performed	using	a	=	.05	or	a	=	.01,	and	
why?	

5.	 Why	should	a	related	samples	t	test	be	performed,	rather	than	
a	one-sample	z	or	t	test?	

6.	 What	is	df	for	this	t	test?		
7.	 What	is	the	critical	region	for	this	t	test?	(Use	the	t	table	in	

Appendix	A.)	
8.	 Calculate	the	value	of	t	for	this	sample	of	data.	To	help,	note	that	MD	=	-3.58333	and	SDD	

=	4.69929.	

9.	 What	is	your	statistical	decision:	Would	you	reject	or	retain	H0?	
10.	What	kind	of	error—Type	I	or	Type	II—might	you	be	making?	

11.	What	is	the	size	of	the	effect,	using	Cohen’s	d?	To	help,	note	that	M1	=	9.91667,	SD1	=	
4.77605,	M2	=	13.50000,	and	SD2	=	6.57129	(where	subscripts	of	1	=	volunteer	and	
subscripts	of	2	=	court-ordered).	According	to	the	usual	rules	of	thumb,	how	would	you	
describe	this?	

12.	Report	these	results	in	APA	style.	

13.	How	would	you	interpret	these	results?	Consider	strengths	and	weaknesses	of	the	
research	methods	used	in	this	study.	There	are	at	least	three	different	interpretations	
that	are	consistent	with	the	results.	

14.	How	could	you	improve	the	design	of	this	study	to	improve	its	internal	validity?	
*	*	*	
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	 The	following	problems	refer	to	scores	on	two	scales	for	the	first	20	inmates	in	the	
parole	data	set	introduced	in	an	earlier	chapter.	LCSF1	is	the	Irresponsibility	scale,	and	
LCSF4	is	the	Social	Rule	Breaking	scale.	
15.	What	is	the	researcher’s	hypothesis?	

16.	What	are	the	statistical	hypotheses	(H0	and	H1)?	

17.	Did	you	choose	to	use	a	2-tailed	or	a	1-tailed	test,	and	why?	

18.	Should	this	test	be	performed	using	a	=	.05	or	a	=	.01,	and	
why?	

19.	Why	should	a	related	samples	t	test	be	performed,	rather	than	
a	one-sample	z	or	t	test?	

20.	What	is	df	for	this	t	test?	
21.	What	is	the	critical	region	for	this	t	test?	(Use	the	t	table	in	

Appendix	A.)	
22.	Calculate	the	value	of	t	for	this	sample	of	data.	To	help,	note	

that	MD	=	0.55000	and	SDD	=	1.39454.	

23.	What	is	your	statistical	decision:	Would	you	reject	or	retain	H0?	
24.	What	kind	of	error—Type	I	or	Type	II—might	you	be	making?	

25.	What	is	the	size	of	the	effect,	using	Cohen’s	d?	To	help,	note	
that	M1	=	1.65000,	SD1	=	1.46089,	M2	=	1.10000,	and	SD2	=	1.48324	(where	subscripts	of	
1	=	Irresponsibility	and	subscripts	of	2	=	Social	Rule	Breaking).	According	to	the	usual	
rules	of	thumb,	how	would	you	describe	this?	

26.	Report	these	results	in	APA	style.	

*	*	*	

27.	Use	SPSS	to	analyze	the	SAT	data	from	this	chapter	and	verify	that	you	get	the	same	
results	and	reach	the	same	conclusions.	Notice	that	you	have	to	calculate	Cohen’s	d	by	
hand	because	SPSS	does	not	do	this	for	you.	Check	that	you	get	the	correct	value	for	d	
by	calculating	that	yourself.	

28.	Use	SPSS	to	analyze	the	Alcoholics	Anonymous	data	from	the	first	series	of	problems	
and	verify	that	you	get	the	same	results	and	reach	the	same	conclusions	as	when	you	
did	the	calculations	by	hand.	

29.	Use	SPSS	to	analyze	the	parole	data	from	the	second	series	of	problems	and	verify	that	
you	get	the	same	results	and	reach	the	same	conclusions	as	when	you	did	the	
calculations	by	hand.	

Problems 1 – 14 are due at the beginning of class. 
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10. Independent Groups t Test 

Overview 
	 The	related	samples	t	test	built	upon	the	one	sample	t	test	to	allow	the	comparison	of	
two	conditions	in	a	within-subjects	design.	The	independent	groups	t	test	builds	in	
another	way	to	allow	the	comparison	of	two	conditions	in	a	between-subjects	design.	This	
chapter	introduces	this	third	and	final	kind	of	t	test,	which	is	also	known	as	an	
independent	samples	t	test,	a	grouped	t	test,	or	an	unpaired	t	test.	

Pooling the SDs 
	 Many	research	designs	involve	a	comparison	across	two	groups	of	subjects.	Subjects	
might	be	randomly	assigned	to	conditions	(e.g.,	treatment	and	control	groups),	they	might	
select	their	own	conditions	(e.g.,	attending	a	public	or	a	private	school),	or	they	might	
simply	belong	to	these	conditions	(e.g.,	men	and	women).		
	 In	each	of	these	instances,	the	key	to	making	a	statistical	comparison	is	to	pool	the	
within-group	SDs	for	the	groups.	This	enables	us	to	estimate	how	much	we	would	expect	
the	groups’	Ms	to	differ	by	chance.	This	is	done	in	two	steps.	Let’s	begin	by	seeing	what	this	
looks	like	for	equal-size	groups	(i.e.,	n1	=	n2),	in	which	case	we	can	just	use	n	to	represent	
the	size	of	each	group.	First,	we	pool	the	SDs	as	was	shown	in	the	last	chapter:	

	 	 SDp	=	sqrt((SD12	+	SD22)	/	2)	

	 Second,	we	calculate	the	standard	error	of	the	difference	between	the	means:	

	 	 SDM1-M2	=	sqrt(2)	´	SDp	/	sqrt(n)	

	 Recall	that	for	a	one	sample	t	test,	the	standard	error	looked	like	this:	

	 	 SDM	=	SD	/	sqrt(N)	
	 That’s	essentially	the	same	thing	that	we	have	for	two	groups,	with	the	only	important	
difference	being	that	the	sampling	error	is	twice	as	large	for	two	groups	as	it	is	for	one	
group.26	
	 Fortunately,	we	need	not	have	equal-size	groups	to	perform	valid	statistical	tests.	These	
equations	can	be	extended	to	accommodate	groups	that	are	unequal	in	size:	

	 	 SDp	=	sqrt((SD12	´	df1	+	SD22	´	df2)	/	(df1	+	df2))	

	 In	this	formula,	df1	=	n1	–	1	and	df2	=	n2	–	1	are	used	as	weights	for	the	groups’	SDs	when	
pooling	them.	The	standard	error	formula	can	also	deal	with	unequal	group	sizes:	

	 	 SDM1-M2	=	sqrt((SDp2	/	n1)	+	(SDp2	/	n2))	

																																																								
26	The	doubling	in	sampling	error	occurs	when	expressed	as	sampling	variance.	When	expressed	in	SD	units,	
the	multiplier	becomes	sqrt(2)	because	SD	is	the	square	root	of	variance.	
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Statistical Power 
	 What	is	probably	not	obvious	in	these	formulas	is	that,	all	else	being	equal,	the	standard	
error	for	an	independent	groups	t	test	will	be	larger	than	the	standard	error	for	related	
samples	t	test.	In	other	words,	a	larger	difference	between	the	means	would	be	expected	by	
chance	for	a	between-subjects	design	than	for	a	within-subjects	design.	
	 To	illustrate	this	very	important	fact,	let’s	revisit	the	data	on	psychology	majors’	SAT	
scores	introduced	in	the	last	chapter.	We’ll	use	the	same	20	test	scores,	but	this	time	we’ll	
pretend	that	the	data	come	from	separate	groups:	10	students	took	the	SAT	Math	test,	and	
10	different	students	took	the	SAT	Verbal	test.	
	 For	a	related	samples	t	test,	we	calculated	SDMD	=	13.16561.	This	indicates	that	the	
expected	difference	between	MD	and	µD	is	about	13.17	points.	Let’s	see	how	large	the	
standard	error	is	if	we	treat	the	exact	same	scores	as	though	they	came	from	a	between-
subjects	design.	First,	when	we	pooled	the	SDs,	we	found	SDp	=	65.61673.	The	next	step	is	
to	calculate	the	standard	error.	We	can	use	the	simpler	version	of	the	formula	because	the	
groups	are	equal	in	size:	

	 	 SDM1-M2	=	sqrt(2)	´	SDp	/	sqrt(n)	=	sqrt(2)	´	65.61673	/	sqrt(10)	=	29.34469	

	 This	is	more	than	twice	as	large	as	the	standard	error	for	the	related	samples	t	test.	
Why	the	difference?	Because	the	related	samples	t	test	removes	individual	differences	
through	the	calculation	of	difference	scores.	In	this	case,	that	means	that	the	test	gets	rid	of	
the	fact	that	some	individuals	score	high	on	both	the	math	and	the	verbal	tests,	whereas	
others	score	low	on	both.	With	independent	groups,	we	can’t	do	this.	The	individual	
differences	in	overall	cognitive	ability	are	part	of	the	normal	sampling	error	and	cannot	be	
removed	from	the	analysis.	This	makes	it	considerably	more	difficult	to	reject	H0.	In	other	
words,	statistical	power	is	much	lower.	

Performing the t Test 
	 For	the	independent	groups	t	test,	the	statistical	hypotheses	very	directly	state	the	
relationship	between	the	two	populations	from	which	the	groups’	scores	were	drawn:	

	 	 H0:	µ1	=	µ2	
	 	 H1:	µ1	¹	µ2	

	 These	hypotheses	are	nondirectional,	which	is	the	norm.	You	could	make	them	
directional	if	there	is	sufficient	justification.	We’ve	already	seen	how	to	calculate	the	
standard	error,	so	all	that’s	left	is	to	calculate	the	t	value:	

	 	 t	=	((M1	–	M2)	–	(µ1	–	µ2))	/	SDM1-M2	

	 Because	we’re	testing	H0:	µ1	=	µ2,	this	means	that	µ1	–	µ2	=	0,	and	the	formula	simplifies:	

	 	 t	=	(M1	–	M2)	/	SDM1-M2	
	 For	the	SAT	data,	here’s	what	we	get:	

	 	 t	=	(M1	–	M2)	/	SDM1-M2	=	(585.00000	–	635.00000)	/	29.34469	=	-1.70	
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	 To	determine	whether	this	falls	in	the	critical	region,	we	consult	the	t	table	(see	
Appendix	A)	for	a	2-tailed	test	with	a	=	.05	and	df	=	N	–	2	=	20	–	2	=	18	and	find	the	critical	t	
value	is	2.101.	Because	this	is	a	2-tailed	test,	the	critical	region	includes	the	left	tail	(t	<	-
2.101)	and	the	right	tail	(t	>	2.101).	This	is	expressed	most	simply	as	|t|	>	2.101.	The	
absolute	value	of	t,	1.70,	does	not	exceed	2.101,	so	we’d	retain	H0.	There	is	no	statistically	
significant	difference	between	these	students’	SAT	Verbal	and	Math	scores.	
	 Notice	that	this	conclusion	differs	from	what	we	found	using	the	related	samples	t	test	
with	the	same	data.	In	that	case,	the	t	value	of	-3.80	was	in	the	critical	region,	so	H0	was	
rejected.	The	M,	SD,	and	n	for	each	condition	were	identical.	All	that	changed	was	the	
research	design.	For	related	samples,	individual	differences	were	removed	and	this	enabled	
the	test	to	detect	a	difference	between	the	means.	For	independent	groups,	individual	
differences	masked	this	difference	between	the	means.	This	is	the	statistical	reason	why	
you	should	try	to	use	within-subjects	designs	whenever	possible.	

Effect Size 
	 Cohen’s	d	is	calculated	in	the	same	way	for	an	independent	groups	t	test	that	it	was	for	a	
related	samples	t	test:	

	 	 d	=	(M1	–	M2)	/	SDp	

	 As	shown	earlier	in	this	chapter,	there	are	two	versions	of	the	formula	for	SDp.	Choosing	
between	them	depends	only	on	whether	the	group	sizes	are	equal.	For	the	SAT	data,	in	
which	the	groups	are	equal	in	size,	the	calculations	are	as	follows:	

	 	 SDp	=	sqrt((69.960312	+	60.964472)	/	2)	=	65.61673	

	 	 d	=	(585.00000	–	635.00000)	/	65.61673	=	-0.76	
	 Notice	that	this	is	identical	to	what	was	calculated	in	the	last	chapter.	This	is	as	it	should	
be,	for	we	used	the	same	20	scores.	The	size	of	the	effect	remained	the	same.	Also	note,	
once	again,	that	it	makes	no	difference	which	condition	you	treat	as	1	and	which	as	2.	The	
only	difference	would	be	the	sign	of	d,	and	that’s	unimportant	for	interpreting	the	size	of	
the	effect.	

Using SPSS 
	 To	perform	an	independent	groups	t	test	in	SPSS,	you	first	enter	your	data	into	two	
separate	variables	(columns),	here	labeled	“Test”	(coded	as	1	=	Math,	2	=	Verbal)	and	
“SAT”.	Note	that	you	have	to	create	a	variable	that	indicates	group	membership	for	each	
subject,	and	the	dependent	variable	is	placed	in	a	separate	column	for	all	subjects.	
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	 Next,	you	use	the	following	command:	

	 	 t-test	groups	=	test(1,2)	
	 	 /vars	=	sat	
	 Note	that	you	have	to	provide	the	group	membership	variable	(here,	“Test”)	and	the	
dependent	variable	(here,	“SAT”).	The	output	you	need	appears	in	two	tables.	The	first	
table,	labeled	“Group	Statistics”,	provides	the	M	and	SD	for	each	condition:	

	
	 The	second	table,	labeled	“Independent	Samples	Test”,	provides	the	t	value,	df,	and	the	
p	value	(labeled	as	“Sig.	(2-tailed)”,	which	you’d	divide	by	2	if	you	want	a	1-tailed	test):		

	
	 When	you’re	using	this	table,	you	must	choose	whether	or	not	to	assume	the	variances	
for	the	two	groups	are	equal.	For	this	course,	we’ll	go	ahead	and	make	that	assumption.	
That	means	you	find	the	t	value,	df,	and	the	p	value	in	the	top	row	(labeled	“Equal	variances	
assumed”).	
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APA Style 
	 You	can	report	the	results	of	any	t	test	in	a	single	sentence.	Here’s	what	that	might	look	
like	for	these	data:	

	 Psychology	majors	did	not	score	statistically	significantly	differently	on	the	Math	(M	=	

585.00,	SD	=	69.96)	and	Verbal	(M	=	635.00,	SD	=	60.96)	sections	of	the	SAT,	t(18)	=	-1.70,	p	

=	.106,	d	=	-0.76.	

	 Notice	that	the	phrasing	indicates	this	was	a	2-tailed	test.	Providing	the	means	for	both	
conditions	allows	readers	to	see	the	direction	of	the	difference,	even	though	it	was	not	
statistically	significant	in	this	case.	

Problems 
	 The	following	problems	refer	to	a	study	of	two	groups	of	men	who	attend	Alcoholics	
Anonymous	(AA)	meetings.	Members	of	group	1	(volunteers)	choose	to	join	AA	and	attend	
at	least	three	meetings,	and	members	of	group	2	(court-ordered)	are	convicted	of	DUI	and	
ordered	by	a	court	to	attend	at	least	three	meetings.	Prior	to	attending	AA,	subjects	are	
matched	on	their	age,	race,	and	income	level	to	form	12	pairs.	After	the	third	meeting,	each	
subject	is	asked	by	his	AA	sponsor	how	many	drinks	he	consumed	each	day	in	the	past	
week.	The	data	are	shown	below,	with	the	number	of	drinks	for	both	members	of	each	pair	
in	the	same	row.	
	 You’ve	already	worked	with	these	data	in	the	last	chapter.	This	time,	treat	them	as	
though	this	is	a	between-subjects	design	that	you’d	analyze	with	an	independent	groups	t	
test.	Many,	but	not	all,	of	your	answers	should	be	the	same	as	last	time.	

1.	 What	is	the	researcher’s	hypothesis?	

2.	 What	are	the	statistical	hypotheses	(H0	and	H1)?	
3.	 Did	you	choose	to	use	a	2-tailed	or	a	1-tailed	test,	and	why?	

4.	 Should	this	test	be	performed	using	a	=	.05	or	a	=	.01,	and	
why?	

5.	 Why	should	an	independent	groups	t	test	be	performed,	rather	
than	a	related	samples	t	test?	

6.	 What	is	df	for	this	t	test?	

7.	 What	is	the	critical	region	for	this	t	test?	(Use	the	t	table	in	
Appendix	A.)	

8.	 Calculate	the	value	of	t	for	this	sample	of	data.	To	help,	note	that	M1	=	9.91667,	SD1	=	
4.77605,	M2	=	13.50000,	and	SD2	=	6.57129	(where	subscripts	of	1	=	volunteer	and	
subscripts	of	2	=	court-ordered).	

9.	 What	is	your	statistical	decision:	Would	you	reject	or	retain	H0?	
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10.	What	kind	of	error—Type	I	or	Type	II—might	you	be	making?	
11.	What	is	the	size	of	the	effect,	using	Cohen’s	d?	According	to	the	usual	rules	of	thumb,	

how	would	you	describe	this?	
12.	Report	these	results	in	APA	style.	

13.	Compare	your	results	to	what	you	found	when	you	performed	a	related	samples	t	test	
for	these	data.	What	are	the	similarities	and	differences?	

*	*	*	
	 The	following	problems	refer	to	scores	on	two	scales	for	inmates	in	the	parole	data	set	
introduced	in	an	earlier	chapter.	LCSF1	is	the	Irresponsibility	scale,	and	LCSF4	is	the	Social	
Rule	Breaking	scale.	Pretend	that	these	data	were	obtained	from	two	separate	groups	of	20	
inmates	apiece.	
14.	What	is	the	researcher’s	hypothesis?	

15.	What	are	the	statistical	hypotheses	(H0	and	H1)?	

16.	Did	you	choose	to	use	a	2-tailed	or	a	1-tailed	test,	and	why?	

17.	Should	this	test	be	performed	using	a	=	.05	or	a	=	.01,	and	
why?	

18.	What	is	df	for	this	t	test?		

19.	What	is	the	critical	region	for	this	t	test?	(Use	the	t	table	in	
Appendix	A.)	

20.	Calculate	the	value	of	t	for	this	sample	of	data.	To	help,	note	
that	M1	=	1.65000,	SD1	=	1.46089,	M2	=	1.10000,	and	SD2	=	
1.48324	(where	subscripts	of	1	=	Irresponsibility	and	
subscripts	of	2	=	Social	Rule	Breaking).	

21.	What	is	your	statistical	decision:	Would	you	reject	or	retain	H0?	
22.	What	kind	of	error—Type	I	or	Type	II—might	you	be	making?	

23.	What	is	the	size	of	the	effect,	using	Cohen’s	d?	According	to	the	
usual	rules	of	thumb,	how	would	you	describe	this?	

24.	Report	these	results	in	APA	style.	

25.	Compare	your	results	to	what	you	found	when	you	performed	a	related	samples	t	test	
for	these	data.	What	are	the	similarities	and	differences?	

*	*	*	

26.	Use	SPSS	to	analyze	the	SAT	data	from	this	chapter	and	verify	that	you	get	the	same	
results	and	reach	the	same	conclusions.	Notice	that	you	have	to	calculate	Cohen’s	d	by	
hand	because	SPSS	does	not	do	this	for	you.	Check	that	you	get	the	correct	value	for	d	
by	calculating	that	yourself.	
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27.	Use	SPSS	to	analyze	the	Alcoholics	Anonymous	data	from	the	first	series	of	problems	
and	verify	that	you	get	the	same	results	and	reach	the	same	conclusions	as	when	you	
did	the	calculations	by	hand.	

28.	Use	SPSS	to	analyze	the	parole	data	from	the	second	series	of	problems	and	verify	that	
you	get	the	same	results	and	reach	the	same	conclusions	as	when	you	did	the	
calculations	by	hand.	

Problems 1 – 13 are due at the beginning of class. 
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11. Overview of ANOVA 

Overview 
	 To	this	point,	statistical	analyses	have	been	introduced	that	afford	comparisons	
between	a	single	sample	and	a	population	mean,	between	two	related	samples,	or	between	
two	independent	groups.	This	covers	many	of	the	most	popular	research	designs,	yet	it	
remains	fairly	limited.	This	chapter	will	examine	ways	that	the	analysis	of	variance	
(ANOVA),	a	technique	for	breaking	the	variation	in	scores	into	its	component	parts,	
expands	upon	the	t	test.	ANOVA	models	afford	comparisons	between	more	than	two	
independent	groups	or	more	than	two	related	samples,	and	they	can	also	be	used	to	test	
the	effects	of	more	than	one	independent	variable.	These	extensions	enable	the	use	of	a	
much	wider	array	of	research	designs.	

Extending Beyond Two Conditions 
	 Researchers	often	include	more	than	two	conditions	in	a	study.	For	example,	a	clinical	
scientist	might	randomly	assign	subjects	to	one	of	three	treatment	groups,	but	the	t	test	
only	compares	two	conditions.	Thus,	we’d	have	to	test	repeatedly	to	analyze	all	of	the	data	
from	a	study	with	more	than	two	conditions.	Our	clinical	scientist	could	perform	three	t	
tests	to	compare	all	treatments	to	one	another:	conditions	1	vs.	2,	1	vs.	3,	and	2	vs.	3.	
	 In	addition	to	the	fact	that	it	would	be	tiresome	to	run	multiple	t	tests,	there’s	a	more	
serious	problem.	In	the	event	that	there	really	are	no	differences	across	conditions,	each	
test	introduces	another	chance	of	making	a	Type	I	error	(a	false	alarm).	The	chance	of	
making	at	least	one	Type	I	error	is	known	as	the	experimentwise	Type	I	error	rate;	it’s	
also	sometimes	referred	to	as	the	familywise	Type	I	error	rate.	Here’s	a	table	that	
illustrates	the	magnitude	of	this	problem	for	studies	with	varying	numbers	of	conditions;	
tests	are	performed	using	a	=	.05.	

Number	of	
Conditions	

Number	of	
t	Tests	

Experimentwise	
Type	I	Error	Rate	

2	 1	 .050	
3	 3	 .143	
4	 6	 .265	
5	 10	 .401	
6	 15	 .537	
7	 21	 .659	
8	 28	 .726	
k	 m	=	k	´	(k	–	1)	/	2	 1	–	(1	–	a)m	

	 When	there	are	only	two	conditions,	the	single	t	test	carries	an	a	=	.05	probability	of	
making	a	Type	I	error.	With	three	conditions,	the	use	of	three	t	tests	increases	the	chance	of	
making	at	least	one	Type	I	error	to	.143.	By	the	time	you	reach	six	conditions,	the	
experimentwise	Type	I	error	rate	exceeds	.50,	meaning	you’re	more	likely	than	not	to	reach	
at	least	one	mistaken	statistical	decision.	The	bottom	row	contains	the	general	expression	
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for	the	experimentwise	Type	I	error	rate	that	applies	for	any	number	of	conditions	k	and	
any	a	level.	
	 The	problem	of	an	experimentwise	Type	I	error	rate	that	can	be	much	larger	than	a	
reveals	the	value	of	having	a	statistical	test	that	can	hold	the	Type	I	error	rate	down	to	the	
a	level	when	simultaneously	comparing	all	conditions	to	one	another.	That	is	what	the	F	
test	provided	by	an	ANOVA	does.27	A	single	F	test	is	used	to	test	the	null	hypothesis	of	no	
difference	between	any	conditions’	means,	symbolized	as	follows:	

	 	 H0:	µ1	=	µ2	=	…	=	µk	
	 	 H1:	~(µ1	=	µ2	=	…	=	µk)	

	 The	expression	for	H0	indicates	the	equality	of	all	population	means	from	which	the	k	
conditions’	scores	are	drawn.	The	expression	would	include	k	terms,	one	for	each	of	the	k	
conditions.	The	expression	for	H1	is	simply	the	negation	of	the	expression	for	H0.	The	“~”	
symbol	means	“it	is	not	the	case	that”,	and	the	expression	in	parentheses	is	H0	itself.	By	
definition,	H0	and	H1	are	nondirectional.	The	means	for	all	conditions	are	compared	to	see	
whether	they	differ	from	one	another	in	any	way—not	in	some	specific	way.	If	you	have	
more	specific	predictions	than	this,	the	F	test	itself	is	not	the	way	to	test	them.	Instead,	
you’ll	need	to	follow	the	F	test	with	another	procedure.28	

Multiple Comparisons and Post-Hoc Tests 
	 The	F	test	solves	the	problem	of	large	experimentwise	Type	I	error	rates	by	performing	
a	single	test	rather	than	a	series	of	tests.	That	limits	the	chance	of	making	a	Type	I	error	to	
the	desired	a	level.	This	benefit	comes	at	a	cost,	however.	Whenever	an	F	test	leads	us	to	
reject	H0,	it	is	not	clear	which	particular	conditions	differ	from	one	another.	Rejecting	H0	is	
vague.	It	tells	us	only	that	there	is	some	difference	between	the	conditions.	To	be	more	
specific	about	which	conditions	differ	requires	that	we	make	multiple	comparisons,	a	
series	of	tests	between	subsets	of	the	conditions.	
	 One	common	way	of	making	multiple	comparisons	is	to	compare	every	condition	to	
every	other	condition	using	a	post-hoc	test.	This	works	in	a	two-step	process.	First,	you	
calculate	a	threshold	value	for	statistical	significance.	Second,	you	calculate	the	differences	
between	the	means	for	all	pairs	of	conditions	to	determine	which	exceed	the	threshold.	
	 For	example,	suppose	that	you	have	three	treatment	groups	numbered	1,	2,	and	3	with	
means	of	10,	20,	and	30,	respectively.	If	the	F	test	allows	you	to	reject	H0,	this	suggests	that	
there	is	some	difference	among	the	conditions.	You’d	then	calculate	the	threshold	for	a	
post-hoc	test	to	see	which	conditions	differ	by	enough	to	conclude	that	they’re	statistically	
significantly	different.	Suppose	this	threshold	is	15	points.	This	would	indicate	that	
treatments	1	and	2	do	not	differ	(20	–	10	=	10,	which	is	less	than	the	threshold	of	15),	nor	
do	treatments	2	and	3	(30	–	20	=	10,	again	less	than	the	threshold	of	15).	Treatments	1	and	

																																																								
27	The	test	is	named	for	its	creator,	Sir	Ronald	Fisher.	Think	what	you	will	of	ANOVA,	the	F	stands	for	Fisher	
and	nothing	more.	
28	Alternatively,	you	can	perform	tests	of	planned	contrasts.	This	is	often	the	best	approach,	but	its	
implementation	goes	beyond	an	introductory	course	in	statistics	and	will	not	be	discussed	here.	An	excellent	
source	on	this	subject	is	Rosenthal,	R.,	&	Rosnow,	R.	L.	(1985).	Contrast	analysis:	Focused	comparisons	in	the	
analysis	of	variance.	New	York:	Cambridge	University	Press.	
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3,	however,	do	differ	statistically	significantly	(30	–	10	=	20,	which	exceeds	the	threshold	of	
15).	This	is	how	a	post-hoc	test	is	used	to	make	all	pairwise	comparisons.	
	 There	are	many	post-hoc	tests	available,	and	they	differ	in	how	liberal	or	conservative	
they	are.	These	terms	are	used	here	in	their	statistical—rather	than	political—sense.	
Liberal	statistical	procedures	(e.g.,	using	a	=	.05)	make	it	easier	to	reject	H0	and	
conservative	statistical	procedures	(e.g.,	using	a	=	.01)	make	it	harder	to	reject	H0.	A	liberal	
procedure	increases	the	chance	of	making	a	Type	I	error	(false	alarm)	and	decreases	the	
chance	of	making	a	Type	II	error	(miss),	and	a	conservative	procedure	does	the	reverse.	
Neither	approach	is	uniformly	better	or	worse.	Making	a	smart	choice	depends	on	the	
research	context.	For	example,	whereas	in	exploratory	research	one	usually	wants	to	avoid	
Type	II	errors	by	using	liberal	procedures,	in	hypothesis-testing	research	one	usually	
wants	to	avoid	Type	I	errors	by	using	conservative	procedures.	
	 The	post-hoc	test	that	will	be	introduced	and	used	exclusively	in	this	text,	Tukey’s	HSD,	
is	not	particularly	liberal	or	conservative.29	It’s	more	of	a	“middle	of	the	road”	technique.	
This	doesn’t	make	it	the	best	choice,	as	you	might	want	a	more	liberal	post-hoc	test	(e.g.,	
Fisher’s	LSD30)	for	exploratory	research	or	a	more	conservative	one	(e.g.,	Sheffé’s	method)	
for	hypothesis-testing	research.	Once	you	understand	when	and	how	to	use	Tukey’s	HSD,	it	
would	be	extremely	easy	to	use	another	post-hoc	test	because	they	operate	by	the	same	
logic	and	steps.	For	example,	a	very	conservative	post-hoc	test	might	have	generated	a	
threshold	of	value	of	22	points	for	the	comparison	of	three	means	introduced	above,	in	
which	case	none	of	the	treatments	would	have	differed	statistically	significantly	from	one	
another	(no	pair	of	means	differed	by	more	than	22	points).	A	very	liberal	post-hoc	test	
might	have	generated	a	threshold	value	of	6	points,	in	which	case	all	three	treatments	
would	have	differed	statistically	significantly	from	one	another	(all	pairs	of	means	differed	
by	more	than	6	points).	
	 To	sum	up	the	procedure	for	testing	for	differences	between	more	than	two	conditions,	
you	begin	by	using	the	F	test	and,	if	needed,	you	proceed	to	use	a	post-hoc	test.	The	F	test	
holds	the	rate	of	Type	I	errors	to	the	chosen	a	level.	If	you	retain	H0,	you’re	done.	You	
conclude	that	there	are	no	statistically	significant	differences	across	conditions.	If	you	
reject	H0,	you	use	a	post-hoc	test	to	see	which	conditions	differ	from	one	another.	Just	as	
you	can	select	a	higher	or	lower	a	level	for	F	when	testing	H0,	you	can	select	a	post-hoc	test	
that	is	more	liberal	or	conservative	in	comparing	conditions	to	one	another.	

Partitioning the Variance 
	 The	formula	for	a	t	test	reveals	how	it	compares	conditions	to	each	other.	The	
numerator	is	the	difference	between	two	means,	and	the	denominator	is	the	difference	
expected	due	to	sampling	error.	If	this	ratio	of	mean	difference	to	standard	error	is	
sufficiently	large	that	it	falls	in	the	critical	region,	you	reject	H0.	

																																																								
29	Two	notes	on	the	name.	First,	its	creator	was	John	Tukey.	He	was	not	John	Turkey,	so	it’s	not	a	Turkey	Test.	
Second,	HSD	stands	for	“honestly	significant	difference”.	I’m	not	sure	whether	John	Tukey	thought	other	post-
hoc	tests	were	somehow	dishonest,	but	that’s	the	name	he	chose	for	this	test	and	it	stuck.	
30	Sir	Ronald	Fisher,	of	F	test	fame,	introduced	the	LSD	post-hoc	test.	The	LSD	stands	for	“least	significant	
difference”	and	has	nothing	to	do	with	psychedelic	drugs.	It’s	very	much	like	performing	all	pairwise	t	tests.	
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	 The	formula	for	an	F	test	is	different.	We’re	not	going	to	delve	into	the	details	of	how	F	
tests	are	calculated	because	it	gets	pretty	tedious,	and	if	you	try	it	you	might	spend	more	
time	correcting	arithmetic	mistakes	than	learning	about	statistical	concepts.	What’s	most	
important	is	to	understand	the	logic	by	which	these	tests	operate.	
	 An	F	test	provides	a	ratio	of	systematic	variance	to	error	variance.	Systematic	
variance	refers	to	variation	in	scores	due	to	differences	across	the	conditions	being	studied.	
Error	variance	refers	to	unexplained	variation	in	scores	that	remains	within	the	conditions.	
It’s	important	to	note	that	the	term	“error	variance”	does	not	imply	that	any	mistakes	were	
made	or	that	a	study	is	biased	in	any	way.	Though	we	can	and	should	take	steps	to	
minimize	it,	some	amount	of	error	variance	is	unavoidable	in	research	(e.g.,	sampling	
error).	We	can’t	measure	everything	that	might	affect	the	dependent	variable,	so	some	of	
its	variance	will	remain	unexplained.	We	call	this	error	variance	to	differentiate	it	from	
sources	of	systematic	variance	that	can	be	explained	by	variables	that	are	manipulated	or	
measured	in	research.	So	here’s	the	conceptual	definition	of	the	F	ratio:	

	 	 F	=	systematic	variance	/	error	variance	
	 Let’s	flesh	out	the	example	of	a	clinical	study	with	three	treatment	conditions.	Suppose	
there	are	50	subjects	in	each	condition,	for	a	total	of	150	subjects.	These	150	subjects’	
scores	on	the	dependent	variable	(outcome	following	treatment)	will	vary,	and	this	is	the	
total	variance	in	the	study.	For	simplicity,	let’s	use	an	arbitrary	scale	and	say	that	there	
are	60	units	of	total	variance	on	the	dependent	variable.	The	important	question	then	
becomes:	How	much	of	this	total	variance	of	60	units	is	systematic,	and	how	much	is	error?		
	 At	one	extreme,	it’s	possible	that	all	of	this	is	error	variance.	That	would	mean	that	
there	are	no	differences	between	groups,	that	the	only	sources	of	variation	in	scores	are	
things	like	individual	differences	(i.e.,	subjects	start	out	in	better	or	worse	shape	than	one	
another,	and	the	treatment	itself	had	no	effect)	and	measurement	error	(i.e.,	nothing	can	be	
assessed	with	perfect	reliability).	In	this	case,	the	F	ratio	would	take	on	its	minimum	
possible	value:	F	=	systematic	variance	of	0	/	error	variance	of	60	=	0.	
	 At	the	other	extreme,	it’s	possible	that	all	60	units	of	total	variance	are	systematic	
variance.	That	would	mean	that	the	only	reason	the	150	subjects’	scores	differ	is	because	of	
the	treatments	they	received,	with	no	variation	in	scores	remaining	within	treatment	
groups.	In	this	case,	the	F	ratio	would	take	on	its	maximum	possible	value:	F	=	systematic	
variance	of	60	/	error	variance	of	0	=	∞.	
	 As	you	might	have	recognized	already,	neither	of	these	extremes	is	likely	to	happen	in	
practice.	No	matter	how	effective	or	ineffective	the	treatments	may	be,	individuals	will	still	
differ	to	some	extent	within	groups.	There	will	always	be	some	error	variance.	Likewise,	
there	will	almost	always	be	at	least	some	systematic	variance,	or	even	just	the	appearance	
of	systematic	variance	due	to	sampling	error.	Because	of	this,	the	F	ratio	will	be	greater	
than	0	but	less	than	∞.	In	short,	it	will	be	some	positive	number.	
	 Suppose	we	find	that	there	is	twice	as	much	systematic	variance	as	error	variance,	in	
other	words	that	F	=	systematic	variance	of	40	/	error	variance	of	20	=	2.00.	Is	this	
statistically	significant?	Whether	F	is	sufficiently	large	to	reject	H0	presents	the	usual	
problem	of	determining	whether	it	falls	in	the	critical	region	of	the	appropriate	sampling	
distribution.	Though	tables	of	critical	F	values	can	be	consulted,	it’s	more	convenient	to	
compare	the	p	value	provided	by	a	computer	to	one’s	chosen	a	level.	As	usual,	we	reject	H0	
if	p	<	a	and	retain	H0	otherwise.	
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Degrees of Freedom 
	 With	a	t	test,	there	was	a	single	value	for	degrees	of	freedom	(df).	This	relates	to	sample	
size	(i.e.,	it’s	N	–	1	for	a	one	sample	or	related	samples	t	test,	N	–	2	for	an	independent	
groups	t	test).	Because	all	t	tests	compare	means	for	two	conditions,	this	fact	doesn’t	have	
to	be	specified.	
	 With	an	F	test,	however,	the	number	of	conditions	being	compared	does	need	to	be	
specified.	It	can	be	only	two,31	or	it	can	be	much	larger.	Because	of	this,	there	are	two	df	
values	for	an	F	test.	The	first	df	value	relates	to	the	number	of	conditions	being	compared	
(specifically,	it’s	k	–	1,	where	k	is	the	number	of	conditions).	The	second	df	value	is	like	the	
df	for	a	t	test	in	that	it	relates	to	sample	size.	For	example,	in	a	between-subjects	design,	it’s	
N	–	k,	where	N	is	the	total	sample	size.	In	a	study	with	150	subjects	assigned	to	3	
conditions,	the	df	for	the	F	test	would	be	k	–	1	=	2	and	N	–	k	=	147.	
	 How	to	calculate	df	for	all	varieties	of	F	tests	we’ll	explore	isn’t	important.	In	the	
chapters	on	ANOVA	models	that	follow,	we’ll	obtain	the	df	from	computer	output	rather	
than	calculating	them.	It’s	important	to	understand	why	there	are	two	df	values	for	an	F	
test,	though.	You	can	think	about	it	this	way:	There	really	are	two	df	values	for	a	t	test	or	an	
F	test,	with	the	first	relating	to	the	number	of	conditions	compared	and	the	second	relating	
to	sample	size.	With	a	t	test,	the	first	df	value	is	always	1,	so	we	don’t	bother	to	report	it.	

Effect Size 
	 When	comparing	more	than	two	conditions,	we	can	no	longer	use	Cohen’s	d	as	our	
measure	of	effect	size.	Instead,	we	need	a	measure	that	can	accommodate	more	than	two	
means.	The	most	popular	measure	used	with	F	tests	is	h2,	which	represents	the	proportion	
of	variance	in	the	dependent	variable	that	can	be	explained	by	the	independent	variable.32	
Whereas	d	can	be	positive	or	negative	in	sign	and	can	range	from	0	to	∞	in	absolute	value,	
h2	can	only	range	from	.00	to	1.00.		
	 If	h2	=	.00,	then	none	of	the	variation	in	outcomes	(0%)	can	be	attributed	to	the	
independent	variable.	If	h2	=	1.00,	then	all	of	the	variation	in	outcomes	(100%)	can	be	
attributed	to	the	independent	variable.	Naturally,	you	won’t	see	either	of	these	extreme	
values	in	practice.	Cohen	introduced	the	following	rules	of	thumb	for	interpreting	h2:	

	 	 .01	=	small	
	 	 .09	=	medium	
	 	 .25	=	large	

	 These	values	may	be	tough	to	remember	because	they’re	unequally	spaced.	We’ll	see	in	
a	later	chapter	that	these	values	are	related	to	our	final	measure	of	effect	size,	the	
correlation	coefficient	(r).	It	might	be	helpful	to	remember	the	rules	of	thumb	for	h2	by	

																																																								
31	With	only	two	conditions,	F	=	t2.	Though	the	formulas	for	F	and	t	appear	quite	different,	they	are	equivalent	
tests	that	will	yield	identical	p	values	when	there	are	only	two	conditions.	
32	The	Greek	letter	h	is	pronounced	“eta”,	so	h2	is	“eta	squared”.	In	many	ANOVA	models,	technically	what	
we’ll	be	using	is	partial	h2,	where	the	term	“partial”	indicates	that	effects	other	than	the	one	of	interest	have	
been	statistically	removed	or	“partialled	out”.	For	simplicity,	this	text	will	refer	only	to	h2	even	when	the	
measure	is	more	fully	expressed	as	partial	h2.	
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noting	that	they’re	the	squared	values	of	the	rules	of	thumb	for	r,	which	are	evenly	spaced	
(.10	=	small,	.30	=	medium,	and	.50	=	large).	Squaring	these	rule-of-thumb	values	for	r	
yields	r2	=	.01,	.09,	and	.25.	It	turns	out	that	r2	is	defined	in	the	same	way	as	h2,	the	
proportion	of	variance	in	the	dependent	variable	that	can	be	explained	by	the	independent	
variable.	Thus,	the	rules	of	thumb	for	interpreting	h2	are	the	same	as	those	for	interpreting	
r2.	And	these	are	most	easily	remembered	as	the	rules	of	thumb	for	r	squared.	
	 As	will	be	the	case	for	df,	the	formulas	for	h2	will	not	be	presented	in	the	following	
chapters	on	ANOVA	models.	Instead,	we’ll	obtain	h2	from	computer	output.	
	 Just	as	you	should	always	report	the	value	of	Cohen’s	d	following	the	results	of	a	t	test,	
you	should	always	report	the	value	of	h2	following	the	results	of	an	F	test.	If	you	then	
proceed	to	compare	specific	conditions	using	a	post-hoc	test,	you	can	use	d	as	a	measure	of	
effect	size	for	some	or	all	of	these.	This	is	optional	but	it	can	be	helpful.	For	example,	you	
might	report	the	value(s)	of	d	for	one	or	more	comparisons	of	special	interest	or	
importance,	or	you	might	report	that	all	values	of	d	were	less	than	(or	greater	than)	a	
particular	value	to	summarize	how	small	(or	large)	all	of	the	differences	were.	

Extending Beyond One Factor 
	 The	kind	of	ANOVA	introduced	above	can	be	used	for	a	between-subjects	design,	like	
the	treatment	study	in	which	subjects	were	assigned	to	different	conditions,	or	a	within-
subjects	design	in	which	the	same	subjects	are	measured	in	more	than	one	condition.	Just	
like	with	t	tests,	when	the	design	is	between-subjects	we	use	an	independent	groups	
ANOVA	and	when	the	design	is	within-subjects	we	use	a	related	samples	ANOVA.	These	
two	ANOVA	models	will	be	described	more	fully	in	the	next	two	chapters.	
	 Suppose	that	our	clinical	scientist	wanted	to	examine	not	only	differences	across	three	
treatment	conditions,	but	also	differences	across	men	and	women.	This	would	be	a	
factorial	design	because	it	incorporates	more	than	one	factor,	or	independent	variable.	
Factor	A	is	treatment	condition,	and	it	has	three	levels	(the	three	treatments).	Factor	B	is	
gender,	and	it	has	two	levels	(men	and	women).	This	is	an	example	of	a	3	(treatment)	´	2	
(gender)	factorial	design,	which	therefore	has	a	total	of	3	´	2	=	6	cells,	or	conditions,	in	the	
full	design.33	This	new	terminology—factors,	levels,	and	cells—is	reserved	for	factorial	
designs.	In	single-factor	designs,	we	refer	more	simply	to	the	conditions	in	the	study	
without	labeling	them	as	levels	of	a	factor	or	cells	in	a	design.	
	 To	analyze	the	data	from	a	factorial	design	we	use	a	factorial	ANOVA.	Whereas	an	
independent	groups	ANOVA	or	a	related	samples	ANOVA	will	provide	a	single	F	test,	a	
factorial	ANOVA	will	provide	more	than	one	F	test.	Some	of	these	will	test	for	what	are	
called	main	effects,	and	some	for	interaction	effects.		
	 A	main	effect	refers	to	differences	across	the	levels	of	one	factor,	collapsing	across	the	
other	factor(s)	in	the	design.	For	example,	to	test	for	a	main	effect	of	treatment	conditions,	
the	clinical	scientist	would	pool	the	results	for	men	and	women.	Then,	to	test	for	a	main	
effect	of	gender,	results	for	the	three	treatments	would	be	pooled.	For	each	factor	in	the	

																																																								
33	It’s	arbitrary	which	factor	is	labeled	as	A	and	which	as	B.	This	design	could	just	as	easily	be	described	as	a	2	
(gender)	´	3	(treatment)	factorial	ANOVA.	Either	way,	it’s	a	design	with	two	factors,	one	with	three	levels	and	
one	with	two	levels,	for	a	total	of	six	cells.	
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design,	a	factorial	ANOVA	will	provide	an	F	test	to	determine	whether	that	main	effect	is	
statistically	significant.	
	 An	interaction	effect	is	the	joint	influence	of	two	or	more	factors.	If	the	effect	of	
treatment	depends	on	gender	(e.g.,	if	the	treatment	is	more	effective	for	women	than	for	
men),	this	would	be	an	interaction	of	factors	A	and	B.	The	factorial	ANOVA	would	provide	
an	F	test	to	determine	whether	this	interaction	effect	is	statistically	significant.	If	there	are	
more	than	two	factors,	there	will	be	multiple	F	tests	for	potential	interactions.	For	example,	
with	three	factors	A,	B,	and	C,	a	factorial	ANOVA	would	test	for	interactions	labeled	as	A	´	
B,	A	´	C,	and	B	´	C	(referred	to	as	two-way	interactions	because	they	involve	two	factors)	as	
well	as	A	´	B	´	C	(a	three-way	interaction).		
	 In	principle,	there’s	no	limit	to	how	complex	a	factorial	design	we	can	accommodate	
with	a	corresponding	ANOVA	model.	You	can	include	two,	three,	four,	or	more	factors,	each	
of	which	can	have	two,	three,	four,	or	more	levels.	Also,	each	factor	can	be	either	between-
subjects	or	within-subjects,	and	you	can	mix	and	match	these	types	of	factors	in	the	design.		
	 Though	there’s	no	theoretical	limit	to	how	complex	a	factorial	design	we	can	conceive,	
there	are	practical	limits	to	what	we	can	implement.	Each	between-subjects	factor	poses	
the	difficulty	of	recruiting	enough	subjects	to	flesh	out	all	the	levels	(separate	groups)	of	
that	factor.	Each	within-subjects	factor	increases	the	burden	on	subjects	who	must	be	
tested	repeatedly	in	all	the	levels	(conditions)	of	that	factor.	As	the	number	of	factors,	
levels,	and	cells	in	the	design	increases,	these	challenges	multiply.	There	is	a	trade-off	
between	the	complexity	of	the	design	you	might	like	(e.g.,	more	complex	designs	can	
address	more	research	questions	and/or	control	for	more	variables	of	interest)	and	your	
ability	to	actually	perform	that	study	well	(e.g.,	obtaining	sufficient	data	within	each	cell	of	
the	design).	

Problems 
1.	 If	you	have	a	study	with	more	than	two	conditions,	why	is	it	better	to	perform	a	single	F	

test	rather	than	a	series	of	t	tests?	
2.	 When	you	perform	an	F	test	to	compare	more	than	two	conditions	and	you	reject	H0,	

what’s	ambiguous	about	this	conclusion?	How	is	this	ambiguity	resolved?	

3.	 Why	do	we	need	to	report	two	df	values	for	an	F	test,	but	only	one	df	value	for	a	t	test?	
4.	 Suppose	you’re	reading	a	research	paper	and	the	authors	report	a	negative	F	ratio.	Why	

can	you	be	certain	that	they’ve	either	calculated	or	reported	this	incorrectly?	

5.	 According	to	Cohen’s	rules	of	thumb,	which	effect	is	larger:	d	=	0.30	or	h2	=	.30?	
Following	APA	style,	(a)	why	do	we	report	d	with	a	leading	0	but	h2	without	one	and	(b)	
why	is	the	letter	h	from	the	statistic	h2	not	italicized?	

*	*	*	
	 The	following	problems	refer	to	a	study	of	distracted	driving.	Using	a	driving	simulator,	
each	subject	will	be	tested	under	three	conditions:	While	maintaining	a	conversation	on	a	
cell	phone,	while	maintaining	a	conversation	with	a	passenger,	and	with	no	conversation	
taking	place.	Dr.	Flurpple	will	recruit	young	adults	(less	than	20	years	old)	and	older	adults	
(between	40	and	60)	to	test	for	age	differences.	The	dependent	variable	will	be	the	number	
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of	errors	made	while	driving	(e.g.,	speeding,	tailgating,	failure	to	stop,	veering	out	of	the	
driving	lane,	crashing	into	any	object).	

6.	 What	are	the	factors	in	this	study’s	design?	Indicate	whether	each	is	a	between-subjects	
or	a	within-subjects	factor,	and	name	its	levels.	

7.	 How	many	cells	are	there	in	the	design?	

8.	 How	many	F	tests	will	the	factorial	ANOVA	provide?	What	will	each	one	test?	
*	*	*	

	 For	each	of	the	following	problems,	determine	what	statistical	test	should	be	performed	
and	explain	why	this	is	an	appropriate	selection.	The	range	of	tests	to	consider	includes	the	
z	test,	one	sample	t	test,	related	samples	t	test,	independent	groups	t	test,	independent	
groups	ANOVA,	related	samples	ANOVA,	and	factorial	ANOVA.	
9.	 A	demographer	working	for	the	U.S.	Census	Bureau	wants	to	compare	salaries	for	urban	

vs.	rural	areas.	She	gets	a	sample	of	psychologists,	some	who	live	in	urban	areas	and	
some	who	live	in	rural	areas.	Do	earnings	differ	across	these	areas?	

10.	First-year	college	students	were	surveyed	about	how	much	they	liked	their	roommates	
at	three	points	in	time:	within	five	minutes	of	meeting	them,	after	the	first	week	of	
classes,	and	at	the	end	of	the	semester.	Ratings	were	made	on	a	7-point	Likert	scale.	
Does	degree	of	liking	change	over	the	course	of	the	semester?	

11.	A	clinical	psychologist	wondered	whether	adults	with	attention	deficit	hyperactivity	
disorder	(ADHD)	had	reflexes	that	differed	in	speed	from	those	of	the	general	
population.	She	located	a	test	of	reaction	time	that	was	normed	on	adults	in	the	U.S.	(μ	=	
200	msec).	From	treatment	centers	in	her	home	state,	a	random	sample	of	141	adults	
diagnosed	with	ADHD	were	tested	for	reaction	time	(M	=	220,	SD	=	27).	Do	adults	with	
ADHD	differ	in	reaction	time	from	the	general	population?	

12.	Each	child	in	the	4th	grade	at	a	large	elementary	school	is	classified	by	the	teacher	as	
predominantly	right-handed,	left-handed,	or	ambidextrous.	The	children’s	art	teachers	
rate	their	artistic	ability	on	a	10-point	scale.	Does	artistic	ability	differ	by	handedness?	

13.	A	nutritionist	wanted	to	find	out	if	coffee	and	tea,	as	served	in	restaurants,	differed	in	
caffeine	content.	She	went	to	30	restaurants,	ordered	coffee	and	tea	in	each	one,	and	
had	the	caffeine	content	of	each	beverage	tested.	Do	these	servings	of	coffee	and	tea	
differ	in	caffeine	levels?	

14.	A	developmental	psychologist	is	interested	in	the	study	of	aggression.	She	observes	
aggressive	behavior	on	school	playgrounds	to	test	for	gender	differences	in	both	
physical	and	verbal	aggression.	Does	the	level	of	aggression	differ	by	gender,	by	type	of	
aggression,	or	both?	

15.	A	scientific	supply	company	has	developed	a	new	breed	of	lab	rat,	which	it	claims	
weighs	the	same	as	the	classic	white	rat	(μ	=	485	grams,	σ	=	50	grams).	A	researcher	
obtained	a	sample	of	76	of	the	new	breed	of	rats,	weighed	them,	and	found	M	=	515	
grams.	Is	the	company’s	claim	true?	

*	*	*	
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	 The	following	problems	refer	to	the	following	experiment.	A	total	of	24	office	workers	
were	given	the	chance	to	pay	$1	for	a	lottery	ticket	for	a	prize	of	$25.	One	half	of	all	tickets	
came	with	a	random	number	already	assigned,	the	other	half	were	blank	such	that	their	
purchasers	could	choose	and	write	their	own	ticket	numbers.	Subjects	were	randomly	
assigned	to	conditions.	After	all	tickets	were	sold,	the	researcher	approached	each	subject	
individually	to	buy	back	the	ticket.	He	or	she	was	told	that	someone	else	wanted	to	enter	
the	lottery	but	there	were	no	more	tickets,	so	the	researcher	would	pay	what	it	takes	to	buy	
back	this	ticket	to	offer	it	to	the	newcomer.	The	researchers	recorded	how	much	each	
subject	charged	to	sell	back	his	or	her	ticket.	Tickets	were	purchased	from	subjects	at	one	
of	three	different	times:	(1)	immediately	after	originally	selling	the	ticket,	(2)	the	next	day,	
or	(3)	just	before	drawing	the	winning	lottery	number	at	the	end	of	the	week.	Subjects	
were	randomly	assigned	to	conditions.	

16.	What	is	the	dependent	variable?	What	is	its	scale	of	measurement?	

17.	What	are	the	factors	in	this	study’s	design?	Indicate	whether	each	is	a	between-subjects	
or	a	within-subjects	factor,	and	name	its	levels.	

18.	How	many	cells	are	there	in	the	design?	

19.	How	many	F	tests	will	the	factorial	ANOVA	provide?	What	will	each	one	test?	
*	*	*	

	 For	each	of	the	following	problems,	determine	what	statistical	test	should	be	performed	
and	explain	why	this	is	an	appropriate	selection.	The	range	of	tests	to	consider	includes	the	
z	test,	one	sample	t	test,	related	samples	t	test,	independent	groups	t	test,	independent	
groups	ANOVA,	related	samples	ANOVA,	and	factorial	ANOVA.	
20.	In	1997,	Nabisco	came	out	with	a	clever	advertising	campaign,	the	Chips	Ahoy	

Challenge.	Nabisco	guaranteed	that	there	were	more	than	1,000	chocolate	chips	in	
every	bag,	and	they	challenged	consumers	to	count.	Suppose	25	people	go	to	the	trouble	
of	counting	the	chips	in	one	bag	apiece.	Do	their	findings	statistically	significantly	refute	
Nabisco’s	claim?	

21.	A	clinical	psychologist	wanted	to	compare	three	treatments	for	Generalized	Anxiety	
Disorder	(GAD).	She	put	an	ad	in	the	local	paper	to	find	people	with	GAD.	Based	on	
severity	of	symptoms,	she	matched	the	volunteers	for	her	study	into	triads	and	
randomly	assigned	each	of	the	matched	cases	to	one	of	the	three	treatments.	Outcomes	
were	assessed	individually	by	a	clinician	blind	to	treatment	assignments.	Are	the	
treatments	equally	effective?	

22.	An	investigator	wonders	whether	the	reduced	mental	alertness	due	to	sleep	
deprivation	can	be	counteracted	by	consuming	caffeine.	Three	groups	of	volunteers	are	
subjected	to	varying	amounts	of	sleep	deprivation	(0	hours,	1	hour,	or	2	hours).	One-
half	of	all	volunteers	is	given	a	standardized	dose	of	caffeine,	the	other	half	is	not.	Does	
mental	alertness	differ	by	sleep	deprivation,	caffeine	intake,	or	both?	

23.	A	developmental	psychologist	wondered	if	birth	order	had	an	impact	on	academic	
performance.	She	found	families	with	two	children	and	obtained	the	high	school	GPA	of	
each	child.	Is	there	a	difference	in	GPA	between	first-born	and	second-born	children?	
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24.	A	behavioral	economist	wonders	whether	portion	sizes	influence	weight	change.	Rather	
than	performing	a	one-shot	experiment	in	the	laboratory,	she	arranges	for	dining	halls	
on	three	college	campuses	to	systematically	vary	their	portion	sizes	for	one	full	
semester.	One	serves	small	portions,	another	serves	medium-sized	portions,	and	the	
third	serves	large	portions.	Students	who	regularly	eat	in	these	dining	halls	are	asked	to	
weigh	themselves	at	the	beginning	and	the	end	of	the	semester,	and	their	change	in	
weight	is	the	dependent	variable.	Does	portion	size	affect	weight	change?	

25.	Across	U.S.	cities,	the	average	vacancy	rate	for	apartments	is	μ	=	10%	(σ	=	4.6%).	An	
urban	studies	major	obtained	a	sample	of	15	rust-belt	cities	and	found	that	the	average	
vacancy	rate	was	M	=	13.3%.	Does	the	vacancy	rate	for	these	cities	differ	from	the	U.S.	
average?	

26.	An	exercise	physiologist	classifies	people—on	the	basis	of	their	body	mass	index,	heart	
rate,	and	lung	capacity—as	above	or	below	average	in	terms	of	fitness.	He	then	directs	
the	same	people	to	walk	on	a	treadmill,	individually,	at	an	increasing	speed	until	they	
can	no	longer	walk.	The	speed	when	a	person	maxes	out	is	the	dependent	variable.	Is	
there	a	difference	in	maximum	walking	speed	based	on	fitness	level?	

Problems 1 – 15 are due at the beginning of class. 
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12. Independent Groups ANOVA 

Overview 
	 The	independent	groups	ANOVA	extends	the	independent	groups	t	test	to	between-
subjects	research	designs	that	include	more	than	two	conditions.	This	chapter	describes	
the	procedure	for	performing	and	reporting	the	results	of	the	F	test	and,	if	necessary,	a	
post-hoc	test	for	multiple	comparisons.	

The ANOVA Model and the F Test 
	 Consider	a	study	designed	to	examine	whether	college	students	tend	to	score	higher	on	
verbal,	quantitative,	or	spatial	tests	of	cognitive	ability,	with	10	students	randomly	
assigned	to	take	each	type	of	test.	The	30	scores	(3	conditions	´	10	subjects	apiece	=	30)	
are	shown	below:	

	
	 We	could	perform	a	series	of	three	independent	groups	t	tests	to	compare	all	conditions	
to	one	another	(i.e.,	verbal	vs.	quantitative,	verbal	vs.	spatial,	and	quantitative	vs.	spatial),	
but	this	would	increase	the	experimentwise	Type	I	error	rate	well	above	our	desired	a	
level.	Instead,	we	can	use	an	independent	groups	ANOVA	to	compare	scores	across	all	three	
conditions	in	a	single	F	test	that	holds	a	to	our	desired	level.	The	null	and	alternative	
hypotheses	can	be	expressed	as	follows:	

	 	 H0:	µ1	=	µ2	=	µ3	
	 	 H1:	~(µ1	=	µ2	=	µ3)	

	 Testing	the	null	hypothesis	involves	calculating	an	F	ratio.	When	subjects	belong	to	
independent	groups,	the	total	variance	on	the	dependent	variable	can	be	split	into	two	
sources.	The	systematic	source	of	variance	is	between	groups	and	the	error	variance	is	
what	remains	within	groups.	Between-groups	variance	is	due	to	differences	across	
conditions.	In	this	case,	that	would	indicate	that	subjects	perform	differently	on	the	verbal,	
quantitative,	and	spatial	tests.	Within-groups	variance	is	due	to	any	other	factors,	such	as	
individual	differences	(i.e.,	people	differ	in	their	overall	levels	of	cognitive	ability)	and	
measurement	error	(i.e.,	tests	of	cognitive	ability	are	not	perfectly	reliable).	Schematically,	
here’s	how	the	independent	groups	ANOVA	partitions	the	variance:	
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	 The	F	ratio	for	an	independent	groups	ANOVA	is	calculated	as	the	systematic	variance	
(between	groups)	divided	by	the	error	variance	(within	groups).	The	critical	region	for	the	
F	test	is	based	on	the	a	level	(usually	.05)	and	the	df.	There	are	two	df	for	any	F	test,	one	
relating	to	the	number	of	conditions	and	one	relating	to	sample	size.	For	an	independent	
groups	ANOVA,	the	df	are	calculated	as	k	–	1	(where	k	is	the	number	of	groups	being	
compared)	and	N	–	k	(where	N	is	the	number	of	subjects).	In	this	case,	the	df	would	be	3	–	1	
=	2	and	30	–	3	=	27.	You	can	get	the	df	from	computer	output.	
	 You	can	consult	a	table	of	F	values	to	determine	whether	the	F	ratio	calculated	from	the	
data	falls	in	the	critical	region,	but	it’s	easier	to	obtain	the	p	value	from	computer	output	
and	compare	this	to	the	a	level.	As	usual,	if	p	<	a	you	reject	H0,	otherwise	you	retain	H0.	For	
example,	the	F	ratio	for	the	cognitive	ability	data	presented	earlier	is	not	statistically	
significant	(p	=	.410,	which	is	larger	than	a	=	.05).	We	would	retain	H0,	and	that’s	the	end	of	
the	analysis.	

Multiple Comparisons 
	 Whenever	we	reject	H0	and	conclude	there	is	some	difference	between	conditions,	this	
gives	us	license	to	make	multiple	comparisons	to	determine	which	conditions	differ	from	
one	another.	To	do	this,	you	can	use	a	post-hoc	test	such	as	Tukey’s	HSD.	The	first	step	is	to	
calculate	a	threshold	value	for	statistical	significance,	and	the	second	step	is	to	make	all	
pairwise	comparisons	of	means	to	determine	which	differences	exceed	this	threshold.	
Here,	too,	we’ll	rely	on	computer	output	to	perform	Tukey’s	HSD	and	indicate	which	
conditions	differ	from	one	another	statistically	significantly.	

Effect Size 
	 The	measure	of	effect	size	for	an	independent	groups	ANOVA	is	h2,	which	indicates	the	
proportion	of	variance	in	the	dependent	variable	that	can	be	explained	by	the	independent	
variable.	This	can	be	obtained	from	computer	output.	Cohen’s	rules	of	thumb	for	
interpreting	the	size	of	h2	are	that	.01	=	small,	.09	=	medium,	and	.25	=	large.	For	the	
cognitive	ability	data,	h2	=	.06,	which	falls	between	a	small	and	medium	effect	size.	
	 If	you	like,	you	can	also	report	one	or	more	values	of	Cohen’s	d	to	indicate	the	size	of	
pairwise	comparisons.	This	measure	would	be	calculated	in	the	same	way	as	for	an	

Total =	variation	
across	all	30	scores

Between =	
variation	across	
total	scores	for	the	
3	types	of	test

Within =	variation	
across	10	scores	
for	each	type	of	

test
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independent	groups	t	test:	The	numerator	is	the	difference	between	Ms	for	two	groups	and	
the	denominator	is	the	pooled	SD	for	those	groups	(weighted	by	df	if	groups	are	of	unequal	
sizes).	

Using SPSS 
	 To	perform	an	independent	groups	ANOVA	in	SPSS,	you	first	enter	your	data	into	two	
separate	variables	(columns),	here	labeled	“Test”	(coded	as	1	=	verbal,	2	=	quantitative,	3	=	
spatial)	and	“Score”	(each	subject’s	test	score).	Note	that	you	have	to	create	a	variable	that	
indicates	group	membership	for	each	subject,	and	the	dependent	variable	is	placed	in	a	
separate	column	for	all	subjects.	The	full	data	set	didn’t	fit	onto	the	screen,	but	here’s	what	
the	beginning	of	the	data	file	looks	like:	

	
	 Next,	you	use	the	following	command:	
	 	 unianova	score	by	test	
	 	 /posthoc	test	(tukey)	
	 	 /print	desc	etasq	
	 On	the	first	line,	you	provide	the	dependent	variable	(here,	“Score”)	and	group	
membership	variable	(here,	“Test”).	On	the	second	line,	you	indicate	the	group	membership	
variable	again.	The	third	line	requests	descriptive	statistics	and	h2	as	an	effect	size	
measure,	and	you	don’t	need	to	change	this	line	at	all.		
	 SPSS	will	provide	many	tables	of	output,	but	you	can	ignore	all	but	three	of	them.	I	
recommend	deleting	the	ones	you	don’t	need	because	some	of	them	look	similar	to	those	
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you	do	need	and	it’s	easy	to	mistakenly	read	and	report	output	from	the	wrong	table.	The	
first	table,	labeled	“Descriptive	Statistics”,	provides	the	M	and	SD	for	each	condition:	

	
	 The	second	table,	labeled	“Tests	of	Between-Subjects	Effects”,	provides	the	F	value,	df,	p	
value	(labeled	as	“Sig.”),	and	h2	(labeled	as	“Partial	Eta	Squared”).	Use	the	middle	row,	
labeled	with	your	group	membership	variable	(here,	“Test”),	to	find	the	F	value	(here,	
0.92),	the	first	df	value	(here,	2),	p	the	value	(here,	.410),	and	h2	(here,	.06).	Use	the	next	
row,	labeled	“Error”,	to	find	the	second	df	value	(here,	27).	

	
	 The	third	table,	labeled	“Homogeneous	Subsets”,	provides	the	results	of	the	Tukey’s	
HSD	post-hoc	test.	The	way	the	table	works	is	that	any	conditions	whose	means	appear	in	
the	same	subset	do	not	differ	statistically	significantly.	In	this	case,	all	conditions’	means	
are	in	a	single	subset,	hence	there	are	no	significant	differences	between	conditions.		

	
	 If	there	are	differences,	there	will	be	two	or	more	subsets	in	this	table.	To	illustrate,	I	
modified	the	cognitive	ability	data	to	introduce	significant	differences.	Below	are	the	
homogeneous	subsets	results:		
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	 For	these	modified	data,	the	results	show	no	significant	difference	between	the	verbal	
and	quantitative	tests;	their	means	appear	together	in	subset	1.	Likewise,	there	was	no	
significant	difference	between	the	quantitative	and	spatial	tests;	their	means	appear	
together	in	subset	2.	There	was,	however,	a	significant	difference	between	verbal	and	
spatial	tests;	their	means	never	appear	in	the	same	subset.	

APA Style 
	 When	you	retain	H0,	you	can	report	the	results	of	an	independent	groups	ANOVA	in	a	
single	sentence.	You	can	include	the	M	and	SD	for	each	condition	if	you	like,	but	that’s	
considered	optional	for	results	that	are	not	statistically	significant.	Here’s	what	the	report	
might	look	like	for	the	original	cognitive	ability	data:	

	 Groups	of	10	college	students	apiece	took	verbal,	quantitative,	and	spatial	tests	of	

cognitive	ability,	and	there	was	no	statistically	significant	difference	in	performance	across	

conditions,	F(2,	27)	=	0.92,	p	=	.410,	h2	=	.06.	

	 When	you	reject	H0,	you	begin	by	reporting	the	results	of	the	F	test	in	a	single	sentence	
and	then	follow	this	with	the	post-hoc	test	results.	Note	that	you	should	not	only	include	
the	M	and	SD	for	each	condition,	but	also	specify	the	a	level	(usually	.05)	and	procedure	
used	to	make	multiple	comparisons	(we’ll	be	using	Tukey’s	HSD	post-hoc	tests).	When	you	
report	multiple	comparisons,	make	sure	you	fully	review	which	conditions	differed	
significantly	from	one	another	and	which	did	not.	Here’s	what	the	report	might	look	like	for	
the	cognitive	ability	data	after	I	modified	the	scores	to	introduce	significant	differences:	

	 Groups	of	10	college	students	apiece	took	verbal	(M	=	35.50,	SD	=	7.46),	quantitative	(M	

=	48.10,	SD	=	16.41),	and	spatial	(M	=	61.60,	SD	=	15.81)	tests	of	cognitive	ability,	and	there	

was	a	statistically	significant	difference	in	performance	across	conditions,	F(2,	27)	=	8.89,	p	

=	.001,	h2	=	.40.	A	post-hoc	comparison	of	means	using	Tukey’s	HSD	with	a	=	.05	revealed	
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that	scores	were	significantly	higher	on	the	spatial	test	than	on	the	verbal	test.	Scores	on	

the	quantitative	test	were	not	significantly	different	from	those	on	either	of	the	other	tests.	

Problems 
	 Each	of	24	subjects	is	randomly	assigned	to	consume	either	0,	2,	or	4	oz.	of	alcohol	and	
then	take	a	test	on	a	driving	simulator.	The	dependent	variable	is	the	number	of	errors	
made	while	driving	(e.g.,	speeding,	tailgating,	failure	to	stop,	veering	out	of	the	driving	lane,	
crashing	into	any	object).	Here	are	the	data:	

	 0	oz.	condition:	1,	5,	3,	8,	4,	6,	2,	7	

	 2	oz.	condition:	3,	6,	2,	10,	7,	5,	9,	4	
	 4	oz.	condition:	6,	8,	4,	13,	9,	5,	10,	11	

	 These	data	were	entered	into	SPSS	like	this:	

	
	 An	independent	groups	ANOVA	was	performed	using	the	following	command:	

	 	 unianova	errors	by	alcohol	
	 	 /posthoc	alcohol	(tukey)	
	 	 /print	desc	etasq	
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	 The	three	tables	of	output	you’d	need	to	examine	are	shown	below:	

	

	

	
1.	 What	is	the	researcher’s	hypothesis?	
2.	 Why	would	you	perform	an	ANOVA	rather	than	a	series	of	t	tests	to	analyze	these	data?	

3.	 What	are	the	statistical	hypotheses	(H0	and	H1)?	

4.	 Why	don’t	you	need	to	decide	whether	to	perform	a	2-tailed	or	a	1-tailed	test?	

5.	 What	are	the	values	of	F,	df	(there	are	two	df	values),	p,	and	h2?	Use	the	SPSS	output	to	
find	these.	

6.	 What	is	your	statistical	decision:	Would	you	reject	or	retain	H0?	

7.	 What	is	the	size	of	the	effect,	using	h2?	According	to	the	usual	rules	of	thumb,	how	
would	you	describe	this?	

8.	 Which,	if	any,	pairs	of	conditions	differ	statistically	significantly	from	one	another?	How	
can	you	tell?	

9.	 Report	the	results	in	APA	style.	Include	the	F	test	and,	if	necessary,	post-hoc	test	results.	

*	*	*	
	 Using	the	parole	data	introduced	earlier,	we	can	test	whether	there	are	differences	in	
scores	on	the	Lifetime	Criminality	Screening	Form	(LCSF)	across	education	levels.	Subjects	
were	classified	into	three	levels	based	on	how	much	schooling	they	completed:	less	than	
high	school,	some	high	school,	high	school	diploma	or	further.	The	data	were	entered	into	
SPSS	(the	data	file	is	too	large	to	show	here),	and	the	three	tables	of	output	you’d	need	to	
examine	are	shown	below:	
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10.	What	is	the	researcher’s	hypothesis?	
11.	What	are	the	statistical	hypotheses	(H0	and	H1)?	

12.	What	are	the	values	of	F,	df	(there	are	two	df	values),	p,	and	h2?	Use	the	SPSS	output	to	
find	these.	

13.	What	is	your	statistical	decision:	Would	you	reject	or	retain	H0?	

14.	What	is	the	size	of	the	effect,	using	h2?	According	to	the	usual	rules	of	thumb,	how	
would	you	describe	this?	

15.	Which,	if	any,	pairs	of	conditions	differ	statistically	significantly	from	one	another?	How	
can	you	tell?	

16.	Report	the	results	in	APA	style.	Include	the	F	test	and,	if	necessary,	post-hoc	test	results.	
*	*	*	

17.	Using	SPSS,	enter	the	cognitive	ability	data	from	this	chapter.	Follow	the	instructions	in	
the	text	for	how	to	organize	the	data	file	and	enter	the	command	to	perform	an	
independent	groups	ANOVA.	Check	that	your	results	match	what’s	shown	in	the	text.	

18.	Using	SPSS,	enter	the	data	from	the	first	set	of	problems	(on	the	influence	of	alcohol	on	
driving	performance).	Follow	the	instructions	in	the	text	for	how	to	organize	the	data	
file	and	enter	the	command	to	run	an	independent	groups	ANOVA.	Check	that	your	
results	match	what	you	found	earlier.		

Problems 1 – 9 are due at the beginning of class. 
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13. Related Samples ANOVA 

Overview 
	 The	related	samples	ANOVA	extends	the	related	samples	t	test	to	within-subjects	
research	designs	that	include	more	than	two	conditions.	This	chapter	describes	the	
procedure	for	performing	and	reporting	the	results	of	the	F	test	and,	if	necessary,	a	post-
hoc	test	for	multiple	comparisons.	

The ANOVA Model and the F Test 
	 Let’s	revisit	the	study	from	the	last	chapter.	Rather	than	having	30	students	complete	
either	a	verbal,	quantitative,	or	spatial	test	of	cognitive	ability,	let’s	suppose	that	10	
students	complete	all	three	tests.	This	is	a	much	better	research	design	because	it	allows	us	
to	remove	individual	differences	from	the	analysis,	which	will	greatly	increase	statistical	
power.	To	illustrate	how	this	works,	we’ll	use	the	same	30	test	scores.	In	the	summary	of	
the	data	shown	below,	the	means	shown	in	the	right	margin	provide	a	measure	of	the	
overall	cognitive	ability	of	each	of	the	10	students:	

	 	
	 We	could	perform	a	series	of	three	related	samples	t	tests	to	compare	all	conditions	to	
one	another	(i.e.,	verbal	vs.	quantitative,	verbal	vs.	spatial,	and	quantitative	vs.	spatial),	but	
this	would	increase	the	experimentwise	Type	I	error	rate	well	above	our	desired	a	level.	
Instead,	we	can	use	a	related	samples	ANOVA	to	compare	scores	across	all	three	conditions	
in	a	single	F	test	that	holds	a	to	our	desired	level.	The	null	and	alternative	hypotheses	can	
be	expressed	as	follows:	

	 	 H0:	µ1	=	µ2	=	µ3	
	 	 H1:	~(µ1	=	µ2	=	µ3)	

	 Testing	the	null	hypothesis	involves	calculating	an	F	ratio.	When	subjects	are	tested	
repeatedly,	the	total	variance	on	the	dependent	variable	can	be	split	into	several	sources.	
The	first	division	is	between	the	systematic	source	of	variance,	between	conditions,	and	
the	variance	is	what	remains	within	conditions.	Between-conditions	variance	is	due	to	
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differences	across	conditions.	In	this	case,	that	would	indicate	that	subjects	perform	
differently	on	the	verbal,	quantitative,	and	spatial	tests.	Within-conditions	variance	can	be	
divided	further	into	two	components,	subjects	and	error.	Subjects	variance	refers	to	
individual	differences	(i.e.,	people	differ	in	their	overall	levels	of	cognitive	ability),	and	
error	refers	to	any	remaining	sources	of	unexplained	variance,	such	as	measurement	error	
(i.e.,	tests	of	cognitive	ability	are	not	perfectly	reliable).	Schematically,	here’s	how	the	
related	samples	ANOVA	partitions	the	variance:	

	
	 The	first	level,	splitting	total	variance	into	between	and	within,	is	the	same	as	for	an	
independent	groups	ANOVA.	The	second	level,	splitting	the	variance	within	conditions	into	
subjects	and	error,	is	only	possible	for	a	related	samples	ANOVA.	Because	we	now	have	a	
measure	of	individual	differences—subjects’	average	scores	across	conditions—we	can	
remove	this	from	the	error	variance.	In	the	case	of	the	cognitive	ability	data,	here’s	a	way	to	
represent	what	it	means	to	remove	individual	differences	from	the	analysis:	

	

Total =	variation	
across	all	30	scores

Between =	
variation	across	
total	scores	for	the	
3	types	of	test

Within =	variation	
across	10	scores	for	
each	type	of	test

Subjects =	variation	
across	total	scores	
for	the	10	subjects

Error =	
unexplained	
variation	(e.g.,	
measurement	

error)
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	 This	summary	of	the	data	was	constructed	by	subtracting	each	subject’s	mean	score	
(the	value	shown	in	the	right	margin	in	the	original	data)	from	his	or	her	scores	on	each	of	
the	three	tests.	This	removes	individual	differences	in	overall	cognitive	ability.	Each	subject	
now	has	a	mean	score	of	0,	so	within	each	row	positive	scores	are	areas	of	relative	strength	
and	negative	scores	are	areas	of	relative	weakness.	When	the	point	of	the	research	is	to	
examine	differences	across	conditions,	it’s	a	great	help	to	remove	as	much	variation	within	
conditions	as	possible.	
	 Notice	that	when	you	examine	means	across	conditions,	the	differences	remain	the	
same.	For	example,	in	the	original	data	the	difference	between	the	verbal	and	spatial	
conditions	is	55.60	–	44.50	=	11.10,	and	in	the	transformed	data	the	difference	between	
these	conditions	is	5.20	–	(-5.90)	=	11.10.	Removing	individual	differences	has	no	effect	on	
the	focal	point	of	the	study:	Differences	across	conditions.		
	 What	shrinks	dramatically,	however,	is	the	variability	within	each	condition.	In	the	
original	data,	the	SDs	were	15.57,	21.57,	and	17.51	for	the	three	conditions,	and	the	total	
variance	(sum	of	the	squared	SDs)	is	1014.42.	In	the	transformed	data,	the	SDs	are	6.11,	
8.70,	and	6.53,	for	a	total	variance	of	only	155.62.	This	means	that	about	85%	of	all	the	
within-condition	variance	was	attributable	to	individual	differences,	and	only	15%	remains	
as	error	variance.	This	demonstrates	the	statistical	advantage	of	using	a	within-subjects	
design	and	a	related	samples	analysis	rather	than	a	between-subjects	design	and	an	
independent	groups	analysis.	The	related	samples	analysis	can	achieve	much	greater	
statistical	power	by	removing	individual	differences	from	the	error	variance.	
	 The	F	ratio	for	a	related	samples	ANOVA	is	calculated	as	the	systematic	variance	
(between	conditions)	divided	by	the	error	variance	(error).	The	critical	region	for	the	F	test	
is	based	on	the	a	level	(usually	.05)	and	the	df.	For	a	related	samples	ANOVA,	the	df	are	
calculated	as	k	–	1	(where	k	is	the	number	of	conditions	being	compared)	and	(N	–	1)	´	(k	–	
1)	(where	N	is	the	number	of	subjects).	In	this	case,	the	df	would	be	3	–	1	=	2	and	(10	–	1)	´	
(3	–	1)	=	18.	You	can	get	the	df	from	computer	output.	
	 You	can	consult	a	table	of	F	values	to	determine	whether	the	F	ratio	calculated	from	the	
data	falls	in	the	critical	region,	but	it’s	easier	to	obtain	the	p	value	from	computer	output	
and	compare	this	to	the	a	level.	As	usual,	if	p	<	a	you	reject	H0,	otherwise	you	retain	H0.	For	
example,	the	F	ratio	for	the	cognitive	ability	data	presented	earlier	is	statistically	significant	
(p	=	.036,	which	is	less	than	a	=	.05).	We	would	reject	H0.	
	 It’s	worth	emphasizing	that	these	cognitive	ability	data	are	the	same	scores	analyzed	in	
the	last	chapter.	When	treated	as	though	they’d	come	from	a	between-subjects	design,	the	
independent	groups	ANOVA	yielded	F	=	0.92	and	p	=	.410.	When	treated	as	though	they’d	
come	from	a	within-subjects	design,	the	related	samples	ANOVA	yielded	F	=	4.01	and	p	=	
.036.	This	substantial	difference	is	due	to	the	removal	of	individual	differences	from	the	
error	variance.	As	a	consequence	of	this,	what	was	formerly	a	nonsignificant	finding	has	
become	statistically	significant.	

Multiple Comparisons 
	 Whenever	we	reject	H0	and	conclude	there	is	some	difference	between	conditions,	this	
gives	us	license	to	make	multiple	comparisons	to	determine	which	conditions	differ	from	
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one	another.	To	do	this,	you	can	use	a	post-hoc	test	such	as	Tukey’s	HSD.	Unfortunately,	
SPSS	will	not	calculate	this	for	you.	Therefore,	the	procedure	will	be	shown	here.	
	 The	first	step	is	to	calculate	a	threshold	value	for	statistical	significance:	

	 	 HSD	=	q	´	sqrt(MSerror	/	N)	

	 The	value	of	q	can	be	found	in	a	table,	such	as	the	one	provided	in	Appendix	A.	You	need	
to	know	k,	the	number	of	conditions	being	compared,	and	the	df	related	to	sample	size	
(referred	to	as	dferror).	The	values	of	MSerror	and	N	can	be	found	in	the	SPSS	output.	
Specifically,	MSerror	appears	in	the	column	labeled	“Mean	Square”	and	the	row	labeled	
“Error”	in	the	table	labeled	“Tests	of	Within-Subjects	Effects”,	and	N	appears	in	the	table	
labeled	“Descriptive	Statistics”.	Using	the	table	in	Appendix	A	and	borrowing	from	the	
output	provided	below	in	the	section	on	using	SPSS,	here’s	what	this	calculation	looks	like	
for	the	cognitive	ability	data:	

	 	 HSD	=	3.61	´	sqrt(77.811	/	10)	=	10.070	

	 The	second	step	is	to	make	all	pairwise	comparisons	of	means	to	determine	which	
differences	exceed	this	threshold:	
	 	 Verbal	vs.	quantitative:		51.10	–	44.50	=	6.60,	which	is	<	HSD,	so	it’s	not	significant	
	 	 Quantitative	vs.	spatial:		55.60	–	51.10	=	4.50,	which	is	<	HSD,	so	it’s	not	significant	
	 	 Verbal	vs.	spatial:		55.60	–	44.50	=	11.10,	which	is	>	HSD,	so	it’s	significant	

Effect Size 
	 The	measure	of	effect	size	for	a	related	samples	ANOVA	is	h2,	which	indicates	the	
proportion	of	variance	in	the	dependent	variable	that	can	be	explained	by	the	independent	
variable.	This	can	be	obtained	from	computer	output.	Cohen’s	rules	of	thumb	for	
interpreting	the	size	of	h2	are	that	.01	=	small,	.09	=	medium,	and	.25	=	large.	For	the	
cognitive	ability	data,	h2	=	.31,	which	is	a	large	effect	size.	You	may	recall	that	when	the	
same	data	were	analyzed	using	an	independent	groups	ANOVA,	h2	=	.06.	The	effect	size	
increased	dramatically	after	removing	individual	differences	from	the	error	variance.	
	 If	you	like,	you	can	also	report	one	or	more	values	of	Cohen’s	d	to	indicate	the	size	of	
pairwise	comparisons.	This	measure	would	be	calculated	in	the	same	way	as	for	a	related	
samples	t	test:	The	numerator	is	the	difference	between	Ms	for	two	conditions	and	the	
denominator	is	the	pooled	SD	for	those	conditions.	

Using SPSS 
	 To	perform	a	related	samples	ANOVA	test	in	SPSS,	you	first	enter	your	data	into	
separate	variables	(columns)	representing	each	condition	in	the	study,	here	labeled	
“Verbal”,	“Quantitative”,	and	“Spatial”.	Here	are	the	data:	
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	 Next,	you	use	the	following	command:	
	 	 glm	verbal	quantitative	spatial	
	 	 /wsfactor	tests	(3)	
	 	 /print	desc	etasq	
	 	 /wsdesign		

	 On	the	first	line,	you	the	variables	representing	all	the	conditions	to	compare	(here,	
“Verbal”,	“Quantitative”,	and	“Spatial”).	On	the	second	line,	you	provide	a	label	for	your	
independent	variable	(here,	“Tests”)	and	indicate	in	parentheses	how	many	conditions	
there	are	(here,	3).	The	third	line	requests	descriptive	statistics	and	h2	as	an	effect	size	
measure,	and	you	don’t	need	to	change	this	line	at	all.	The	fourth	line	indicates	the	design	is	
within-subjects,	and	you	shouldn’t	change	this,	either.	
	 SPSS	will	provide	many	tables	of	output,	but	you	can	ignore	all	but	two	of	them.	I	
recommend	deleting	the	ones	you	don’t	need	because	some	of	them	look	similar	to	those	
you	do	need	and	it’s	easy	to	mistakenly	read	and	report	output	from	the	wrong	table.	The	
first	table,	labeled	“Descriptive	Statistics”,	provides	the	M	and	SD	for	each	condition:	

	
	 The	second	table,	labeled	“Tests	of	Within-Subjects	Effects”,	provides	the	F	value,	df,	p	
value	(labeled	as	“Sig.”),	and	h2	(labeled	as	“Partial	Eta	Squared”).	Use	the	top	row	of	the	
table	to	find	the	F	value	(here,	4.01),	the	first	df	value	(here,	2),	p	the	value	(here,	.036),	and	
h2	(here,	.31).	Use	the	first	row	in	the	section	labeled	“Error”	to	find	the	second	df	value	
(here,	18):	
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	 As	noted	above,	SPSS	does	not	perform	post-hoc	tests	for	a	related	samples	ANOVA.	If	
you	want	to	use	the	Tukey’s	HSD	procedure,	you’ll	need	to	do	this	by	hand,	as	illustrated	
earlier.	

APA Style 
	 When	you	retain	H0,	you	can	report	the	results	of	a	related	samples	ANOVA	in	a	single	
sentence.	You	can	include	the	M	and	SD	for	each	condition	if	you	like,	but	that’s	considered	
optional	for	results	that	are	not	statistically	significant.	The	last	chapter	shows	what	that	
kind	of	a	report	would	look	like.	
	 When	you	reject	H0,	you	begin	by	reporting	the	results	of	the	F	test	in	a	single	sentence	
and	then	follow	this	with	the	post-hoc	test	results.	Note	that	you	should	not	only	include	
the	M	and	SD	for	each	condition,	but	also	specify	the	a	level	(usually	.05)	and	procedure	
used	to	make	multiple	comparisons	(we’ll	be	using	Tukey’s	HSD	post-hoc	tests).	When	you	
report	on	multiple	comparisons,	make	sure	you	fully	review	which	conditions	differed	
significantly	from	one	another	and	which	did	not.	Here’s	what	the	report	might	look	like	for	
the	cognitive	ability	data:	

	 Each	of	10	college	students	took	three	tests	of	cognitive	ability,	and	there	was	a	

statistically	significant	difference	in	performance	across	tests,	F(2,	18)	=	4.01,	p	=	.036,	h2	=	

.31.	A	post-hoc	comparison	of	means	using	Tukey’s	HSD	with	a	=	.05	revealed	that	scores	

were	significantly	higher	on	the	spatial	test	(M	=	55.60,	SD	=	17.51)	than	on	the	verbal	test	

(M	=	44.50,	SD	=	15.57).	Scores	on	the	quantitative	test	(M	=	51.10,	SD	=	21.57)	were	not	

significantly	different	from	those	on	either	of	the	other	tests.	
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Problems 
	 Each	of	8	subjects	is	tested	on	a	driving	simulator	under	three	conditions,	namely	after	
consuming	either	0,	2,	or	4	oz.	of	alcohol.	The	order	of	conditions	is	counterbalanced.	The	
dependent	variable	is	the	number	of	errors	made	while	driving	(e.g.,	speeding,	tailgating,	
failure	to	stop,	veering	out	of	the	driving	lane,	crashing	into	any	object).	Here	are	the	data:	

	
	 These	data	were	entered	into	SPSS	like	this:	

	
	 A	related	samples	ANOVA	was	performed	using	the	following	command:	

	 	 glm	alc0	alc2	alc4	
	 	 /wsfactor	alcohol	(3)	
	 	 /print	desc	etasq	
	 	 /wsdesign		
	 The	two	tables	of	output	you’d	need	to	examine	are	shown	below:	
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1.	 What	is	the	researcher’s	hypothesis?	
2.	 Why	would	you	perform	an	ANOVA	rather	than	a	series	of	t	tests	to	analyze	these	data?	

3.	 Why	would	you	perform	a	related	samples	ANOVA	rather	than	an	independent	groups	
ANOVA?	

4.	 What	are	the	statistical	hypotheses	(H0	and	H1)?	

5.	 Why	don’t	you	need	to	decide	whether	to	perform	a	2-tailed	or	a	1-tailed	test?	

6.	 What	are	the	values	of	F,	df	(there	are	two	df	values),	p,	and	h2?	Use	the	SPSS	output	to	
find	these.	

7.	 What	is	your	statistical	decision:	Would	you	reject	or	retain	H0?	

8.	 What	is	the	size	of	the	effect,	using	h2?	According	to	the	usual	rules	of	thumb,	how	
would	you	describe	this?	

9.	 Which,	if	any,	pairs	of	conditions	differ	statistically	significantly	from	one	another?	
Perform	Tukey’s	HSD	using	a	=	.05	to	answer	this	question.	

10.	Report	the	results	in	APA	style.	Include	the	F	test	and,	if	necessary,	post-hoc	test	results.	

11.	How	do	the	results	of	this	analysis	compare	to	those	you	found	when	analyzed	the	same	
data	using	an	independent	groups	ANOVA?	(Compare	and	contrast	your	findings	with	
those	from	the	previous	problem	set.)	

*	*	*	

	 Using	the	parole	data	introduced	earlier,	we	can	test	whether	there	are	differences	in	
scores	on	three	of	the	Lifetime	Criminality	Screening	Form	(LCSF)	subscales:	
Irresponsibility,	Interpersonal	Intrusiveness,	and	Social	Rule	Breaking.	The	data	were	
entered	into	SPSS,	and	the	two	tables	of	output	you’d	need	to	examine	are	shown	below:	
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12.	What	is	the	researcher’s	hypothesis?	
13.	What	are	the	statistical	hypotheses	(H0	and	H1)?	

14.	What	are	the	values	of	F,	df	(there	are	two	df	values),	p,	and	h2?	Use	the	SPSS	output	to	
find	these.	

15.	What	is	your	statistical	decision:	Would	you	reject	or	retain	H0?	

16.	What	is	the	size	of	the	effect,	using	h2?	According	to	the	usual	rules	of	thumb,	how	
would	you	describe	this?	

17.	Which,	if	any,	pairs	of	conditions	differ	statistically	significantly	from	one	another?	
Perform	Tukey’s	HSD	using	a	=	.05	to	answer	this	question.	

18.	Report	the	results	in	APA	style.	Include	the	F	test	and,	if	necessary,	post-hoc	test	results.	

*	*	*	

19.	Using	SPSS,	enter	the	cognitive	ability	data	from	this	chapter.	Follow	the	instructions	in	
the	text	for	how	to	organize	the	data	file	and	enter	the	command	to	perform	a	related	
samples	ANOVA.	Check	that	your	output	matches	what’s	shown	in	the	text.	

20.	Using	SPSS,	enter	the	data	from	the	first	series	of	problems	(on	the	influence	of	alcohol	
on	driving	performance).	Follow	the	instructions	in	the	text	for	how	to	organize	the	
data	file	and	enter	the	command	to	run	a	related	samples	ANOVA.	Check	that	your	
results	match	what	you	found	earlier.	

Problems 1 – 11 are due at the beginning of class. 
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14. Factorial ANOVA 

Overview 
	 The	previous	two	chapters	extended	the	t	tests	for	independent	groups	and	related	
samples	to	research	designs	with	more	than	two	conditions.	The	final	way	that	we’ll	extend	
the	comparison	of	means	across	conditions	is	with	factorial	ANOVA	models.	By	including	
more	than	one	independent	variable,	or	factor,	in	the	analysis,	a	factorial	ANOVA	allows	us	
to	analyze	the	data	from	an	even	greater	range	of	research	designs.	Not	only	can	each	factor	
vary	along	two	or	more	levels,	but	also	it	can	be	either	between-subjects	or	within-subjects,	
and	these	types	of	factors	can	be	mixed	in	a	single	study.	
	 Purely	for	simplicity,	this	chapter	will	examine	only	factorial	ANOVAs	with	two	
between-subjects	factors.	Such	an	analysis	will	provide	a	test	for	a	main	effect	of	each	
factor	as	well	as	a	test	for	the	interaction	between	the	two	factors.	Once	you	understand	the	
key	distinction	between	main	effects	and	interactions,	generalizing	this	knowledge	to	the	
case	of	ANOVA	models	with	three	or	more	factors,	as	well	as	with	one	or	more	within-
subjects	factors,	is	not	too	difficult.	

The ANOVA Model and the F Tests 
	 To	illustrate	the	use	of	factorial	ANOVAs,	consider	the	following	experiment.34	A	total	of	
24	office	workers	were	given	the	chance	to	pay	$1	for	a	lottery	ticket	for	a	prize	of	$25.	One	
half	of	all	tickets	came	with	a	random	number	already	assigned,	the	other	half	were	blank	
such	that	their	purchasers	could	choose	and	write	their	own	ticket	numbers.	This	
independent	variable	was	manipulated	by	random	assignment	to	conditions.	In	what	
follows,	this	factor	will	be	described	simply	as	“ticket”,	with	its	two	levels	being	“random	
number”	and	“choice	of	number”.		
	 After	all	tickets	were	sold,	the	researcher	approached	each	subject	individually	to	buy	
back	the	ticket.	He	or	she	was	told	that	someone	else	wanted	to	enter	the	lottery	but	there	
were	no	more	tickets,	so	the	researcher	would	pay	what	it	takes	to	buy	back	this	ticket	to	
offer	it	to	the	newcomer.	The	dependent	variable	in	this	experiment	was	how	much	each	
subject	charged	to	sell	back	his	or	her	ticket,	described	as	“price”.	
	 Tickets	were	purchased	from	subjects	at	one	of	three	different	times:	(1)	immediately	
after	originally	selling	the	ticket,	(2)	the	next	day,	or	(3)	just	before	drawing	the	winning	
lottery	number	at	the	end	of	the	week.	This	independent	variable	was	also	manipulated	by	
random	assignment	to	conditions.	In	what	follows,	this	factor	will	be	described	as	“time”,	
with	its	three	levels	being	“immediate”,	“next	day”,	and	“before	drawing”.	

																																																								
34	This	fictional	study	is	based	on	work	done	by	Ellen	Langer	in	the	1970s	on	the	“illusion	of	control”	
phenomenon	by	which	people	misunderstand	an	outcome	determined	purely	by	chance	(e.g.,	a	lottery)	as	one	
that	can	be	influenced	with	some	skill	(e.g.,	choosing	numbers	provides	better	odds	of	winning).	
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	 In	sum,	this	is	a	2	(ticket)	´	3	(time)	design.	There	are	a	total	of	6	cells	in	the	fully	
between-subjects	design,	with	n	=	4	scores	within	each	cell.	If	we	label	ticket	as	factor	A	
and	time	as	factor	B,35	the	factorial	ANOVA	will	provide	the	following	three	F	tests:	

1.	 Main	effect	for	ticket	(A).	Ignoring	time,	does	price	differ	across	random	number	
and	choice	of	number	conditions?	

2.	 Main	effect	for	time	(B).	Ignoring	ticket,	does	price	differ	across	immediate,	next	
day,	and	before	drawing	conditions?		

3.	 Interaction	between	ticket	and	time	(A	´	B).	Is	price	influenced	by	the	combination	
of	ticket	type	and	time	of	resale?	

	 We	can	use	a	factorial	ANOVA	to	obtain	these	three	F	tests.	For	simplicity,	we	can	
express	the	null	and	alternative	hypotheses	as	the	absence	(H0)	or	presence	(H1)	of	an	
effect.	In	other	words,	the	three	null	hypotheses	would	be	(1)	no	main	effect	for	factor	A,	
(2)	no	main	effect	for	factor	B,	and	(3)	no	interaction	between	factors	A	and	B.	
	 It’s	critical	to	understand	that	these	are	three	independent	tests.	In	other	words,	there	
are	a	total	of	eight	possible	outcomes	of	this	analysis.	The	following	table	summarizes	
every	possibility:	

	 Main	Effect	
(A)	

Main	Effect	
(B)	

Interaction	
(A	´	B)	

1	 No	 No	 No	
2	 Yes	 No	 No	
3	 No	 Yes	 No	
4	 Yes	 Yes	 No	
5	 No	 No	 Yes	
6	 Yes	 No	 Yes	
7	 No	 Yes	 Yes	
8	 Yes	 Yes	 Yes	

	 Thus,	interpreting	and	reporting	the	results	of	a	factorial	ANOVA	requires	that	three	
effects	be	considered.	A	careful	approach	is	required	to	ensure	that	all	three	effects	are	
described	accurately.	
	 Testing	each	null	hypothesis	involves	calculating	an	F	ratio.	As	with	other	ANOVA	
models,	the	total	variance	on	the	dependent	variable	can	be	split	into	several	sources.	The	
first	division	is	between	systematic	sources	of	variance,	between	groups,	and	the	error	
variance	that	remains	within	groups.	This	split	is	the	same	as	the	for	an	independent	
groups	ANOVA.	Between-groups	variance	is	due	to	differences	across	conditions	(whether	
main	effects	or	an	interaction),	and	within-groups	variance	is	due	to	unexplained	sources	
of	variation	within	groups,	such	as	individual	differences	and	measurement	error.	The	
second	division	splits	the	between	groups	variance	into	three	sources:	main	effect	for	
factor	A,	main	effect	for	factor	B,	and	interaction	between	factors	A	and	B.	
Schematically,	here’s	how	the	factorial	ANOVA	partitions	the	variance	for	the	lottery	ticket	
study:	

																																																								
35	It	would	make	no	difference	for	anything	discussed	in	this	chapter	if	we	reverse	this	and	label	time	as	
factor	A	and	ticket	as	factor	B.	
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	 For	the	three	effects	tested	in	this	factorial	ANOVA	model,	the	numerator	corresponds	
to	a	systematic	source	of	variance—main	effect	for	A,	main	effect	for	B,	or	interaction	
between	A	and	B.	The	error	(within-groups)	variance	serves	as	the	denominator	for	each	of	
these	F	ratios.	The	critical	region	for	each	F	test	is	based	on	the	a	level	(usually	.05)	and	the	
df.	There	are	two	df	for	any	F	test,	one	relating	to	the	number	of	conditions	and	one	relating	
to	sample	size.	The	df	relating	to	sample	size	is	calculated	as	N	–	(a	´	b)	for	all	three	F	tests	
(where	N	is	the	number	of	subjects,	a	is	the	number	of	levels	for	factor	A,	and	b	is	the	
number	of	levels	for	factor	B).	For	main	effect	A,	the	first	df	is	calculated	as	a	–	1.	For	main	
effect	B,	the	first	df	is	calculated	as	b	–	1.	For	the	interaction,	the	first	df	is	calculated	as	(a	–	
1)	´	(b	–	1).	You	can	get	the	df	from	computer	output.	
	 You	can	consult	a	table	of	F	values	to	determine	whether	each	F	ratio	falls	in	the	critical	
region,	but	it’s	easier	to	obtain	the	p	values	from	computer	output	and	compare	these	to	
the	a	level.	As	usual,	if	p	<	a	you	reject	H0,	otherwise	you	retain	H0.	For	example,	the	F	
ratios,	df,	and	p	values	for	the	lottery	ticket	study	are	as	follows:	

1.	 Main	effect	for	ticket:	F(1,	18)	=	10.08,	p	=	.005	
2.	 Main	effect	for	time:	F(2,	18)	=	29.31,	p	<	.001	
3.	 Interaction	between	ticket	and	time:	F(2,	18)	=	4.65,	p	=	.024	

	 In	this	case,	all	three	null	hypotheses	would	be	rejected	because	each	p	value	is	less	
than	a	=	.05.	

Effect Size 
	 An	appropriate	measure	of	effect	size	to	accompany	the	results	of	any	F	test	is	h2.	The	
usual	rules	of	thumb	(.01	=	small,	.09	=	medium,	.25	=	large)	apply	when	this	is	used	for	the	
test	of	a	main	effect	or	an	interaction	in	a	factorial	ANOVA.	For	the	lottery	ticket	study,	h2	=	

Total =	variation	
across	all	24	
subjects'	prices

Between =	
variation	of	average	
prices	across	cells

Main	Effect	(A) =	
variation	across	
average	prices	of	2	
types	of	ticket

Main	Effect	(B) =	
variation	across	
average	prices	of	3	
times	of	resale

Interaction	(A	x	B)
=	variation	across	
cells	after	main	
effects	removed

Within =	variation	
of	prices	within	

cells
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.36	for	the	ticket	main	effect,	.76	for	the	time	main	effect,	and	.34	for	the	interaction	
between	ticket	and	time.	Each	of	these	is	a	very	large	effect.36	

Procedural Overview 
	 Because	a	factorial	ANOVA	provides	multiple	F	tests,	it’s	important	to	proceed	carefully	
and	systematically	when	performing,	interpreting,	and	reporting	the	results.	Here’s	a	
general	procedure	to	follow.	
	 First,	begin	with	one	of	the	tests	for	a	main	effect.	If	that	F	test	is	statistically	significant,	
examine	the	means	to	interpret	the	results.	Computer	output	will	provide	the	relevant	
means,	but	you	have	to	make	sure	that	you’re	using	the	marginal	means	rather	than	the	
cell	means.	Cell	means	are	calculated	using	all	scores	within	each	cell	of	the	design,	and	
marginal	means	are	calculated	by	collapsing	across	cells.	Here’s	a	table	of	means	for	the	
lottery	ticket	study:	

	 	 Time	(Factor	B)	 	

	 	 Immediate	 Next	Day	 Before	
Drawing	 	

Ticket	
(Factor	A)	

Random	
Number	 $3.75	 $3.38	 $5.00	 $4.04	

Choice	of	
Number	 $4.88	 $3.12	 $6.88	 $4.96	

	 	 $4.31	 $3.25	 $5.94	 	

	 The	cells	means	are	the	6	values	corresponding	to	the	cells	in	the	design,	indicated	with	
dark	borders.	The	marginal	means	are	the	values	outside	the	2	´	3	table,	indicated	with	
light	borders	in	the	margins.	In	this	case,	factor	A	is	ticket,	and	the	F	ratio	is	statistically	
significant.	Because	there	are	only	two	levels,	no	post-hoc	test	is	required	to	compare	the	
means.	The	marginal	means	are	$4.04	and	$4.96,	and	they	show	us	that	subjects	charged	
more	to	sell	back	tickets	when	they	had	chosen	the	number	than	when	they	were	assigned	
a	random	number.	This	is	a	classic	finding,	demonstrating	an	“illusion	of	control”.	Choosing	
your	own	number	doesn’t	objectively	affect	the	probability	of	winning	a	lottery,	but	
subjectively	it	seems	to;	people	value	tickets	more	when	they	choose	their	own	numbers.	
This	completes	the	first	step,	evaluating	one	of	the	main	effects.		
	 Second,	repeat	this	procedure	for	the	other	main	effect.	In	this	case,	factor	B	is	time,	and	
the	F	ratio	is	statistically	significant.	Because	there	are	more	than	two	levels,	a	post-hoc	test	
is	required	to	compare	the	means.	Using	Tukey’s	HSD	with	a	=	.05	reveals	that	all	three	of	
the	conditions	differ	significantly	from	one	another.	People	charged	a	modest	amount	to	
resell	a	ticket	immediately	($4.31),	a	lower	amount	the	next	day	($3.25),	and	a	much	higher	
amount	before	the	drawing	($5.94).	The	perceived	value	of	the	ticket	varied	substantially	
over	time.	

																																																								
36	The	reason	why	these	are	unrealistically	large	effects	is	that	I	created	a	very	small	sample	of	data	(N	=	24	
for	a	study	with	6	cells,	meaning	n	=	4	within	each	cell)	but	wanted	to	illustrate	how	to	detect	and	interpret	
statistically	significant	effects.	The	only	way	for	effects	to	be	statistically	significant	with	such	a	tiny	sample	
size	is	if	they	are	very	large.	
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	 Third,	after	evaluating	both	of	the	tests	for	main	effects,	move	on	to	the	test	for	an	
interaction.	This	is	a	higher-level	effect	and	should	always	be	considered	after	the	lower-
level	main	effects.37	In	this	case,	the	interaction	between	ticket	and	time	is	statistically	
significant.	To	interpret	an	interaction,	it’s	helpful	to	plot	a	line	graph	using	the	cell	means.	
You	construct	this	graph	such	that	the	dependent	variable	(here,	price)	is	on	the	y	axis,	the	
levels	of	one	of	the	factors	appear	along	the	x	axis,	and	the	levels	of	the	other	factor	are	
plotted	using	separate	lines.	It	makes	no	difference	which	factor	you	place	on	the	x	axis	and	
which	is	plotted	with	separate	lines,	but	it	is	important	to	label	your	graph	fully	so	that	the	
factors	can	be	distinguished.	Once	you	have	the	axes	labeled,	you	carefully	plot	each	of	the	
cell	means	to	form	the	lines.	For	the	lottery	ticket	study,	the	line	graph	could	be	plotted	as	
either	of	these	two	versions:	

								 	
	 Though	these	look	different,	they	reveal	the	same	pattern:	The	effect	of	one	factor	
depends	on	the	levels	of	the	other.	That’s	what	an	interaction	effect	is	all	about.	When	you	
graph	the	cell	means,	an	interaction	effect	is	present	if	the	resulting	lines	are	not	parallel.	
Of	course,	random	sampling	error	will	cause	the	lines’	slopes	to	differ	a	bit,	just	by	chance.	
An	F	test	for	an	interaction	effect	determines	whether	the	slopes	differ	enough	to	be	
statistically	significant.	
	 In	this	case,	the	F	test	was	statistically	significant.	What	we	see	in	both	versions	of	the	
line	graph	is	that	the	time	of	resale	made	less	difference	in	price	when	tickets	had	random	
numbers	on	them	than	when	subjects	had	chosen	their	own	numbers.	For	the	graph	on	the	
left,	the	solid	line	(for	random	number)	remains	flatter	than	the	dashed	line	(for	choice	of	
number).	For	the	graph	on	the	right,	the	three	lines	begin	at	similar	values	on	the	left	(for	
choice	of	number)	but	diverge	as	they	move	to	the	right	(for	random	number).	Whichever	
graph	you	examine,	you’d	arrive	at	the	same	conclusion:	Time	of	resale	made	more	of	a	
difference	for	one	type	of	ticket	(choice	of	number)	than	the	other	(random	number).	
	 As	a	final	reminder,	this	is	just	one	possible	pattern	of	results.	In	this	analysis,	all	three	
effects—both	main	effects	and	the	interaction—were	statistically	significant	and	needed	to	
be	described.	There	are	seven	other	possible	patterns	of	results	in	which	some	or	all	of	the	
three	effects	are	not	statistically	significant.	Factorial	ANOVA	results	differ	from	one	study	
to	the	next	much	more	so	than	z	or	t	test	results.	That’s	why	it’s	so	important	to	follow	a	
step-by-step	procedure—progressing	through	the	three	separate	F	tests	in	an	orderly,	
careful	way—when	doing	a	factorial	ANOVA.	

																																																								
37	Similarly,	if	you	have	more	than	two	factors	in	the	design,	you’d	begin	with	main	effects	and	then	deal	with	
interactions	in	increasing	order	of	complexity	(i.e.,	2-way	interactions	before	3-way	interactions).	
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Using SPSS 
	 To	perform	a	factorial	ANOVA	with	two	between-subjects	factors	on	SPSS,	you	first	
enter	your	data	into	three	separate	variables	(columns),	here	labeled	“Ticket”	(coded	as	1	=	
random	number,	2	=	choice	of	number),	“Time”	(coded	as	1	=	immediate,	2	=	next	day,	3	=	
before	drawing),	and	“Price”.	Note	that	you	have	to	create	two	variables	that	indicate	group	
membership	for	each	subject,	one	for	each	factor	in	the	design,	and	the	dependent	variable	
is	placed	in	a	separate	column	for	all	subjects.	The	full	data	set	didn’t	fit	onto	the	screen;	
here’s	what	all	but	the	final	row	of	the	data	file	looks	like:	

	
	 Next,	you	use	the	following	command:	

	 	 unianova	price	by	ticket	time	
	 	 /posthoc	ticket	time	(tukey)	
	 	 /print	desc	etasq	
	 This	is	the	same	kind	of	command	used	for	an	independent	groups	ANOVA.	The	only	
difference	here	is	that	rather	than	listing	a	single	group	membership	variable	on	the	first	
and	second	lines,	you	list	two	of	them	(here,	“Ticket”	and	“Time”).	You	can	list	these	group	
membership	variables	in	either	order.	The	second	line	requests	Tukey’s	HSD	as	a	post-hoc	
test	for	both	factors,	which	you	may	or	may	not	need.	SPSS	will	give	you	a	warning	(don’t	
be	alarmed	by	it!)	to	indicate	if	post-hoc	tests	are	not	performed	for	one	or	both	factors	in	
the	event	that	they	vary	across	fewer	than	three	levels.	The	third	line	requests	descriptive	
statistics	and	h2	as	an	effect	size	measure,	and	you	don’t	need	to	change	this	line	at	all.		
	 SPSS	will	provide	many	tables	of	output,	but	you	can	ignore	some	of	them.	I	recommend	
deleting	the	ones	you	don’t	need	because	some	of	them	look	similar	to	those	you	do	need	
and	it’s	easy	to	mistakenly	read	and	report	output	from	the	wrong	table.	The	first	table	
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you’ll	need	is	labeled	“Descriptive	Statistics”,	and	it	provides	both	the	cell	means	and	the	
marginal	means	(with	their	corresponding	standard	deviations)	for	interpreting	any	
statistically	significant	main	effects	or	interactions:	

	
	 In	this	first	table,	cell	means	are	identified	by	looking	for	the	rows	that	correspond	to	
combinations	of	levels	on	both	factors	(e.g.,	“Random	Number”	and	“Immediate”	is	a	cell	
mean).	Marginal	means	are	identified	by	looking	for	rows	that	contain	“Total”	in	one	of	the	
first	two	columns	(e.g.,	“Random	Number”	and	“Total”	is	a	marginal	mean).	The	bottom	row	
of	the	table	(“Total”	and	“Total”)	can	be	ignored.	You	might	find	it	helpful	to	double-check	
that	you	can	read	this	table	to	produce	the	one	containing	only	the	cell	and	marginal	means	
shown	earlier	in	this	chapter.	
	 The	second	table	you’ll	need,	labeled	“Tests	of	Between-Subjects	Effects”,	provides	the	F	
value,	df,	p	value	(labeled	as	“Sig.”),	and	h2	(labeled	as	“Partial	Eta	Squared”)	for	each	test:	

	
	 Use	the	rows	labeled	with	each	of	your	group	membership	variables	(here,	“Ticket”	and	
“Time”)	to	find	the	tests	of	main	effects,	and	the	row	labeled	with	both	group	membership	
variables	(here,	“Ticket	*	Time”)	to	find	the	test	of	the	interaction.	Note	that	the	first	df	
value	for	each	test	is	provided	on	the	row	indicated	above,	and	the	second	df	for	all	three	
tests	is	provided	on	the	row	labeled	“Error”.	Here’s	a	summary	of	the	results	for	these	three	
F	tests	that	you	can	use	to	double-check	that	understand	where	to	find	all	the	values:	

•	 Main	effect	for	ticket:	F(1,	18)	=	10.08,	p	=	.005,	h2	=	.36	
•	 Main	effect	for	time:	F(2,	18)	=	29.31,	p	<	.001,	h2	=	.76	
•	 Interaction	between	ticket	and	time:	F(2,	18)	=	4.65,	p	=	.024,	h2	=	.34	

	 If	you	need	post-hoc	test	results,	they	will	be	provided	in	tables	labeled	“Homogeneous	
Subsets”.	In	this	case,	there	is	a	statistically	significant	main	effect	for	time,	which	varies	
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across	more	than	two	levels,	so	you’d	need	the	results	of	a	post-hoc	test	to	determine	
which	conditions	differed	from	one	another.	The	table	is	shown	below,	and	the	results	
indicate	that	all	three	conditions	differed	significantly	from	one	another.	Instructions	for	
how	to	read	and	interpret	these	results	are	the	same	as	for	an	independent	groups	ANOVA.	

	

APA Style 
	 As	the	procedural	overview	explained,	you	should	begin	by	describing	the	results	of	one	
test	for	a	main	effect,	then	proceed	to	another	test	for	a	main	effect,	and	finally	to	the	test	
for	an	interaction.	If	an	effect	is	not	statistically	significant,	that’s	easy	to	state	in	a	single	
sentence.	If	an	effect	is	statistically	significant,	you	need	to	describe	the	pattern	of	results.	
For	a	main	effect,	this	entails	reporting	the	Ms	and	SDs	for	each	level	and,	if	there	are	more	
than	two	levels,	reporting	the	results	of	a	post-hoc	test	to	indicate	which	levels	differed	
significantly	from	one	another.	For	an	interaction	effect,	you’d	need	to	explain	how	the	
effect	of	one	factor	varies	across	levels	of	the	other.	It	can	be	very	helpful	to	provide	a	
graph	to	illustrate	an	interaction,	but	you	still	have	to	explain	the	pattern	of	results	in	your	
text.	Here’s	what	the	report	might	look	like	for	the	lottery	ticket	study:	

	 There	was	a	statistically	significant	main	effect	for	type	of	ticket,	F(1,	18)	=	10.08,	p	=	

.005,	h2	=	.36.	Those	who	chose	their	own	ticket	number	charged	more	to	sell	it	back	(M	=	

4.96,	SD	=	1.69)	than	those	who	were	assigned	a	random	ticket	number	(M	=	4.04,	SD	=	

1.03).	There	was	a	statistically	significant	main	effect	for	time	of	resale,	F(2,	18)	=	29.31,	p	<	

.001,	h2	=	.76.	A	post-hoc	comparison	of	means	using	Tukey’s	HSD	with	a	=	.05	revealed	

that	prices	differed	significantly	across	all	three	conditions	(immediate	M	=	4.31,	SD	=	0.98;	

next	day	M	=	3.25,	SD	=	0.65;	before	drawing	M	=	5.94,	SD	=	1.13).	There	was	a	statistically	

significant	interaction	between	type	of	ticket	and	time	of	resale,	F(2,	18)	=	4.65,	p	=	.024,	h2	

=	.34.	Variation	in	price	across	time	of	resale	was	much	greater	when	subjects	chose	their	

own	ticket	numbers	than	when	they	were	given	random	ticket	numbers.	
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	 Notice	that	the	report	proceeds	from	one	main	effect	to	another,	and	then	to	the	
interaction.	In	an	actual	research	report,	it	would	be	a	good	idea	to	provide	(and	cite)	a	line	
graph	that	illustrates	the	interaction	effect;	this	was	shown	earlier	and	not	repeated	here.	

Problems 
	 Below	is	SPSS	output	for	a	factorial	ANOVA	examining	the	annual	income	(in	thousands	
of	dollars)	for	160	doctors.	Factor	A	is	area	of	medical	practice	(pediatrician,	general	
practitioner,	and	surgeon),	and	Factor	B	is	gender	(female,	male).	

	

	

	
1.	 Using	the	descriptive	statistics,	create	your	own	table	that	includes	only	the	cell	means	

and	marginal	means.	Organize	the	table	like	the	one	shown	in	the	chapter.	Begin	by	
creating	a	table	with	rows	for	the	levels	of	factor	A	and	columns	for	the	levels	of	factor	
B.	Within	this	table,	identify	and	list	the	cell	means.	Then,	identify	the	marginal	means	
that	correspond	to	totals	for	each	row	and	each	column.	
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2.	 Using	your	table	from	#1,	plot	a	line	graph	of	the	cell	means.	Make	sure	that	you	label	
the	axes	and	the	lines	clearly.	

3.	 Why	was	a	factorial	ANOVA	performed	to	analyze	these	data	rather	than	an	
independent	groups	ANOVA	or	a	related	samples	ANOVA?	

4.	 What	are	the	factors	in	this	study?	For	each	factor,	list	its	levels.	

5.	 How	many	F	tests	were	performed	in	this	ANOVA?	What	did	each	one	test?	

6.	 For	area	of	medical	practice,	what	are	the	values	of	F,	df,	p,	and	h2?	Is	this	a	statistically	
significant	effect?	How	would	you	characterize	the	size	of	the	effect?	

7.	 Begin	with	the	descriptive	statistics	to	interpret	the	results	for	this	factor.	Why	do	you	
also	need	to	consult	the	results	of	a	post-hoc	test?	Report	the	results	in	APA	style.	(This	
should	take	just	two	sentences.)	

8.	 For	gender,	what	are	the	values	of	F,	df,	p,	and	h2?	Is	this	a	statistically	significant	effect?	
How	would	you	characterize	the	size	of	the	effect?	

9.	 Examine	the	descriptive	statistics	to	interpret	the	results	for	this	factor.	Why	don’t	you	
need	a	post-hoc	test?	Report	the	results	in	APA	style.	(This	should	take	just	one	or	two	
sentences.)	

10.	For	the	interaction	between	area	of	medical	practice	and	gender,	what	are	the	values	of	
F,	df,	p,	and	h2?	Is	this	a	statistically	significant	effect?	How	would	you	characterize	the	
size	of	the	effect?	

11.	Report	the	results	for	the	test	of	an	interaction	effect	in	APA	style.	(This	should	take	just	
one	sentence.)	

12.	Revisit	the	conclusions	you	reached	for	the	main	effect	for	gender,	and	then	look	
carefully	at	your	table	and	graph.	Do	you	see	an	apparent	contradiction	in	the	findings?	
How	can	this	be	resolved?	(Hint:	Consider	the	cell	sizes	in	the	descriptive	statistics.)	

*	*	*	
	 For	this	series	of	problems,	Dr.	Flurpple	compares	testing	procedures.	Students	in	four	
sections	of	a	statistics	course	take	a	common	final	exam	under	different	conditions;	each	
section	is	told	in	advance	what	its	conditions	will	be.	Two	sections	of	the	class	take	it	as	an	
open-book	exam,	whereas	the	other	two	sections	do	not.	In	addition,	one	of	the	open-book	
sections	is	given	an	untimed	test,	whereas	the	other	is	given	a	time	limit;	the	same	goes	for	
the	two	closed-book	sections.	The	average	scores	on	the	exam	for	the	four	sections	are	as	
follows:		open-book,	untimed	=	90;	open-book,	timed	=	50;	closed-book,	untimed	=	70;	
closed-book,	timed	=	60.	
13.	What	is	the	dependent	variable?	

14.	What	are	the	factors	in	the	design?	For	each,	state	whether	it’s	a	between-	or	within-
subjects	factor	and	list	its	levels		

15.	Construct	a	table	showing	the	cell	means	and	marginal	means.	(For	simplicity,	assume	
equal	cell	sizes	when	calculating	marginal	means.)	

16.	Using	your	table	of	means,	plot	and	fully	label	a	line	graph.	
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17.	Based	on	the	table	in	#15,	does	it	appear	that	there	are	any	main	effects?	(Don’t	worry	
about	statistical	significance;	if	you	observe	any	difference	between	means,	assume	it’s	
large	enough	to	be	statistically	significant.)	

18.	Based	on	the	graph	in	#16,	does	it	appear	that	there	is	an	interaction?	(Again,	set	aside	
the	question	of	statistical	significance;	if	the	lines	are	not	parallel,	assume	the	effect	is	
large	enough	to	be	statistically	significant.)	

19.	In	plain	English	(not	APA	style),	write	an	interpretation	of	the	results.	

*	*	*	
	 For	this	series	of	problems,	Dr.	Flurpple	wonders	whether	student	achievement	can	be	
increased	through	challenging	out-of-class	assignments.	In	addition,	Dr.	F	wonders	
whether	challenges	may	differentially	affect	the	achievement	of	low	and	high	aptitude	
students.	To	test	these	hypotheses,	students	in	a	statistics	course	complete	both	highly	
challenging	assignments	(which	required	answers	to	conceptual	questions)	and	relatively	
easy	assignments	(which	required	conceptually	simple	solutions	to	problems);	all	students	
complete	both	assignments.	Early	in	the	semester,	each	student’s	aptitude	is	measured	
using	a	brief	test	of	logical	reasoning	and	students	are	then	classified	into	high	and	low	
aptitude	groups.	The	average	scores	for	the	high	aptitude	students	are	90	on	the	
challenging	assignment	and	80	on	the	easy	assignment;	for	the	low	aptitude	students,	
averages	are	70	on	the	challenging	assignment	and	80	on	the	easy	assignment.	
20.	What	is	the	dependent	variable?	

21.	What	are	the	factors	in	the	design?	For	each,	state	whether	it’s	a	between-	or	within-
subjects	factor	and	list	its	levels		

22.	Construct	a	table	showing	the	cell	means	and	marginal	means.	(For	simplicity,	assume	
equal	cell	sizes	when	calculating	marginal	means.)	

23.	Using	your	table	of	means,	plot	and	fully	label	a	line	graph.	

24.	Based	on	the	table	in	#22,	does	it	appear	that	there	are	any	main	effects?	(Don’t	worry	
about	statistical	significance;	if	you	observe	any	difference	between	means,	assume	it’s	
large	enough	to	be	statistically	significant.)	

25.	Based	on	the	graph	in	#23,	does	it	appear	that	there	is	an	interaction?	(Again,	set	aside	
the	question	of	statistical	significance;	if	the	lines	are	not	parallel,	assume	the	effect	is	
large	enough	to	be	statistically	significant.)	

26.	In	plain	English	(not	APA	style),	write	an	interpretation	of	the	results.	
*	*	*	

27.	Using	SPSS,	enter	the	lottery	ticket	data	from	this	chapter.	The	screen	shot	omitted	the	
final	row,	which	contained	the	values	2,	3,	and	6.75.	Follow	the	instructions	in	the	text	
for	how	to	organize	the	data	file	and	enter	the	command	to	perform	a	factorial	ANOVA.	
Check	that	your	output	matches	what’s	shown	in	the	text.	

Problems 1 – 12 are due at the beginning of class. 
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15. Scatterplots and Correlation 

Overview 
	 All	of	the	data-analytic	procedures	introduced	so	far	have	compared	means	across	
conditions.	Correlational	analysis	is	different:	It	assesses	the	strength	of	the	relationship	
between	two	variables.	In	this	chapter,	we’ll	examine	the	standard	type	of	correlation	
coefficient	as	well	as	a	few	variations	that	are	used	fairly	often.	

Scatterplot 
	 Before	calculating	a	correlation	coefficient,	it’s	important	to	inspect	a	graph	that	shows	
the	relationship	between	scores	on	the	two	variables.	Constructing	a	scatterplot	is	simple.	
All	you	need	to	do	is	label	the	x	and	y	axes	according	to	the	X	and	Y	variables	in	your	
analysis,	and	then	plot	one	data	point	for	each	case	in	the	data	set.	The	location	of	each	
point	is	determined	by	that	case’s	scores	on	X	and	Y.	Here’s	an	example	of	a	scatterplot	
between	the	SAT	Math	and	Verbal	scores	for	1,313	students	at	a	private	college:	

	
	 Even	though	there	are	many	tied	scores	(e.g.,	multiple	students	with	identical	SAT	Math	
and	Verbal	scores),	this	scatterplot	still	clearly	shows	us	that	as	SAT	Math	scores	increase,	
so	do	SAT	Verbal	scores.	Not	only	is	the	association	easy	to	see,	but	it’s	also	apparent	that	a	
straight	line	could	be	fit	to	these	data	fairly	well.		

Correlation Coefficient 
	 Whereas	the	scatterplot	displays	the	relationship	between	two	variables,	the	
correlation	coefficient	summarizes	this	in	a	single	number.	Correlations	can	range	from	.00	
to	1.00	in	absolute	value.	The	size	of	the	correlation	is	an	index	of	how	well	a	scatterplot	
can	be	fit	by	a	straight	line.	To	the	extent	that	the	points	cluster	tightly	around	a	line,	the	
correlation	will	be	large.	At	one	extreme,	a	correlation	of	.00	means	there’s	no	association	
between	the	variables,	that	they’re	scattered	around	fairly	randomly	throughout	a	cloud:	
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	 At	the	other	extreme,	a	correlation	of	1.00	(or	-1.00)	means	there’s	a	perfect	
relationship.	In	other	words,	all	of	the	data	points	would	lie	directly	on	a	line.	Here	are	
scatterplots	depicting	correlations	of	1.00	(left)	and	-1.00	(right):	

										 	
	 As	you	can	see,	if	the	sign	of	the	correlation	is	positive,	scores	on	Y	increase	along	with	
scores	on	X.	If	the	sign	is	negative,	scores	on	Y	decrease	as	scores	on	X	increase;	this	is	also	
known	as	an	inverse	relationship.	Note	that	which	variable	you	treat	as	X,	and	which	as	Y,	
will	not	affect	the	sign	or	the	size	of	a	correlation.	The	scatterplot	will	look	different	if	you	
swap	the	variables,	but	the	direction	and	strength	of	the	relationship	remain	the	same.	
	 For	real	data,	you	seldom	observe	a	correlation	as	small	as	.00	or	as	large	as	1.00.	
Instead,	you	usually	get	a	value	someplace	in	between.	For	the	SAT	data	plotted	above,	the	
correlation	is	.56.	Unlike	most	other	statistics	(e.g.,	z,	t,	or	F),	the	correlation	coefficient	is	
its	own	measure	of	effect	size.	Cohen’s	rules	of	thumb	are	as	follows:	

	 	 .10	=	small	
	 	 .30	=	medium	
	 	 .50	=	large	

	 Thus,	the	SAT	sections	correlate	with	one	another	at	a	level	that	would	be	described	as	
a	large	effect.	Next,	here’s	a	scatterplot	illustrating	a	medium	effect	(.30).	The	points	cluster	
somewhat	near	a	line,	but	there	remains	a	lot	of	variability	around	that	line:	
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	 Finally,	here’s	a	scatterplot	illustrating	a	small	effect	(.10),	which	is	hard	to	distinguish	
visually	from	a	correlation	of	.00:	

	
	 Examples	of	what	are	considered	to	be	small,	medium,	and	large	correlations	are	
provided	in	part	so	that	you	can	visualize	the	strength	of	the	relationship	between	two	
variables	when	only	the	correlation	coefficient	is	provided.	Another	reason	for	showing	
these	is	to	emphasize	that	even	a	so-called	“large	effect”	is	very	far	from	a	perfect	
correlation.	If	scores	on	X	were	used	to	predict	scores	on	Y,	for	example,	these	predictions	
would	be	much	better	than	chance-level	guessing	but	far	from	perfectly	accurate.		

Coefficient of Determination 
	 The	correlation	coefficient	is	often	squared	to	express	the	strength	of	the	relationship	
between	variables.	The	squared	correlation	is	called	the	coefficient	of	determination,	and	
it	represents	the	same	thing	as	h2,	the	effect	size	measure	used	with	F	tests:	The	proportion	
of	variance	in	one	variable	that	can	be	explained	by	the	other	variable.	If	you	square	the	
rules	of	thumb	for	the	correlation,	you	get	the	rules	of	thumb	for	interpreting	the	size	of	the	
coefficient	of	determination	(or	h2):	

	 	 .102	=	.01	=	small	
	 	 .302	=	.09	=	medium	
	 	 .502	=	.25	=	large	

	 For	example,	the	correlation	between	SAT	sections	of	.56	yields	a	coefficient	of	
determination	of	.562	=	.31.	This	means	that	scores	on	one	section	explain	.31	(or	31%)	of	

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3
X

Y

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

X

Y



	 135	

the	variation	in	scores	on	the	other	section,	which	of	course	also	means	that	the	other	.69	
(69%)	of	the	variation	is	unexplained,	or	due	to	other	factors.	That’s	another	way	of	
keeping	the	magnitude	of	effects	in	perspective:	Even	with	a	correlation	this	large,	a	
majority	of	the	variation	in	Y	remains	unexplained	by	variation	in	X.	

Types of Correlation 
	 There	are	many	types	of	correlation	coefficient,	each	designed	for	use	with	different	
kinds	of	data.	The	four	most	frequently	used	types	of	correlation	are	described	here.	

Pearson Product-Moment Correlation 
	 By	far,	the	most	common	type	of	correlation	coefficient	is	the	Pearson	product-
moment	correlation.	This	is	used	whenever	both	X	and	Y	are	measured	using	interval	or	
ratio	scales,	and	it’s	symbolized	as	r	in	APA	style.	Because	this	type	of	correlation	is	so	
popular,	its	full	name	is	seldom	used.	You	can	safely	assume	that	someone	means	the	
Pearson	product-moment	correlation	coefficient	unless	they	specify	otherwise.	The	
correlation	between	SAT	sections	is	an	example	of	this	kind.	

Spearman Rank-Order Correlation 
	 When	the	X	and	Y	variables	are	measured	using	ordinal	scales	(i.e.,	ranked	data),	you’d	
use	a	Spearman	rank-order	correlation.	This	is	symbolized	as	rS	in	APA	style;	the	
subscript	of	a	capital	“S”	indicates	it’s	a	Spearman	correlation.	Whether	the	data	were	
collected	as	ranks	or	quantitative	data	were	subsequently	converted	to	ranks,	the	
Spearman	correlation	is	used	to	assess	the	strength	of	relationship	between	X	and	Y.	For	
example,	if	you	record	the	order	that	students	complete	an	exam	(1	=	first,	2	=	second,	…)	
and	their	ranked	scores	on	the	exam	(1	=	highest	score,	2	=	next	highest,	…),	you’d	use	rS	to	
assess	the	relationship	between	these	variables.	

Point-Biserial Correlation 
	 When	one	variable	is	measured	using	an	interval	or	ratio	scale	and	the	other	is	
dichotomous—meaning	that	it	can	only	take	two	values	(e.g.,	correct/incorrect,	high/low,	
true/false,	male/female)—you’d	use	a	point-biserial	correlation.	The	two	values	must	be	
coded	numerically,	but	the	choice	of	codes	will	not	affect	the	size	of	the	correlation.38	This	
is	symbolized	as	rpb	in	APA	style;	the	subscript	of	lowercase	“pb”	indicates	it’s	a	point-
biserial	correlation.		
	 Though	this	might	not	be	obvious	at	first	glance,	using	a	point-biserial	correlation	to	
analyze	data	is	equivalent	to	using	an	independent	groups	t	test.	For	example,	asking	the	
question	of	whether	gender	(a	dichotomous	variable)	correlates	with	self-esteem	(a	
quantitative	variable)	poses	the	same	fundamental	question	as	asking	whether	there	is	a	
difference	in	self-esteem	by	gender.	The	two	statistics	(rpb	and	t)	have	the	same	df	(N	–	2)	
and	there’s	a	1:1	relationship	between	their	values:	rpb	=	sqrt(t2	/	(t2	+	df)).	You	can	choose	
either	of	these	analyses	and	you’ll	obtain	the	same	p	value.	
	 For	example,	an	independent	groups	t	test	performed	in	the	parole	data	shows	that	
there	is	a	statistically	significant	difference	in	Lifestyle	Criminality	Screening	Form	(LCSF)	

																																																								
38	The	sign	of	the	point-biserial	correlation	will	change	if	you	reverse	the	coding,	but	its	size	will	not	change.	
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scores	between	those	who	have	been	arrested	and	those	who	have	not:	t(112)	=	-2.08,	p	=	
.040.	A	correlational	analysis	leads	to	the	same	conclusion,	that	LCSF	scores	are	correlated	
with	arrest	status:	rpb(112)	=	.19,	p	=	.040.	As	shown	above,	the	correlation	can	be	
calculated	directly	from	the	t	test	results:	rpb	=	sqrt((-2.08)2	/	(-2.08)2	+	112)	=	.19.	
	 Whether	to	use	rpb	or	t	is	a	matter	of	preference	or,	in	some	cases,	consistency	with	
other	analyses	in	the	study.	For	example,	if	you’ve	already	done	a	series	of	correlations	for	
other	variables,	it	might	be	simplest	for	your	audience	if	you	use	rpb	rather	than	t.	

Phi Coefficient 
	 When	both	variables	are	dichotomous,	you’d	use	a	phi	coefficient.	This	is	symbolized	
using	the	Greek	letter	f	in	APA	style.39	For	example,	if	you’re	correlating	gender	with	self-
esteem,	but	the	self-esteem	scores	have	been	categorized	as	high	vs.	low,	you’d	use	f.	

Calculating Correlations and Testing Hypotheses 
	 There’s	a	formula	that	can	be	used	to	calculate	all	of	the	correlations	listed	above,	and	
there	are	specialized	formulas	that	can	be	used	to	simplify	calculations	for	some	of	them.	
Back	when	this	had	to	be	done	by	hand,	such	shortcuts	were	invaluable.	Nowadays,	you’ll	
use	a	computer	to	calculate	correlations	for	you,	in	which	case	the	many	formulas	need	not	
concern	you.	To	help	you	understand,	conceptually,	what	is	going	on,	here’s	one	version	of	
a	formula	that	can	be	used	to	calculate	a	correlation:	

	 	 r	=	S(zx	´	zy)	/	N	

	 To	use	this	formula,	you	first	standardize	the	X	and	Y	variables	by	converting	them	to	z	
scores;	that’s	what	zx	and	zy	represent.	Then,	for	each	of	the	N	cases,	you	multiple	the	z	
scores	for	the	X	and	Y	variables.	The	average	of	these	products	is	the	correlation.		
	 To	see	how	this	gives	us	something	very	useful,	let’s	revisit	the	first	scatterplot	shown	
in	this	chapter,	this	time	standardizing	both	SAT	scores	and	adding	reference	lines	at	z	
scores	of	0	on	both	axes:	

	

																																																								
39	Yes,	life	would	be	simpler	if	this	was	also	called	a	correlation	and	symbolized	with	r	plus	a	subscript,	but	
that’s	just	not	how	it	is.	
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	 Notice	that	most	of	the	data	points	fall	in	either	the	upper-right	or	the	lower-left	
quadrants.	This	means	that	for	most	points,	the	z	scores	are	either	both	positive	values	or	
both	negative	values.	When	we	multiply	two	positive—or	two	negative—z	scores,	we	get	
positive	products.	There	are	relatively	few	points	for	which	multiplying	the	z	scores	will	
yield	a	negative	product	(i.e.,	few	points	with	positive	z	for	Math	and	negative	z	for	Verbal,	
or	vice	versa).	Thus,	the	average	of	the	products	will	be	a	strong	positive	value.	In	this	case,	
that	average	comes	to	r	=	.56.	The	sign	captures	the	upward	trend	in	the	scatterplot,	the	
fact	that	SAT	Verbal	scores	tend	to	increase	along	with	SAT	Math	scores.	The	size	captures	
the	extent	to	which	the	points	tend	to	cluster	around	a	best-fitting	line,	meaning	that	the	
points	fall	into	two	diagonally	aligned	quadrants.	Here,	the	association	is	fairly	strong.	
	 When	using	a	correlation	to	test	the	relationship	between	two	variables,	the	null	
hypothesis	represents	no	association	and	the	alternative	hypothesis	represents	the	
opposite:	

	 	 H0:	r	=	0	
	 	 H1:	r	¹	0	

	 The	Greek	letter	r	(rho)	represents	the	population	correlation,	and	the	null	value	is	
always	0.	These	are	nondirectional	hypotheses,	and	one	can	test	directional	hypotheses	if	
desired	(e.g.,	H0:	r	≤	0	and	H1:	r	>	0).	
	 The	df	for	a	correlation	is	N	–	2,	the	same	as	for	an	independent	groups	t	test	because	
there	are	two	sample	statistics	used	to	estimate	population	parameters.40	You	can	consult	a	
table	of	critical	values	to	determine	whether	an	observed	correlation	falls	in	the	critical	
region,	but	it’s	easier	to	obtain	the	p	value	from	computer	output	and	compare	this	to	the	a	
level.	As	usual,	if	p	<	a	you	reject	H0,	otherwise	you	retain	H0.	For	example,	for	the	SAT	
scores	plotted	above,	there	is	a	statistically	significant	correlation:	r(198)	=	.56,	p	<	.001.	

Using SPSS 
	 To	generate	a	scatterplot	and	calculate	a	correlation	on	SPSS,	you	first	enter	your	data	
into	two	separate	variables	(columns).	To	serve	as	an	illustration,	two	variables	from	the	
parole	data	set	are	used.	The	variables	are	“LCSF”	and	“Educ”	(years	of	education).	The	full	
data	set	didn’t	fit	onto	the	screen,	but	here’s	the	beginning:	

																																																								
40	Specifically,	the	sample	statistics	are	the	variance	of	X	and	the	variance	of	Y,	each	of	which	is	used	to	
estimate	its	population	variance.	This	is	not	apparent	when	you	view	the	formula	for	calculating	a	correlation	
from	z	scores,	but	that’s	only	because	the	variances	were	standardized	to	1	when	creating	z	scores	and	
therefore	drop	out	of	the	correlation	formula.	
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	 Next,	you	use	the	following	commands:	
	 	 graph	
	 	 /scatterplot(bivar)	=	educ	with	lcsf	

	 	 corr	vars	=	educ	lcsf	
	 The	“graph”	command	will	generate	a	scatterplot.	Specify	your	X	variable	(here,	“Educ”)	
and	then	your	Y	variable	(here,	“LCSF”),	separated	by	“with”.	The	“corr”	command	will	
calculate	a	correlation	coefficient	between	the	X	and	Y	variables	that	you	specify.	
	 The	graph	command	will	produce	a	scatterplot:	

	 	
	 Though	there	are	tied	scores,	this	plot	shows	an	inverse	relationship:	Higher	LCSF	
scores	are	associated	with	fewer	years	of	education.	
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	 The	correlation	command	will	produce	a	correlation	matrix:	

	
	 Even	when	you	list	only	two	variables	on	the	correlation	command,	SPSS	produces	a	
matrix	of	results.	Cells	along	the	diagonal	represent	the	correlation	of	a	variable	with	itself,	
which	you	can	ignore.	Cells	above	and	below	the	diagonal	are	mirror	images,	so	you	can	
also	ignore	either	the	top	or	the	bottom	of	the	matrix.	In	this	case,	there	is	only	a	single	cell	
with	results	that	you	need.	First,	SPSS	provides	the	r	value	(labeled	as	“Pearson	
Correlation”).	Note	that	even	though	it’s	labeled	as	a	Pearson	correlation,	you	can	use	the	
same	command	on	SPSS	to	calculate	any	of	the	other	correlations	described	earlier	(rS,	rpb,	
or	f).	The	output	will	still	be	listed	as	“Pearson	Correlation”,	but	if	you	provide	two	ranked	
variables	it	will	be	rS	(and	likewise	for	rpb	or	f).	Second,	SPSS	provides	the	p	value	(labeled	
as	“Sig.	(2-tailed)”).	If	you	want	to	perform	a	1-tailed	test,	simply	divide	this	value	by	2	to	
get	the	correct	p	value.	Third,	SPSS	provides	N.	Note	that	you	need	to	calculate	df	=	N	–	2	to	
report	this	in	APA	style.	

APA Style 
	 Scatterplots	are	seldom	presented	in	research	reports.	As	discussed	in	the	next	chapter,	
these	are	tools	for	you	to	check	for	influences	on	the	correlation	that	you’d	want	to	know	
about.	Correlations	themselves	are	very	simple	to	report	in	a	single	sentence	in	APA	style.	
Whereas	a	measure	of	effect	size	is	appended	to	many	kinds	of	statistical	results	(e.g.,	a	z	or	
t	test	is	followed	by	a	d	value,	an	F	test	is	followed	by	an	h2	value),	a	correlation	coefficient	
is	its	own	measure	of	effect	size.	Here’s	what	the	results	would	look	like	for	the	correlation	
between	LCSF	scores	and	education:	

	 Years	of	education	correlated	statistically	significantly	with	scores	on	the	Lifestyle	

Criminality	Screening	Form	(LCSF),	r(112)	=	-.48,	p	<	.001.	

	 Notice	that	this	was	phrased	in	a	way	that	indicates	a	2-tailed	test.	The	correlation	
coefficient	indicates	the	direction	of	the	observed	effect—that	education	is	inversely	
related	to	LCSF	score—but	the	phrasing	is	neutral.	Note	also	that	the	decision	to	treat	one	
variable	as	X	and	the	other	as	Y	is	arbitrary	in	correlational	analyses.	This	means	that	you	
can	reverse	the	X	and	Y	variables	with	no	change	in	the	correlational	results.	
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Problems 
	 Below	is	a	scatterplot	for	200	employees’	scores	on	an	IQ	test	(for	which	µ	=	100,	s	=	
15)	and	ratings	of	their	job	performance	on	a	5-point	scale.	

	
1.	 If	you	were	to	calculate	a	correlation	coefficient,	would	you	expect	its	sign	to	be	positive	

or	negative?	Why?	

2.	 If	you	were	to	calculate	a	correlation	coefficient,	approximately	how	large	would	you	
expect	it	to	be?	Just	take	your	best	guess,	keeping	in	mind	the	possible	range	of	values	
for	any	correlation.	

3.	 Below	is	the	SPSS	output	for	a	correlation	analysis.	Report	the	results	in	APA	style.	

	
4.	 Suppose	that	both	of	these	variables	were	converted	to	ranks.	The	highest	IQ	score	

would	become	a	1	(the	highest	rank),	the	second-highest	IQ	would	become	a	2,	and	so	
forth.	Job	performance	would	still	vary	along	just	5	values	because	there	are	so	many	
tied	scores;	the	highest	value	(5)	would	become	a	1	(the	highest	rank),	the	second-
highest	(4)	would	become	a	2,	and	so	forth.	When	the	correlation	is	calculated	(see	
table	below),	what	type	of	correlation	coefficient	does	this	become?	Report	these	new	
results	in	APA	style.	



	 141	

	
5.	 Suppose	that	IQ	scores	were	split	at	the	median	and	recoded	as	1	=	low,	2	=	high,	with	

job	performance	remaining	on	its	original	5-point	scale.	When	the	correlation	is	
recalculated	(see	table	below),	what	type	of	correlation	coefficient	does	this	become?	
Report	these	new	results	in	APA	style.	

	
6.	 Suppose	that	both	IQ	scores	and	job	performance	ratings	were	split	at	their	median	

values	and	recoded	as	1	=	low,	2	=	high.	When	the	correlation	is	recalculated	(see	table	
below),	what	type	of	correlation	coefficient	does	this	become?	Report	these	new	results	
in	APA	style.	

	
7.	 What	is	the	coefficient	of	determination	for	the	original	correlation	(shown	in	problem	

#3)?	What	does	this	number	represent?	
8.	 What	is	the	coefficient	of	determination	for	the	correlation	when	IQ	was	dichotomized	

(shown	in	problem	#5)?	What	does	this	number	represent?	

9.	 Why	is	the	value	for	#8	so	much	smaller	than	the	value	for	#7?	
*	*	*	

10.	Below	are	the	scatterplot	and	correlation	analysis	for	the	very	small	sample	of	SAT	data	
from	the	chapter	on	the	related	samples	t	test.	Report	the	results	in	APA	style.	
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11.	Enter	the	SAT	data	(shown	below)	into	SPSS.	Follow	the	instructions	in	the	text	for	how	

to	organize	the	data	file	and	enter	the	commands	to	generate	a	scatterplot	and	calculate	
a	correlation	coefficient.	Check	that	your	output	matches	what’s	shown	above.		

	

Problems 1 – 9 are due at the beginning of class. 
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16. Factors Influencing Correlation 

Overview 
	 The	previous	chapter	introduced	the	correlation	coefficient,	and	this	chapter	deals	with	
ways	that	it	can	mislead	the	unwary.	The	size,	and	even	the	sign,	of	the	correlation	
coefficient	can	be	affected	by	characteristics	of	the	data	that	you	might	not	notice	unless	
you	check	carefully.	

Nonlinear Relationship 
	 The	correlation	coefficient	quantifies	the	extent	to	which	the	data	points	in	a	scatterplot	
tend	to	cluster	around	a	line.	If	there’s	a	strong	relationship	between	two	variables,	but	it’s	
nonlinear,	the	correlation	will	underestimate	the	strength	of	the	relationship.	
	 For	example,	the	well-known	Yerkes-Dodson	law	predicts	a	nonlinear	relationship	
between	physiological	or	mental	arousal	and	performance	on	a	task.	Specifically,	the	
relationship	is	expected	to	resemble	an	inverted	U,	with	the	optimal	level	of	arousal	being	
moderate.	Performance	suffers	with	too	little	arousal,	due	to	lack	of	attention	or	interest,	or	
too	much	arousal,	due	to	overstimulation	or	anxiety.	Illustrative	data	are	plotted	below,	
along	with	the	line	of	best	fit:41	

	
	 As	you	can	see,	the	line	is	a	poor	fit	to	these	data.	The	correlation	of	r	=	-.06,	which	is	
very	close	to	0,	underestimates	the	strength	of	the	relationship.	This	demonstrates	the	
importance	of	examining	a	scatterplot	whenever	you	calculate	a	correlation.	You	could	be	
fooled	by	the	low	correlation	if	you	didn’t	check	the	plot.	
	 Whenever	you	inspect	a	scatterplot	and	find	that	a	curve	fits	better	than	a	line,	the	best	
response	is	to	fit	a	curve	to	the	data.	Determining	what	kind	of	curve	to	use	is	an	art	in	
itself,	and	one	we	will	not	explore	here.	In	this	particular	case,	it	turns	out	that	a	parabola	
(an	equation	with	coefficients	for	the	X	variable	and	X2)	fits	the	scatterplot	much	better	
than	a	line	(an	equation	based	only	on	X	values).	Here’s	the	same	data,	this	time	modeled	
with	the	best-fitting	parabola	rather	than	the	best-fitting	line:	

																																																								
41	We’ll	see	how	“best	fit”	is	defined,	plus	how	to	find	the	equation	of	the	best-fitting	line,	in	the	next	chapter.	
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	 When	the	data	are	modeled	using	a	parabola	rather	than	a	line,	the	correlation	
increases	from	a	meager	r	=	-.06	to	a	very	large	R	=	.86.	This	reflects	what	we	see	in	the	
scatterplot,	a	very	strong	relationship	between	arousal	and	performance.	We’ll	see	why	the	
correlation	coefficient	for	the	parabola	is	expressed	as	a	capital	R	in	the	next	chapter.	

Different Distributions 
	 When	the	distributions	of	the	X	and	Y	variables	differ,	the	points	in	a	scatterplot	cannot	
fall	along	a	straight	line.	This,	by	itself,	reduces	the	correlation	relative	to	what	it	would	
have	been	had	the	variables	had	more	similar	distributions.		
	 For	example,	suppose	X	is	positively	skewed	and	Y	is	negatively	skewed.	This	would	
force	most	of	the	points	in	the	scatterplot	into	the	upper-left	corner,	where	values	are	low	
for	X	but	high	for	Y.	Below	are	histograms	for	such	an	X-Y	pair,	followed	by	the	scatterplot:	

	
	 There’s	no	way	for	a	line	to	fit	this	plot	well,	and	the	correlation	is	only	r	=	.33.	To	get	a	
better	estimate	of	the	strength	of	the	relationship	between	X	and	Y,	you’d	need	to	
transform	the	data.	There	are	at	least	two	ways	to	do	this.	
	 First,	you	could	calculate	Spearman’s	rank-order	correlation	rather	than	the	usual	
Pearson	correlation.	Recall	that	Spearman’s	correlation	is	for	ranked	data.	By	converting	
both	X	and	Y	to	ranks,	you	force	their	distributions	to	be	equivalent.	Specifically,	they’d	be	
uniform	distributions:	The	highest	score	is	ranked	1,	the	second-highest	is	ranked	2,	and	so	
forth,	all	the	way	through	the	lowest	score,	which	is	ranked	N.	When	this	is	done	for	the	
data	shown	above,	the	correlation	increases	from	r	=	.33	to	rS	=	.57.	Using	Cohen’s	rules	of	
thumb,	that’s	the	difference	between	a	medium	and	a	large	correlation.	Another	way	to	
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express	the	difference	is	with	the	coefficient	of	determination.	This	increases	from	r2	=	.11	
to	rS2	=	.32,	which	means	nearly	three	times	as	much	variance	is	explained	once	data	are	
converted	to	ranks.	
	 Second,	you	could	normalize	the	data	by	using	nonlinear	transformations	for	each	
variable.	This	would	also	force	their	distributions	to	be	equivalent,	this	time	normal	rather	
than	uniform.	When	a	percentile	transformation	is	used	to	normalize	these	data,42	the	
correlation	increases	from	r	=	.33	to	r	=	.54.	Once	again,	that’s	the	difference	between	a	
medium	and	a	large	correlation,	or	between	r2	=	.11	and	r2	=	.29.	Here’s	what	the	
histograms	and	the	scatterplot	look	like	after	normalizing	the	variables:	

	
	 Whether	ranked	or	normalized,	the	distributions	of	X	and	Y	became	more	similar	to	one	
another	and	the	size	of	the	correlation	increased	substantially.	This	better	reflects	the	true	
strength	of	the	relationship	between	X	and	Y	for	these	data.		

Outliers 
	 The	presence	of	one	or	more	outliers	can	exert	a	strong	influence	on	the	correlation.	
One	way	to	identify	outliers	is	to	examine	histograms	for	X	and	Y,	but	the	scatterplot	should	
also	be	checked	for	the	presence	of	multivariate	outliers.	A	multivariate	outlier	is	a	case	
whose	score	isn’t	extreme	on	either	X	or	Y,	but	it	is	extreme	when	X	and	Y	are	considered	
together.	For	example,	an	adult	who	is	6	feet	tall	isn’t	an	outlier,	neither	is	an	adult	who	
weighs	120	pounds.	However,	an	adult	who’s	6	feet	tall	and	weighs	120	pounds	is	a	
multivariate	outlier.	That’s	a	highly	unusual	combination	of	height	and	weight.	
	 Below	is	a	series	of	four	scatterplots	showing	the	relationship	between	SAT	scores	and	
college	GPA.	Each	graph	contains	N	=	19	cases	plotted	as	open	circles,	plus	the	line	of	best	
fit	for	these	cases	only.	The	first	plot	(upper	left)	contains	nothing	more	and	serves	as	a	
point	of	reference,	with	r	=	.71.		
	 The	second	plot	(upper	right)	adds	to	the	original	19	cases	a	single	outlier	that’s	near	
the	mean	SAT	but	at	a	very	low	GPA.	This	point	doesn’t	fit	the	trend	in	the	original	data,	and	
as	a	result	the	correlation	is	reduced	from	r	=	.71	to	r	=	59.	Expressing	this	using	the	
coefficient	of	determination	shows	that	r2	drops	from	.51	to	.34,	a	one-third	reduction	in	
the	proportion	of	variance	explained.	Checking	the	histogram	or	the	scatterplot	would	have	

																																																								
42	To	perform	the	percentile	transformation,	you	first	convert	each	score	to	a	percentile	and	then	calculate	
the	z	score	that	corresponds	to	each	of	these	percentiles.		
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revealed	this	outlier,	which	could	have	been	removed	to	recalculate	the	correlation	without	
the	influence	of	the	extreme	score.	
	 The	third	plot	(lower	left)	adds	a	single	outlier	to	the	original	19	cases	that	happens	to	
fall	along	the	line	that	best	fit	those	data.	This	outlier,	also	identifiable	in	a	histogram,	
increases	the	correlation	from	r	=	.71	to	r	=	.79.	This	is	a	fortunate	coincidence	in	the	sense	
that	the	extreme	score	happened	to	be	perfectly	consistent	with	the	trend	in	the	data.	
	 The	fourth	plot	(lower	right)	adds	a	single	multivariate	outlier	that	matches	both	the	
highest	SAT	and	the	lowest	GPA	in	the	sample.	This	point	is	very	far	from	the	line	that	best	
fit	the	original	data,	and	as	a	result	the	correlation	is	reduced	from	r	=	.71	to	r	=	.46.	The	
coefficient	of	determination	drops	from	r2	=	.51	to	r2	=	.21,	a	reduction	of	more	than	half	in	
the	proportion	of	variance	explained.	Histograms	would	not	have	revealed	this	outlier	
because	it’s	not	extreme	on	X	or	Y.	It	only	stands	out	in	the	scatterplot.	

	
	 Whenever	you	identify	one	or	more	outliers,	it’s	a	good	idea	to	calculate	and	report	the	
correlation	both	with	and	without	the	outliers.	That	way,	a	reader	can	see	how	strong	an	
influence	the	outlier(s)	exert	on	the	results.	

Restriction of Range 
	 The	correlation	between	two	variables	usually	will	be	reduced	if	there	is	a	restriction	
of	range	on	X	or	Y,	meaning	that	scores	do	not	vary	across	the	full	range	of	possible	values.	
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	 For	example,	suppose	that	1,000	students	apply	to	a	college,	all	are	accepted,	and	their	
SAT	(Math	+	Verbal)	scores	are	plotted	along	with	their	first-year	college	GPAs.	Here’s	what	
that	might	look	like;	the	correlation	in	this	case	is	r	=	.80:	

	
	 What	would	happen	if	this	had	been	a	college	that	only	admitted	students	at	or	above	
an	SAT	of	1100,	and	that	also	dismissed	students	if	their	GPA	fell	below	2.00?	Thresholds	
like	these	are	common	at	many	selective	colleges.	Of	the	1,000	applicants	shown	above,	
only	N	=	299	would	be	admitted	(based	on	a	high	enough	SAT)	and	remain	enrolled	(based	
on	a	high	enough	GPA).	Here’s	what	the	scatterplot	would	look	like	for	these	individuals,	
with	dotted	lines	showing	the	SAT	and	GPA	thresholds:	

	
	 The	correlation	among	these	299	students	is	only	r	=	.53.	Expressed	using	the	
coefficient	of	determination,	that’s	a	drop	from	r2	=	.64	for	the	1,000	applicants	to	r2	=	.29	
for	the	299	enrolled	students,	or	a	reduction	of	more	than	half	the	variance	explained.	
	 What	this	demonstrates	is	that	correlations	calculated	in	samples	with	restricted	ranges	
can	seriously	underestimate	the	true	correlation	between	X	and	Y.	The	preferred	way	to	get	
a	better	estimate	is	to	design	research	so	that	samples	will	vary	along	the	full	ranges	on	all	
relevant	variables.	Unfortunately,	that’s	not	always	feasible.	For	example,	it’s	hard	to	find	a	
college	that	admits	all	applicants	and	that	lets	all	students	continue	regardless	of	how	low	
their	GPAs	fall.	In	other	words,	in	most	real-world	settings,	the	ranges	of	SAT	scores	and	
college	GPAs	are	restricted.	
	 A	second-best	strategy	for	getting	a	better	estimate	of	the	correlation	between	X	and	Y	
is	to	use	an	appropriate	formula	to	estimate	what	the	true	correlation	would	have	been	if	
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their	ranges	had	not	been	restricted.43	For	instance,	given	the	variability	of	the	observed	
SAT	scores	among	the	299	enrolled	students	and	an	estimate	of	the	variability	of	SAT	
scores	among	all	students	who	took	the	SAT,	the	observed	correlation	of	r	=	.53	can	be	
adjusted	to	obtain	an	estimate	of	r’	=	.78.	Making	a	further	correction	for	range	restriction	
in	GPAs	would	require	an	estimate	of	how	much	their	variability	was	reduced.	If	one	was	
willing	to	provide	such	an	estimate,	the	adjusted	correlation	between	SAT	and	GPA	would	
increase	again.	

Measurement Error 
	 The	final	factor	considered	in	this	chapter	influences	every	correlation	to	some	extent.	
Nothing	can	be	measured	with	perfect	reliability,	hence	there	will	always	be	some	random	
error	in	measurements.	For	example,	when	we	administer	an	IQ	test,	the	observed	IQ	
scores	are	imperfect	estimates	of	true	IQ	scores	due	to	various	sources	of	measurement	
error.	Recall	that	whereas	bias	is	systematic,	error	is	randomly	distributed.	Measurement	
error,	as	noted	in	the	discussion	of	regression	toward	the	mean	as	a	threat	to	internal	
validity,	consists	of	the	random	differences	between	true	scores	and	observed	scores.	
	 This	is	important	because	the	correlation	between	any	two	variables	will	be	reduced	as	
the	amount	of	measurement	error	in	each	one	increases.	To	understand	why,	consider	a	
hypothetical	case	in	which	X	and	Y,	if	measured	free	of	error,	would	be	perfectly	correlated.	
All	the	data	points,	representing	true	scores,	would	fall	on	a	line:	

		
	 The	correlation	between	true	scores	is	1.00,	but	we	can	never	observe	true	scores.	
What	happens	when	measurement	error	is	introduced?	The	error	in	measuring	X	will	
nudge	each	data	point	a	bit	to	the	left	or	the	right,	at	random,	in	the	scatterplot.	In	the	plot	
shown	below,	each	true	score	(open	circle)	is	connected	to	its	corresponding	observed	
score	(filled	circle)	by	a	line	segment	that	represents	random	measurement	error:	

																																																								
43	There	are	many	formulas	for	different	kinds	of	range	restriction	(e.g.,	direct	vs.	indirect	range	restriction;	
restriction	on	X,	Y,	or	both).	An	excellent	source	on	this	subject	is	Sackett,	P.	R.,	&	Yang,	H.	(2000).	Correction	
for	range	restriction:	An	expanded	typology.	Journal	of	Applied	Psychology,	85,	112-118.	
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	 Of	course,	measurement	error	is	not	limited	to	X.	The	Y	variable	will	also	be	affected,	
with	scores	nudged	up	or	down.	Here’s	a	look	at	the	effect	of	measurement	error	on	Y:	

	
	 Finally,	here	are	scatterplots	that	show	the	combined	influence	of	measurement	error	
on	X	and	Y.	The	plot	on	the	left	includes	the	true	scores	and	the	lines	that	connect	them	to	
the	corresponding	observed	scores.	The	plot	on	the	right	shows	only	the	observed	scores:	

	 	
	 Notice	in	the	plot	on	the	left	that	very	few	of	the	observed	scores	(the	filled	circles)	fall	
on	the	original	line	running	through	the	true	scores	(the	open	circles).	Measurement	error	
disperses	observed	scores	at	random	to	create	the	cloud	of	points	shown	in	the	plot	on	the	
right.	In	this	case,	measurement	error	resulted	in	a	correlation	between	observed	scores	of	
r	=	.69,	a	serious	underestimate	of	the	correlation	between	true	scores	of	r	=	1.00.	
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	 Measurement	error	affects	all	correlations,	whether	the	correlation	between	true	
scores	is	large	or	small.	Fortunately,	there’s	an	easy	way	to	estimate	the	correlation	
between	true	scores.	This	is	done	by	adjusting	the	correlation	between	observed	scores	to	
take	into	account	the	reliability	with	which	each	variable	was	measured.	
	 Reliability	is	expressed	as	a	correlation,	with	rxx	representing	the	reliability	of	X	and	ryy	
representing	the	reliability	of	Y.	If	there	were	no	measurement	error	for	X,	rxx	=	1.00.	At	the	
other	extreme,	if	X	is	measured	with	no	reliability,	meaning	that	it	consists	of	nothing	but	
measurement	error,	rxx	=	.00.	In	the	example	shown	above,	rxx	=	.74	and	ryy	=	.66.	These	
values	are	typical	of	the	reliability	of	variables	measured	in	social	and	behavioral	science.	
	 There	are	many	ways	to	estimate	the	reliability	with	which	a	variable	is	measured.44	
For	present	purposes,	we’ll	presume	that	this	information	has	been	provided.	Given	the	
observed	correlation	and	estimates	of	rxx	and	ryy	,	a	simple	formula	can	be	used	to	estimate	
the	correlation	between	true	scores:	

	 	 r’	=	r	/	sqrt(rxx	´	ryy)	

	 This	formula	adjusts	the	correlation	upward	using	the	average	reliability	of	the	two	
measures.45	Only	if	one	or	both	reliabilities	are	only	slightly	below	1.00	there	will	not	be	
much	of	an	adjustment,	but	it	will	always	be	the	case	that	r’	≥	r.	When	one	or	both	
reliabilities	are	well	below	1.00	there	will	be	a	more	substantial	adjustment.	
	 For	example,	consider	the	artificial	data	used	in	the	scatterplots	shown	above.	The	
correlation	between	true	scores	was	1.00.	The	formula	estimates	this	correlation	to	be	r’	=	
.69	/	sqrt(.74	´	.66)	=	.99.	For	actual	data,	the	true	correlation	would	seldom	approach	
1.00;	this	calculation	is	shown	only	to	illustrate	how	to	use	the	formula.	
	 As	a	more	realistic	example,	suppose	that	a	sample	of	employees’	IQ	test	scores	
correlate	with	ratings	of	their	job	performance	at	r	=	.40.	This	is	a	typical	value	observed	in	
research	on	this	subject.	If	the	reliability	of	the	IQ	test	is	estimated	to	be	rxx	=	.90	and	the	
reliability	of	the	job	performance	ratings	is	estimated	to	be	ryy	=	.70,	the	estimated	
correlation	between	true	scores	would	be	r’	=	.40	/	sqrt(.90	´	.70)	=	.50.	This	is	very	close	
to	what	meta-analysis	estimates	as	the	correlation	between	IQ	test	scores	and	job	
performance	ratings.	

Problems 
1.	 The	faculty	at	a	competitive	Ph.D.	program	find	that	the	correlation	between	current	

students’	GRE	scores	and	graduate	GPAs	is	only	r	=	.30.	They	conclude	that	the	GRE	is	
not	a	very	useful	predictor	of	success	in	graduate	school	and	should	not	be	used	for	
graduate	admissions.	Why	is	r	=	.30	probably	an	underestimate	of	the	strength	with	
which	GRE	scores	predict	graduate	GPAs?	What	can	be	done	to	get	a	better	estimate?	

2.	 Increasing	the	dosage	of	a	medication	has	strong	and	positive	effects	up	to	a	certain	
point,	and	then	the	response	reaches	a	plateau.	There	appears	to	be	a	strong	dose-

																																																								
44	An	excellent	source	on	this	subject	is	Schmidt,	F.	L.	&	Hunter,	J.	E.	(1996).	Measurement	error	in	
psychological	research:	Lessons	from	26	research	scenarios.	Psychological	Methods,	1,	199-223.	
45	The	denominator	is	a	type	of	average	known	as	the	geometric	mean,	which	is	calculated	as	the	Nth	root	of	
the	product	of	N	scores.	
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response	relationship,	but	the	correlation	is	only	r	=	.20.	Why	is	this	probably	an	
artificially	low	estimate	of	the	strength	of	the	dose-response	relationship?	What	can	be	
done	to	get	a	better	estimate?	

3.	 There	is	an	old	saying	that	people	“drive	as	they	live,”	meaning	that	one’s	personality	is	
reflected	in	their	driving	habits.	An	investigator	collects	data	on	impulsivity	(measured	
using	a	brief	self-report	questionnaire)	and	unsafe	driving	(indexed	as	the	number	of	
tickets	for	traffic	violations	recorded	by	an	insurance	company),	expecting	to	find	a	
large	correlation.	It	turns	out	that	r	=	.10.	Why	is	this	probably	an	underestimate	of	the	
strength	of	the	relationship	between	impulsivity	and	unsafe	driving?	What	can	be	done	
to	get	a	better	estimate?	

4.	 An	investigator	wonders	whether	the	length	of	articles	appearing	in	a	journal	
(measured	as	the	number	of	words)	is	related	to	the	scholarly	impact	of	the	articles	
(measured	as	the	number	of	citations	it	receives	in	other	articles	published	within	the	
next	5	years).	The	distribution	of	article	lengths	is	close	to	normal,	and	the	distribution	
of	citations	is	extremely	positively	skewed.	The	correlation	between	articles’	length	and	
impact	is	r	=	.10,	which	the	investigators	find	to	be	surprisingly	small.	Why	is	this	
probably	an	underestimate	of	the	strength	of	the	relationship	between	article	length	
and	article	scholarly	impact?	What	can	be	done	to	get	a	better	estimate?	

5.	 In	a	sample	of	psychotherapists,	the	relationship	between	clinical	experience	(indexed	
by	years	of	practice)	and	accuracy	of	judgment	(measured	using	a	series	of	diagnostic	
problems)	is	studied.	This	sample	includes	a	couple	of	individuals	who	have	been	
practicing	much	longer	than	everyone	else,	but	their	training	is	obsolete	and	their	
knowledge	of	current	diagnostic	guidelines	is	quite	poor.	The	correlation	between	
experience	and	judgment	accuracy	is	only	r	=	.10.	Why	is	this	probably	an	
underestimate	of	the	strength	of	the	relationship	between	clinical	experience	and	
accuracy	of	judgment?	What	can	be	done	to	get	a	better	estimate?	

*	*	*	
6.	 A	clinical	psychologist	is	interested	in	the	comorbidity,	or	co-occurrence,	of	Post-

Traumatic	Stress	Disorder	(PTSD)	and	Major	Depressive	Disorder	(MDD).	Structured	
interviews	are	administered	to	assess	the	symptoms	of	each	disorder,	and	a	sample	of	
patients	who	meet	diagnostic	criteria	for	both	disorders	is	formed.	Within	this	sample,	
the	correlation	between	PTSD	and	MDD	symptoms	is	r	=	.30.	Why	is	this	probably	an	
underestimate	of	the	strength	of	the	relationship	between	PTSD	and	MDD	symptoms?	
What	can	be	done	to	get	a	better	estimate?	

7.	 An	investigator	hypothesizes	that	people	who	can	remember	more	of	their	dreams	are	
more	creative	individuals.	To	test	this,	a	sample	of	undergraduate	students	is	asked	to	
recall	how	many	dreams	they	experienced	during	the	past	week	and	to	write	a	Haiku	(a	
short	poem	that	typically	has	5,	7,	and	5	syllables	per	line).	English	professors	rate	the	
creativity	of	these	Haikus,	and	this	correlates	r	=	.20	with	the	number	of	dreams.	Why	is	
this	probably	an	underestimate	of	the	strength	of	the	relationship	between	dream	
frequency	and	creativity?	What	can	be	done	to	get	a	better	estimate?	

8.	 All	twenty	students	taking	their	first	algebra	class	in	middle	school	are	asked	to	
estimate	how	many	hours	they	spend	on	homework	and	study	outside	of	class.	Most	
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students	spend	at	least	10	hours	per	week	mastering	the	material,	but	one	student	finds	
it	so	easy	to	grasp	that	she	never	brings	the	book	home.	She’s	able	to	skim	it	during	
class	while	paying	just	enough	attention	to	her	teacher	to	attain	a	perfect	score	on	every	
quiz	and	test.	The	correlation	between	study	time	and	grades	in	the	course	is	r	=	.30.	
Why	is	this	probably	an	underestimate	of	the	strength	of	the	relationship	between	
study	time	and	grades?	What	can	be	done	to	get	a	better	estimate?	

9.	 One	of	the	three	key	features	of	prospect	theory,	a	cornerstone	of	behavioral	economics,	
is	that	there	are	diminishing	returns	for	gains	or	losses.	For	example,	gaining	$200	feels	
less	than	twice	as	good	as	gaining	$100.	A	neuroscientist	measures	brain	activity	in	
response	to	various	levels	of	financial	gain	or	loss	and	finds	that	this	correlates	r	=	.50	
with	subjects’	ratings	of	how	good	or	bad	this	makes	them	feel.	Why	is	this	probably	an	
underestimate	of	the	strength	of	the	relationship	between	actual	and	perceived	gains	or	
losses?	What	can	be	done	to	get	a	better	estimate?	

10.	A	history	instructor	wonders	whether	students	who	complete	a	10-item	quiz	the	fastest	
score	the	highest.	On	a	typical	quiz,	most	students	turn	in	their	quizzes	after	about	5	
minutes,	a	handful	finish	within	the	next	5	minutes,	and	a	few	take	even	longer.	Many	
students	get	9	or	10	items	correct	and	most	get	at	least	7,	but	a	few	score	as	low	as	3	or	
4	correct.	The	correlation	between	time	to	complete	the	quiz	and	the	number	of	items	
correct	is	r	=	.20.	Why	is	this	probably	an	underestimate	of	the	strength	of	the	
relationship	between	time	and	score?	What	can	be	done	to	get	a	better	estimate?	

*	*	*	

11.	A	developmental	psychologist	tests	the	expressive	vocabulary	of	a	sample	of	children	
varying	in	age	between	12	and	36	months.	Because	the	number	of	words	children	use	is	
expected	to	double	every	few	months	or	so,	she	is	surprised	that	the	correlation	
between	age	and	vocabulary	is	only	r	=	.50.	Why	is	this	probably	an	underestimate	of	
the	strength	of	the	relationship	between	these	variables?	What	can	be	done	to	get	a	
better	estimate?	

12.	An	industrial/organizational	psychologist	wonders	how	much	income	increases	with	
education.	She	gathers	data	for	a	sample	of	practicing	attorneys,	and	finds	that	years	of	
schooling	correlates	only	r	=	.10	with	yearly	earnings.	Why	is	this	probably	an	
underestimate	of	the	strength	of	the	relationship	between	these	variables?	What	can	be	
done	to	get	a	better	estimate?	

13.	A	biopsychologist	is	interested	in	the	relationship	between	alcohol	consumption	and	
academic	performance.	A	sample	of	college	seniors	provides	their	GPAs,	which	are	
mostly	very	high	but	range	down	to	barely	above	the	minimum	for	graduation,	and	the	
number	of	drinks	they	consume	in	a	typical	week	when	classes	are	in	session,	which	is	
usually	zero	or	very	few	but	ranges	up	into	the	dozens	for	some	students.	The	
correlation	between	drinking	and	grades	is	r	=	.20.	Why	is	this	probably	an	
underestimate	of	the	strength	of	the	relationship	between	these	variables?	What	can	be	
done	to	get	a	better	estimate?	

14.	A	personality	psychologist	wonders	whether	people	who	are	more	extraverted,	who	
tend	to	have	more	friends	and	acquaintances,	also	have	larger	social	networks	on	social	
media.	A	sample	of	college	students	with	Facebook	accounts	completes	a	standard	
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personality	inventory	that	includes	an	extraversion	scale.	The	average	number	of	
friends	they	have	on	Facebook	was	about	650,	though	a	few	students	had	dramatically	
larger	networks	with	more	than	2,000	friends.	The	correlation	between	extraversion	
scores	and	number	of	Facebook	friends	was	r	=	.30.	Why	is	this	probably	an	
underestimate	of	the	strength	of	the	relationship	between	these	variables?	What	can	be	
done	to	get	a	better	estimate?	

15.	A	health	psychologist	administered	a	lengthy	questionnaire	to	a	sample	of	college	
students.	One	item	asked	students	whether	they	consider	themselves	to	be	healthy	or	
unhealthy,	and	another	whether	they	experience	a	high	or	low	level	of	stress	on	a	daily	
basis.	The	correlation	between	stress	and	health	was	r	=	.20.	Why	is	this	probably	an	
underestimate	of	the	strength	of	the	relationship	between	these	variables?	What	can	be	
done	to	get	a	better	estimate?	

Problems 1 – 5 are due at the beginning of class. 
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17. Regression 

Overview 
	 The	correlation	coefficient	quantifies	the	extent	to	which	a	line	fits	the	data	in	a	
scatterplot.	A	regression	equation	identifies	the	best-fitting	line.	If	all	that	you	want	to	
know	is	how	strongly	two	variables	are	related,	perhaps	to	test	whether	this	relationship	is	
statistically	significant,	then	correlation	is	sufficient.	If	you	want	to	make	predictions	of	Y	
from	scores	on	X,	you	need	to	know	the	equation	of	the	regression	line.	To	use	more	than	
one	X	variable	to	make	predictions,	you	can	extend	this	to	multiple	regression.	

Prediction Equation 
	 In	geometry,	we	learn	that	any	two	points	can	be	connected	by	a	line	with	the	equation	
Y	=	mX	+	b,	where	m	is	the	slope	and	b	is	the	intercept.	In	statistics,	we	know	that	for	any	
two	variables	X	and	Y	that	are	imperfectly	correlated	(meaning	that	|r|	<	1.00),	the	points	in	
a	scatterplot	will	not	fall	on	a	line.	A	few	points	might	be	on,	or	close	to,	the	line,	but	most	
will	be	scattered	around	it.	Regression	analysis	identifies	the	line	that	best	fits	the	
scatterplot,	where	best	fit	is	defined	as	minimizing	the	sum	of	the	squared	errors	in	
prediction,	or	residuals.	For	each	data	point,	the	residual	is	the	difference	between	the	
actual	Y	value	and	the	Y	value	predicted	by	the	regression	equation.	
	 To	illustrate,	consider	a	very	simple	scatterplot	with	just	5	values.	Here’s	the	plot,	
including	the	regression	line:	

	
	 Here’s	the	same	plot,	this	time	adding	the	Y	values	predicted	by	the	regression	equation	
(plotted	as	filled	circles,	each	of	which	falls	on	the	regression	line)	and	the	residuals	
(vertical	lines	connecting	each	observed	Y	value	to	its	corresponding	predicted	Y	value):	
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	 Finally,	here’s	a	plot	that	squares	those	residuals:	

	
	 This	regression	line	minimizes	the	sum	of	the	areas	inside	these	squares.	Here’s	
another	line	fit	to	the	same	data,	with	the	new	squared	residuals	plotted:	

	
	 This	line	fits	the	1st	and	5th	data	points	perfectly,	so	those	residuals	are	0,	and	the	
residual	is	also	very	small	for	the	3rd	data	point.	However,	the	2nd	and	4th	data	points	are	fit	
badly	by	this	line.	As	a	result,	the	sum	of	the	squared	residuals	is	greater	than	the	sum	for	
the	best-fitting	regression	line.	We’ll	let	a	computer	calculate	the	slope	and	the	intercept	of	
a	regression	line,	but	it’s	important	to	understand	what	it’s	doing.	It’s	minimizing	the	sum	
of	the	squared	residuals.	
	 Though	it	might	not	be	obvious,	a	regression	line	is	very	similar	to	the	mean.	The	mean	
minimizes	the	sum	of	the	squared	deviation	scores,	the	distance	from	each	data	point	to	the	
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mean.	The	regression	line	minimizes	the	sum	of	the	squared	residuals,	the	distance	from	
each	data	point	to	the	regression	line.	Thus,	you	can	think	of	a	regression	line	as	a	“running	
mean.”	It’s	like	an	average	value	of	Y	for	scores	at	each	level	of	X.	
	 The	equation	for	a	regression	line	is	expressed	as	follows:	

	 	 Y’	=	bX	+	a	

	 Y’	is	the	predicted	Y	value,	X	is	the	observed	X	value,	b	is	the	slope,	and	a	is	the	intercept.	
For	the	regression	line	shown	above,	the	equation	is:	

	 	 Y’	=	0.49X	+	1.37	

	 This	first	example	was	simple,	containing	just	5	cases,	but	highly	artificial.	Let’s	look	at	
the	1,000	students	whose	SAT	scores	and	college	GPAs	were	used	to	illustrate	the	influence	
of	restriction	of	range	on	correlation	in	the	previous	chapter.	Here’s	the	scatterplot:	

	
	 Here’s	the	regression	equation:	

	 	 GPA'	=	.0019	´	SAT	+	.5849	

	 An	admissions	officer	could	use	this	equation	to	predict	the	college	GPA	of	a	new	
applicant.	For	example,	an	applicant	with	an	SAT	score	of	1200	would	be	predicted	to	
attain	a	GPA	of	.0019	´	1200	+	.5849	=	2.86.	An	applicant	with	an	SAT	score	of	800	would	
be	predicted	to	attain	a	GPA	of	.0019	´	800	+	.5849	=	2.10.	

Accuracy 
	 There	are	three	ways	to	measure	the	accuracy	of	a	regression	equation.	Only	one	of	
these	is	new.	
	 The	first	measure	of	accuracy	is	the	correlation	itself.	For	the	SAT	and	GPA	data,	r	=	.80,	
a	very	large	correlation.	
	 The	second	measure	of	accuracy	is	the	coefficient	of	determination.	For	the	SAT	and	
GPA	data,	r2	=	.64,	which	means	that	SAT	scores	account	for	64%	of	the	variance	in	GPAs.	
That’s	a	very	large	effect.	
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	 The	third	measure	of	accuracy	is	the	standard	error	of	the	estimate	(SEest).	This	is	the	
typical	distance	from	a	predicted	Y	value	to	the	observed	Y	value.	It’s	calculated	just	like	a	
SD,	but	rather	than	using	deviation	scores	(distances	from	the	mean)	we	use	residuals	
(distances	from	a	regression	line).	For	the	SAT	and	GPA	data,	SEest	=	0.26.	That	means	that	a	
typical	predicted	GPA	is	about	0.26	points	away	from	the	observed	GPA.	
	 Whereas	r	and	r2	are	on	a	standardized	scale,	ranging	from	.00	to	1.00,	SEest	provides	a	
measure	of	accuracy	that’s	scaled	in	the	units	of	the	Y	variable.	Suppose	that	someone	
making	admissions	decisions	wants	to	know	how	accurately,	in	terms	of	actual	GPAs,	
predictions	based	on	SAT	scores	would	be.	Neither	r	nor	r2	is	helpful	because	they	have	
nothing	to	do	with	the	GPA	scale.	SEest,	on	the	other	hand,	is	scaled	in	GPA	units.	Predictions	
would	be	accurate	with	a	margin	of	error	of	±0.26.	
	 In	sum,	we’ve	seen	that	a	regression	line	is	similar	in	important	ways	to	the	M	(both	are	
located	in	the	middle	of	a	distribution)	and	the	SEest	is	similar	in	important	ways	to	the	SD	
(both	represent	a	typical	distance	from	a	data	point	to	the	middle).	

Multiple Regression 
	 When	an	equation	with	a	single	predictor	(X	variable)	is	used	to	predict	an	outcome	(Y	
variable),	this	is	called	simple	linear	regression.	When	more	than	one	predictor	is	
included	in	the	equation,	this	is	called	multiple	regression.	Multiple	regression	is	a	fairly	
straightforward	extension	of	simple	linear	regression	that	can	be	used	for	many	purposes.	
	 Recall	the	equation	of	the	best-fitting	line	in	simple	linear	regression:	

	 	 Y’	=	bX	+	a	
	 Y’	is	the	predicted	value	of	the	outcome	(Y),	X	is	the	predictor,	b	is	the	slope,	and	a	is	the	
intercept.	Another	way	of	expressing	this	is	that	b	is	the	regression	coefficient,	or	weight,	
for	the	predictor.	This	indicates	how	heavily	it	counts	when	making	predictions.	If	b	=	0,	
then	the	predictor	counts	for	nothing	and	all	predictions	equal	the	intercept,	a	constant.	
	 The	general	equation	for	multiple	regression	with	k	predictors	is	this:	

	 	 Y’	=	b1X1	+	b2X2	+	b3X3	+	…	+	bkXk	+	b0	
	 In	this	formula,	each	predictor	(Xi)	gets	its	own	regression	coefficient	(bi),	and	the	
constant	is	labeled	b0	rather	than	a.	Once	again,	the	regression	coefficients	indicate	how	
much	weight	is	given	to	each	predictor.	The	measures	of	accuracy	for	simple	linear	
regression	extend	to	multiple	regression.	The	only	difference	is	the	notation.	Rather	than	
using	r	and	r2,	we	use	R	and	R2.	The	capital	R	indicates	that	more	than	one	predictor	
variable	was	used	in	the	regression	equation.		
	 Multiple	regression	is	a	very	popular	data-analytic	tool,	for	many	reasons.	One	reason	is	
that	using	multiple	predictors	can	increase	the	accuracy	of	prediction.	If	the	goal	is	to	
explain	as	much	variance	as	possible	in	the	outcome	variable,	including	more	than	one	
predictor	will	help	as	long	as	each	is	valid	and	not	redundant	with	others	already	included	
in	the	equation.		
	 A	second	reason	to	use	multiple	regression	is	that	it	avoids	the	problems	with	splitting	
cases	into	groups.	Researchers	sometimes	make	such	splits	in	order	to	compare	group	
means	using	ANOVA.	A	better	approach	is	to	use	multiple	regression,	which	allows	you	to	
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leave	quantitative	variables	in	their	original,	continuous	form.	This	provides	better	
estimates	of	true	effect	sizes	and	retains	as	much	statistical	power	as	possible.	
	 A	third	reason	to	use	multiple	regression	is	to	model	a	curve.	For	example,	recall	the	
data	illustrating	the	Yerkes-Dodson	law	(see	below	for	some	Yerkes-Dodson	data,	too).	
Earlier	it	was	shown	that	a	curve	fit	the	data	better	than	a	straight	line.	Multiple	regression	
allows	you	model	a	parabola	by	including	both	X	and	X2	as	separate	predictors.	This	is	just	
one	example	of	a	curve	that	can	be	fit	using	multiple	regression.	

Extrapolation 
	 	Each	of	the	factors	influencing	correlation	(nonlinear	relationships,	different	
distributions,	outliers,	restriction	of	range,	and	measurement	error)	can	also	affect	
regression.	A	new	concern	is	extrapolation,	or	making	predictions	beyond	the	range	of	
observed	values.	The	problem	with	extrapolation	is	that	it’s	based	on	an	assumption	that	a	
trend	line	will	continue	indefinitely.	By	definition,	though,	there’s	no	evidence	available	to	
test	this	assumption.	When	you	move	beyond	the	range	of	predictor	values	in	the	data,	the	
trend	may	change.	The	further	beyond	the	range	of	observed	values	you	go,	the	greater	the	
danger	that	this	extrapolation	will	be	inaccurate.	
	 For	example,	consider	what	would	happen	if	an	investigator	studied	performance	on	a	
challenging	crossword	puzzle	across	under	experimental	conditions	that	induced	levels	of	
mental	arousal	from	very	low	to	moderate.	According	to	the	Yerkes-Dodson	law,	
performance	should	increase	along	with	mental	arousal	in	this	range.	A	scatterplot	
between	arousal	and	performance	might	reveal	an	upward	linear	trend.	To	illustrate	this	
possibility,	here	is	a	selection	from	the	arousal	and	performance	data	shown	in	the	last	
chapter,	specifically	all	scores	below	the	median	level	of	arousal:	

	
	 The	regression	line	fits	the	data	quite	well,	with	r	=	.85	and	r2	=	.72.	So	far,	so	good.	But	
what	if	someone	inferred	from	these	findings	that	subjects	would	perform	even	better	at	
much	higher	levels	of	mental	arousal?	Consider	an	extrapolation	up	to	the	maximum	
arousal	level	on	this	scale,	a	value	of	10:		
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	 The	dotted	line	extends	the	regression	line	well	beyond	the	range	of	observed	scores.	
Such	an	extrapolation	is	unlikely	to	be	borne	out.	In	fact,	the	Yerkes-Dodson	law	also	
predicts	that	performance	will	decline	at	very	high	levels	of	mental	arousal.	Here’s	the	
scatterplot	for	the	full	range	of	values,	with	data	points	above	the	median	arousal	level	
plotted	as	diamonds	to	distinguish	them	from	the	data	points	from	which	the	regression	
was	calculated	(plotted	as	circles).		

	
	 The	regression	line	is	a	very	poor	fit	for	the	higher	levels	of	arousal,	failing	to	support	
the	extrapolation.	Be	wary	of	assuming	that	trends	continue	into	unstudied	regions.	

Using SPSS 
	 To	perform	regression	in	SPSS,	you	set	up	the	data	file	just	as	you	would	for	a	
correlational	analysis.	Enter	your	data	into	two	variables	(columns),	one	for	the	predictor	
(X)	and	one	for	the	outcome	(Y)	to	be	predicted.	To	serve	as	an	illustration,	the	SAT	and	
GPA	data	from	earlier	in	this	chapter	are	used.	The	variables	are	“SAT”	and	“GPA”.	The	full	
data	set	didn’t	fit	onto	the	screen,	but	here’s	the	beginning:	
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	 Next,	you	use	the	following	commands:	
	 	 graph	
	 	 /scatterplot(bivar)	=	sat	with	gpa	
	 	 reg	vars	=	sat	gpa	
	 	 /dep	=	gpa	
	 	 /enter	sat	
	 The	“graph”	command	was	described	in	the	chapter	on	correlation,	and	the	scatterplot	
was	shown	earlier	in	this	chapter.	SPSS	will	not	automatically	include	a	regression	line,	but	
you	can	add	one.46	
	 To	run	the	“reg”	(short	for	regression)	command,	list	the	predictor	(X)	variable	(here,	
“SAT”)	on	the	first	and	third	lines	and	the	outcome	(Y)	variable	(here,	“GPA”)	on	the	first	
and	second	lines.	SPSS	will	produce	several	tables,	only	two	of	which	you’ll	need.	
	 The	first	table	you’ll	need	is	labeled	“Model	Summary”.	This	table	provides	all	measures	
of	accuracy	described	in	this	chapter:	r,	r2	(labeled	“R	Square”),	and	SEest	(labeled	“Std.	
Error	of	the	Estimate”).	Note	that	SPSS	always	uses	capital	letters	in	the	output.	If	you’re	
doing	simple	linear	regression,	the	output	provides	r	and	r2	even	though	each	is	listed	with	
the	capital	R	rather	than	the	lowercase	r.	

																																																								
46	Double-click	on	a	scatterplot	to	open	the	chart	editor.	From	the	“Elements”	menu,	choose	“Fit	Line	at	
Total”,	select	“Linear”	in	the	“Fit	Method”	area	of	the	dialogue	box,	uncheck	the	“Attach	label	to	line”	option	
near	the	bottom,	click	“Apply”	and	then	“Close”,	and	close	the	Chart	Editor	to	return	to	the	output	window.	
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	 The	second	table	you’ll	need	is	labeled	“Coefficients”.	This	contains	the	slope	(b)	and	
intercept	(a)	of	the	regression	equation.	The	values	appear	in	the	column	labeled	“B”	in	the	
“Unstandardized	Coefficients”	section	of	the	table.	The	row	labeled	“(Constant)”	contains	
the	intercept,	and	the	row	beneath	it	(labeled	with	your	predictor	variable,	here	“SAT	Total	
Score”)	contains	the	slope.	If	you	want	to	know	whether	the	slope	is	statistically	
significantly	different	from	0,	the	p	value	appears	in	the	column	labeled	“Sig.”	and	the	row	
labeled	with	your	predictor	variable	(here,	“SAT	Total	Score”).	

	
	 This	example	shows	results	for	simple	linear	regression.	You	can	perform	multiple	
regression	by	entering	more	than	one	predictor	(X)	variable	into	the	data	file	and	command	
syntax.	

APA Style 
	 Scatterplots	are	seldom	presented	in	research	reports,	but	they’re	invaluable	tools	for	
you	to	check	for	potentially	problematic	influences	on	regression.	Regression	results	can	be	
reported	with	or	without	commenting	on	statistical	significance.	Here’s	how	the	regression	
results	shown	above	could	be	reported	in	APA	style:	

	 SAT	total	scores	predicted	college	GPAs	according	to	the	following	regression	equation:	

GPA’	=	.002	´	SAT	+	.585.	Not	only	was	the	slope	statistically	significant,	p	<	.001,	but	this	

equation	was	very	accurate:	r	=	.80,	r2	=	.64,	SEest	=	0.26.	

	 Notice	that	an	extra	decimal	place	was	used	for	the	slope	and	intercept	in	the	regression	
equation.	Without	doing	this,	the	slope	would	have	rounded	down	to	.00,	suggesting	that	
SAT	was	given	no	weight	in	predicting	GPA.	In	fact,	it	was	a	very	strong	predictor.	The	slope	
is	small	only	because	of	the	difference	between	SAT	units	(on	the	scale	of	400	to	1600)	and	
GPA	units	(on	the	scale	of	0	to	4).	You	have	to	multiply	SAT	scores	by	a	very	small	number	
to	predict	GPAs.	SPSS	only	provides	3	decimal	places	for	the	slope	and	intercept.	Earlier,	
the	regression	equation	was	expressed	using	4	decimal	places,	which	is	even	better.	You	
can	use	more	than	the	usual	2	decimal	places	in	APA	style	when	it’s	important	to	do	so.	
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Problems 
	 Below	is	a	scatterplot	and	a	regression	analysis	for	200	employees’	scores	on	an	IQ	test	
(for	which	µ	=	100,	s	=	15)	and	ratings	of	their	job	performance	on	a	5-point	scale.	These	
data	appeared	in	the	chapter	on	correlation,	and	a	regression	line	has	been	added	to	the	
scatterplot.	

	

	

	
1.	 Write	the	equation	of	the	regression	line,	including	the	slope	and	intercept.	

2.	 Is	the	slope	statistically	significantly	different	from	0?	How	can	you	tell?	
3.	 What	are	the	values	for	each	measure	of	accuracy	described	in	this	chapter?	Briefly	

explain	what	each	value	means,	in	plain	English.	

4.	 Write	the	results	for	this	regression	analysis	in	APA	style.	
5.	 Use	the	regression	equation	to	predict	job	performance	ratings	for	individuals	with	IQ	

scores	of	100	(considered	“average”	in	the	general	population),	130	(at	the	border	
between	“superior”	and	“gifted”),	and	160	(at	the	upper	end	of	the	“very	gifted”	range).		

6.	 In	what	way	is	one	of	the	predicted	values	in	#5	more	problematic	than	the	others?	
Why	did	this	happen?	
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7.	 Suppose	these	200	employees	had	also	been	given	a	test	of	conscientiousness.	Given	
this	additional	data,	why	might	it	be	worthwhile	to	use	multiple	regression,	rather	than	
simple	linear	regression?	

*	*	*	

8.	 In	his	classic	work	An	Essay	on	the	Principle	of	Population,	first	published	in	1798,	
Thomas	Malthus	observed	that	the	size	of	the	human	population	was	increasing	much	
more	rapidly	(an	exponential	trend)	than	the	size	of	our	food	supply	(a	linear	trend).	
Over	a	sufficiently	long	time	frame,	exponential	growth	overwhelms	linear	growth.	As	a	
consequence,	Malthus	believed	that	mass	starvation	was	ultimately	inevitable.	

	 It’s	been	more	than	200	years.	The	human	population	has	grown	dramatically,	and	
famines	are	relatively	rare	and	usually	caused	by	politics,	not	an	actual	(let	alone	
global)	food	shortage.	Malthus’	prediction	shows	no	sign	of	being	correct.	What	might	
have	led	Malthus	to	make	this	mistake?		

*	*	*	
	 The	next	series	of	problems	uses	the	parole	data	introduced	earlier.	A	simple	linear	
regression	analysis	was	performed	to	predict	years	of	education	from	total	scores	on	the	
Lifestyle	Criminality	Screening	Form	(LCSF).	The	SPSS	output	is	shown	below:	

	

	
9.	 Write	the	equation	of	the	regression	line,	including	the	slope	and	intercept.	

10.	Is	the	slope	statistically	significantly	different	from	0?	How	can	you	tell?	
11.	What	are	the	values	for	the	measures	of	accuracy	described	in	this	chapter?	Briefly	

explain	what	each	value	means,	in	plain	English.	

12.	Write	the	results	for	this	regression	analysis	in	APA	style.	
*	*	*	

13.	Below	are	the	scatterplot	and	regression	analysis	for	the	very	small	sample	of	SAT	data	
from	the	chapter	on	the	related	samples	t	test.	SAT	Verbal	scores	are	used	to	predict	
SAT	Math	scores.	Report	the	results	in	APA	style.	
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14.	Enter	the	SAT	data	(shown	below)	into	SPSS.	Follow	the	instructions	in	the	text	for	how	

to	organize	the	data	file	and	enter	the	commands	to	generate	a	scatterplot	and	calculate	
a	regression	equation.	Check	that	your	output	matches	what’s	shown	above.		

	

Problems 1 – 8 are due at the beginning of class. 
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18. c2 Goodness of Fit Test 

Overview 
	 The	final	statistic	we’ll	examine,	c2,	is	used	to	analyze	nominal	data.	When	cases	belong	
to	categories	(e.g.,	marital	status,	race/ethnicity),	c2	can	be	used	to	test	certain	kinds	of	
hypotheses.	This	chapter	reviews	what’s	called	the	goodness	of	fit	test.	The	goal	is	to	
determine	whether	the	counts,	or	frequencies,	observed	for	each	of	a	series	of	categories	
differs	from	what’s	expected	according	to	a	model	being	tested.	You	can	also	compute	c2	for	
two	or	more	models	to	determine	which	one	fits	the	data	better.	

Nonparametric Statistic 
	 Most	of	the	statistics	presented	in	this	text	are	parametric	statistics,	meaning	that	
they	make	assumptions	about	population	distributions.	For	example,	to	test	the	statistical	
significance	of	z,	t,	F,	or	r,	we	assume	a	normal	distribution	of	scores	in	the	population.	The	
c2	statistic	makes	no	parametric	assumptions.	It	is,	instead,	a	nonparametric	statistic.	
	 Many	nonparametric	statistics	avoid	the	usual	parametric	assumptions	by	working	with	
ranked	data	rather	than	quantitative	data.	Spearman’s	rank-order	correlation	coefficient	is	
one	example.	There	are	nonparametric	analogues	of	t	and	F	tests,	too,	that	deal	with	ranked	
rather	than	quantitative	data.	One	reason	that	parametric	statistics	are	more	popular	is	
that	when	their	assumptions	are	satisfied,	they	provide	greater	statistical	power	than	the	
nonparametric	alternatives.	When	one	or	more	parametric	assumptions	is	violated	to	a	
problematic	extent	(e.g.,	when	distributions	are	extremely	skewed),	a	nonparametric	
statistic	might	be	a	better	choice.47	
	 Most	parametric	statistics	are	used	to	analyze	quantitative	data,	and	most	of	the	
nonparametric	alternatives	are	used	to	analyze	ranked	data.	In	contrast,	c2	is	a	very	
popular	statistic	because	it’s	used	to	analyze	nominal	data.	For	example,	consider	how	you	
might	test	the	success	of	systematic	desensitization	as	a	treatment	for	specific	phobias.	
Using	this	therapeutic	technique,	the	patient	learns	to	relax,	and	remain	relaxed,	while	
progressing	through	a	hierarchy	of	anxiety-inducing	steps	related	to	the	feared	object	or	
situation.	A	patient	with	a	fear	of	snakes	would	try	to	work	through	steps	that	include	
imagining	snakes,	looking	at	pictures	of	snakes,	and	holding	live	snakes.	The	key	is	to	
remain	relaxed	at	each	step	before	moving	to	the	next.	Suppose	30	subjects	diagnosed	with	
specific	phobias	are	given	treatment	using	systematic	desensitization,	and	when	treatment	
is	complete	24	patients	are	cured	(i.e.,	they’re	free	of	their	phobias)	and	6	are	not.		

																																																								
47	If	you’re	curious,	check	out	the	Wilcoxon	rank-sum	test	(to	compare	two	independent	groups),	the	
Kruskal-Wallis	one-way	ANOVA,	or	the	Friedman	two-way	ANOVA.		
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Performing the c2 Test 
	 The	c2	goodness	of	fit	test	can	be	used	to	compare	the	two	counts,	or	observed	
frequencies,	of	24	cured	and	6	not	cured	to	the	expected	frequencies	that	correspond	to	
a	null	hypothesis,	or	model,	being	tested.	To	perform	the	test,	you	need	to	provide	the	
expected	frequencies.	How	many	patients	would	you	expect	to	be	cured	vs.	not	cured?	
Perhaps	you	want	to	test	a	null	hypothesis	of	equal	chances	of	being	cured	vs.	not	cured	
(which	means	that	1/2	of	all	patients	would	be	cured	and	1/2	would	not).	That	implies	
expected	frequencies	of	15	and	15	for	the	two	cells	in	the	design.	These	are	calculated	by	
multiplying	the	total	N	of	30	by	1/2	for	the	cured	cell	(30	´	1/2	=	15)	and	1/2	for	the	not	
cured	cell	(30	´	1/2	=	15).	We’ll	call	this	model	1.	It’s	helpful	to	organize	the	observed	
frequencies	(fO)	and	expected	frequencies	(fE)	in	a	table:	

	 fO	 fE	
Cured	 24	 15	
Not	Cured	 6	 15	

	 Perhaps	you	want	to	test	a	null	hypothesis	based	on	the	success	rate	for	another	
treatment,	say	a	2/3	success	rate.	That	implies	expected	frequencies	of	20	and	10	for	the	
two	cells	in	the	design.	These	are	calculated	by	multiplying	the	total	N	of	30	by	2/3	for	the	
cured	cell	(30	´	2/3	=	20)	and	1/3	for	the	not	cured	cell	(30	´	1/3	=	10).	We’ll	call	this	
model	2,	and	here’s	the	table:	

	 fO	 fE	
Cured	 24	 20	
Not	Cured	 6	 10	

	 To	test	each	model,	all	that	you	need	to	do	is	compare	the	observed	and	expected	
frequencies	using	the	formula	for	c2:	

	 	 c2	=	S((fO	–	fE)2	/	fE)	

	 For	each	cell,	you	take	the	difference	between	fO	and	fE,	square	it,	and	divide	by	fE.	Once	
you’ve	done	this	for	all	cells,	you	sum	the	results	to	get	c2.	Here’s	what	this	looks	like	when	
testing	model	1,	equal	chances	of	being	cured	vs.	not	cured:	

	 	 c2	=	((24	–	15)2	/	15)	+	((6	–	15)2	/	15)	=	81/15	+	81/15	=	10.80	

	 To	determine	whether	this	is	statistically	significant,	you	look	up	a	critical	value	for	c2	
in	a	table	(e.g.,	the	one	in	Appendix	A).	The	critical	value	is	based	on	the	a	level	(usually	
.05)	and	the	df,	which	is	the	number	of	cells	minus	1.	In	this	case,	using	a	=	.05	and	df	=	2	–	
1	=	1,	we	find	that	the	critical	value	is	c2	=	3.84.	This	is	always	a	nondirectional	test,	so	you	
reject	H0	whenever	the	c2	calculated	for	your	data	exceeds	the	critical	value.	Here,	10.80	>	
3.84,	so	we’d	reject	the	H0	of	model	1.	It	fits	the	data	poorly.	
	 To	describe	and	interpret	the	findings,	you	examine	the	observed	and	expected	
frequencies	to	see	where	and	how	they	differ.	In	this	case,	there	were	more	people	cured	
than	expected	(24	vs.	15),	so	the	treatment	is	effective	relative	to	the	baseline	of	model	1.	
	 We	can	follow	the	same	procedure	to	test	model	2.	Here’s	the	calculation	of	c2:	

	 	 c2	=	((24	–	20)2	/	20)	+	((6	–	10)2	/	10)	=	16/20	+	16/10	=	2.40	
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	 The	critical	value	remains	3.84	because	the	a	level	and	df	are	the	same	as	for	the	test	of	
model	1.	In	this	case,	2.40	<	3.84,	so	we’d	retain	H0.	Model	2	fits	the	data	well.	
	 In	addition	to	testing	the	statistical	significance	of	one	or	more	models,	you	can	
compare	the	relative	fit	of	competing	models	by	comparing	their	c2	values.	The	lower	the	
c2,	the	better	the	fit.	In	this	case,	2.40	<	10.80,	so	model	2	fits	better	than	model	1.	
	 One	final	note	on	calculating	c2	is	important.	In	the	examples	shown	above,	all	of	the	
expected	frequencies	happened	to	be	whole	numbers.	That	will	not	always	be	true.	When	
expected	frequencies	include	fractions,	you	should	not	round	them	to	whole	numbers.	If	
you	must	round	at	all,	such	as	when	doing	hand	calculations,	you	should	retain	at	least	a	
couple	more	decimal	places	for	the	expected	frequencies	than	you’ll	use	when	you	round	
the	final	value	for	c2.	Because	we	usually	round	to	two	decimal	places	for	APA	style,	
retaining	four	or	five	when	doing	calculations	is	a	good	idea.	

Using SPSS 
	 To	perform	the	c2	goodness	of	fit	test	in	SPSS,	you	need	to	enter	the	raw	data,	not	the	
frequencies	themselves.	Enter	your	data	into	a	single	variable	(column)	using	numerical	
codes	to	represent	the	categories;	it	makes	no	difference	what	numbers	you	use	to	
represent	the	categories.	To	serve	as	an	illustration,	the	data	analyzed	above	are	used.	The	
variable	is	“Outcome”,	coded	as	1	=	cured	and	2	=	not	cured.	The	full	data	set	wouldn’t	fit	
onto	the	screen,	and	it’s	not	shown	even	in	part	because	all	you’d	see	is	a	single	column	of	
numbers,	with	24	rows	containing	a	1	and	6	rows	containing	a	2.	
	 Next,	you	use	the	following	command:	

	 	 npar	test	
	 	 /chisquare	=	outcome	
	 	 /expected	=	15	15	
	 To	run	the	command,	list	the	variable	(here,	“Outcome”)	on	the	second	line	and	specify	
the	expected	frequencies	on	the	third	line.	It’s	important	to	list	the	expected	frequencies	for	
the	cells	in	the	order	that	corresponds	to	your	coding.	The	command	shown	above	would	
test	model	1	(equal	expected	frequencies).	To	test	model	2,	the	command	would	be	
modified	as	follows:	

	 	 npar	test	
	 	 /chisquare	=	outcome	
	 	 /expected	=	20	10	

	 Notice	that	the	expected	frequencies	are	listed	as	“20	10”	because	the	categories	were	
coded	as	1	=	cured	and	2	=	not	cured.	The	value	of	20	corresponds	to	how	many	patients	
were	expected	to	be	cured,	and	10	to	how	many	patients	were	expected	not	to	be	cured.		
	 SPSS	will	produce	two	tables	that	provide	what	you’ll	need.	The	first	table	shows	the	
observed	and	expected	frequencies,	labeled	as	“Observed	N”	and	“Expected	N”.	Check	to	
make	sure	that	you	listed	the	expected	frequencies	in	the	correct	order.	If	there	are	
statistically	siginficant	results,	you’d	compare	the	observed	and	expected	frequencies	to	
describe	and	interpret	the	findings.	SPSS	calculates	the	difference	(fO	–	fE)	for	each	cell	
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(labeled	as	“Residual”)	to	help	you	interpret	the	results.	The	second	table	contains	the	c2	
value,	the	df,	and	the	p	value	(labeled	“Asymp.	Sig.”).	Here	are	the	results	for	model	1:	

	
	 Here	are	the	results	for	model	2:	

	

APA Style 
	 To	report	the	results	of	a	c2	goodness	of	fit	test,	the	statistical	information	is	presented	
in	much	the	same	way	as	for	z,	t,	or	F.	You	provide	the	name	of	the	statistic,	with	df	in	
parentheses,	followed	by	the	statistic’s	value	and	the	p	value.	There	is	no	widely	accepted	
measure	of	effect	size	for	c2	goodness	of	fit	tests.	Instead,	N	is	reported	along	with	the	df	so	
that	readers	can	consider	the	sample	size	when	thinking	about	the	size	of	the	effect.	
	 If	the	test	is	not	statistically	significant,	you	can	state	this	simply.	If	the	test	is	
statistically	significant,	you	need	to	explain	the	pattern	of	results.	There	are	many	ways	to	
do	this,	and	the	goal	is	to	help	the	reader	understand	how	the	observed	and	expected	
frequencies	differed.	In	much	the	same	way	that	you	report	the	M	and	SD	when	comparing	
groups,	you	can	report	the	frequencies	(or	percentages)	for	cells	to	help	describe	c2	results.	
Here’s	how	you	might	report	the	c2	test	of	model	1:		

	 Among	30	subjects	diagnosed	with	specific	phobias,	80%	were	cured	by	treatment	with	

systematic	desensitization,	which	differs	statistically	significantly	from	an	expected	50%	

success	rate,	χ2(1,	N	=	30)	=	10.80,	p	=	.001.	
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	 Here’s	how	you	might	report	the	c2	test	of	model	2:	

	 Data	are	consistent	with	the	hypothesis	that	two-thirds	of	subjects	diagnosed	with	

specific	phobias	would	be	cured	by	treatment	with	systematic	desensitization,	χ2(1,	N	=	30)	

=	2.40,	p	=	.121.	

	 If	you	wanted	to	present	the	results	for	both	models	in	a	way	that	indicates	you	were	
interested	in	comparing	their	relative	fit,	it	might	look	like	this:	

	 Among	subjects	diagnosed	with	specific	phobias	and	treated	using	systematic	

desensitization,	data	are	more	consistent	with	the	hypothesis	that	two-thirds	would	be	

cured,	χ2(1,	N	=	30)	=	2.40,	than	the	hypothesis	that	one-half	would	be	cured,	χ2(1,	N	=	30)	

=	10.80.	

Problems 
	 A	total	of	100	students	are	enrolled	in	an	introductory	psychology	course,	and	the	final	
grades	of	all	students	are	categorized	as	As,	Bs,	Cs,	Ds,	or	Fs	as	follows:	

	 A	=	32	
	 B	=	28	
	 C	=	22	
	 D	=	14	
	 F	=	4	

	 There	are	at	least	two	models	that	might	fit	these	data.	Model	1	is	a	flat	grade	
distribution,	meaning	that	the	number	of	students	in	each	grade	category	is	equal.	If	100	
students	split	evenly	into	5	grades,	you’d	expect	20	students	to	receive	each	grade.	

1.	 If	you	perform	a	c2	goodness	of	fit	test	for	model	1,	what	null	hypothesis	will	be	tested?	

2.	 Construct	a	table	showing	the	observed	and	expected	frequencies	for	model	1.	
3.	 What	is	the	df	for	this	test?	

4.	 What	is	the	critical	region	for	this	test?	

5.	 Calculate	c2.	

6.	 Are	the	results	statistically	significant?	How	can	you	tell?	

7.	 Examine	the	differences	between	the	observed	and	expected	frequencies	in	your	table	
to	help	interpret	the	results.	How	would	you	describe	what	you	see?	

8.	 Write	the	results	for	this	c2	goodness	of	fit	test	in	APA	style.	
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*	*	*	
	 This	series	of	problems	continues	to	use	the	grades	for	the	same	introductory	
psychology	course	as	the	previous	series.	Model	2	is	the	grade	distribution	for	all	
introductory	courses.	The	number	of	students	who	receive	each	grade	equals	the	college	
average	for	all	100-level	courses.	Specifically,	the	expected	frequencies	are:	

	 A	=	30	
	 B	=	25	
	 C	=	20	
	 D	=	15	
	 F	=	10		

9.	 If	you	perform	a	c2	goodness	of	fit	test	for	model	2,	what	null	hypothesis	will	be	tested?	

10.	Construct	a	table	showing	the	observed	and	expected	frequencies	for	model	2.	

11.	What	is	the	df	for	this	test?	
12.	What	is	the	critical	region	for	this	test?	

13.	Calculate	c2.	

14.	Are	the	results	statistically	significant?	How	can	you	tell?	

15.	Examine	the	differences	between	the	observed	and	expected	frequencies	in	your	table	
to	help	interpret	the	results.	How	would	you	describe	what	you	see?	

16.	Write	the	results	for	this	c2	goodness	of	fit	test	in	APA	style.	

17.	Compare	the	findings	for	models	1	and	2.	Write	the	results	in	APA	style.	
*	*	*	

18.	Using	SPSS,	enter	the	treatment	data	that	served	as	the	illustration	in	this	chapter.	
Follow	the	instructions	in	the	text	for	how	to	organize	the	data	file	and	enter	the	
commands	to	perform	c2	goodness	of	fit	tests	for	models	1	and	2.	Check	that	your	
output	matches	what’s	shown	in	the	text.	

19.	Using	SPSS,	enter	the	grade	distribution	data	used	in	the	previous	series	of	problems.	
Follow	the	instructions	in	the	text	for	how	to	organize	the	data	file	and	enter	the	
commands	to	perform	c2	goodness	of	fit	tests	for	models	1	and	2.	Check	that	your	
results	match	what	you	found	when	you	ran	the	test	by	hand.	

Problems 1 – 8 are due at the beginning of class. 
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19. c2 Test of Independence 

Overview 
	 In	this	chapter,	we’ll	explore	how	to	determine	whether	two	nominal	variables	are	
related	to	one	another.	The	same	c2	statistic	that’s	used	to	perform	the	goodness	of	fit	test	
can	also	be	used	to	perform	a	test	of	independence.	This	is	very	much	like	a	correlation,	
but	it	operates	on	nominal	rather	than	quantitative	data.		

Performing the c2 Test 
	 To	illustrate	the	c2	test	of	independence,	let’s	expand	the	treatment	study	from	the	
previous	chapter.	Rather	than	having	only	30	subjects	all	receive	systematic	
desensitization	for	the	treatment	of	specific	phobias,	suppose	75	subjects	were	randomly	
assigned	to	treatment	conditions:	systematic	desensitization,	psychodynamic	therapy,	or	
no	treatment.	At	completion,	each	subject	is	scored	as	either	cured	of	the	phobia	or	not.	We	
can	use	the	c2	test	of	independence	to	determine	whether	treatment	condition	is	related	to	
outcome.	
	 The	null	hypothesis	is	no	relationship	between	the	two	variables.	That’s	why	this	is	
called	a	test	of	independence.	Unlike	the	c2	goodness	of	fit	test,	this	test	provides	a	unique	
set	of	expected	frequencies	to	which	the	observed	frequencies	are	compared.	In	other	
words,	when	you	perform	the	c2	test	of	independence,	you’d	don’t	have	to	figure	out	what	
expected	frequencies	to	use.	
	 Let’s	see	how	this	is	done.	The	first	step	is	to	arrange	the	observed	frequencies	into	a	
table	crossing	the	two	variables.	The	categories	for	one	variable	form	the	columns,	and	the	
categories	for	the	other	variable	form	the	rows:	

	 Systematic	
Desensitization	

Psychodynamic	
Therapy	

No	
Treatment	 Total	

Cured	 24	 12	 4	 40	
Not	Cured	 6	 13	 16	 35	
Total	 30	 25	 20	 75	

	 In	addition	to	the	observed	frequencies	for	each	cell	in	the	table,	totals	are	calculated	
for	each	column,	each	row,	and	the	entire	table,	and	these	totals	are	placed	in	the	margins.	
It’s	these	marginal	totals	that	allow	us	to	calculate	the	expected	frequencies.	
	 For	the	expected	frequencies	to	represent	H0,	they	have	to	exhibit	no	association	
between	the	two	variables.	For	example,	in	this	case	we	can	see	that	overall,	40	out	of	75	
subjects	were	cured.	This	proportion,	40/75,	would	have	to	remain	constant	across	
treatment	conditions	for	there	to	be	no	relationship	between	treatment	and	outcome.	That	
means	that	out	of	the	30	subjects	who	received	systematic	desensitization,	40/75	of	them	
would	need	to	be	cured.	This	quantity,	30	´	40/75,	is	the	column	total	(TC)	multiplied	by	
the	row	total	(TR)	and	divided	by	the	overall	total	(T).	This	formula	provides	the	expected	
frequency	not	only	for	this	cell	in	the	table,	but	for	every	cell	in	the	table:	
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	 	 fE	=	TR	´	TC	/	T	

	 To	obtain	the	expected	frequencies,	we	use	this	formula	for	each	cell	in	the	table:	

	 	 Systematic	Desensitization,	Cured:	 	 30	×	40	/	75	=	16	
	 	 Systematic	Desensitization,	Not	Cured:	 30	×	35	/	75	=	14	

	 	 Psychodynamic	Therapy,	Cured:	 	 25	×	40	/	75	=	13.3333	
	 	 Psychodynamic	Therapy,	Not	Cured:	 25	×	35	/	75	=	11.6667	

	 	 No	Treatment,	Cured:	 	 	 20	×	40	/	75	=	10.6667	

	 	 No	Treatment,	Not	Cured:	 	 	 20	×	35	/	75	=	9.3333	
	 Remember	that	you	should	not	round	expected	frequencies.	Once	you’ve	calculated	
them	all,	it’s	a	good	idea	to	double-check	your	work.	The	sum	of	the	expected	frequencies	
must	equal	T,	the	overall	total,	so	add	them	together	and	check:	

	 	 16	+	14	+	13.3333	+	11.6667	+	10.6667	+	9.3333	=	75	 	
	 Next,	let’s	include	these	expected	frequencies	in	the	table.	You	can	place	them	in	
parentheses	to	distinguish	them	from	the	observed	frequencies:	

	 Systematic	
Desensitization	

Psychodynamic	
Therapy	

No	
Treatment	 Total	

Cured	
24	
(16)	

12	
(13.3333)	

4	
(10.6667)	 40	

Not	Cured	 6	
(14)	

13	
(11.6667)	

16	
(9.3333)	 35	

Total	 30	 25	 20	 75	

	 To	calculate	c2,	we	use	the	same	formula	as	for	the	goodness	of	fit	test:	

	 	 c2	=	S((fO	–	fE)2	/	fE)	

	 Once	again,	you	work	through	the	expression	in	the	outer	parentheses	for	each	cell	and	
then	you	sum	the	results	for	all	cells	to	get	c2.	Here’s	what	that	looks	like	for	these	data:	

	 	 (24	–	16)2	/	16	=	64	/	16	=	4.0000	
	 	 (6	–	14)2	/	14	=	64	/	14	=	4.5714	
	 	 (12	–	13.3333)2	/	13.3333	=	0.1333	
	 	 (13	–	11.6667)2	/	11.6667	=	0.1524	
	 	 (4	–	10.6667)2	/	10.6667	=	4.1667	
	 	 (16	–	9.3333)2	/	9.3333	=	4.7620	

	 	 c2	=	4.0000	+	4.5714	+	0.1333	+	0.1524	+	4.16667	+	4.7620	=	17.7858	=	17.79	

	 Notice	that	four	decimal	places	were	retained	for	all	calculations,	and	only	the	final	
value	of	c2	was	rounded	to	two	decimals	for	reporting	in	APA	style.	If	you	round	off	at	
earlier	steps,	the	final	answer	might	be	incorrect.	
	 To	determine	whether	your	result	is	statistically	significant,	you	look	up	a	critical	value	
for	c2	in	a	table	(e.g.,	the	one	in	Appendix	A).	The	critical	value	is	based	on	the	a	level	
(usually	.05)	and	the	df,	which	is	(C	–	1)	´	(R	–	1),	where	C	is	the	number	of	columns	and	R	
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is	the	number	of	rows.	In	this	case,	using	a	=	.05	and	df	=	(3	–	1)	´	(2	–	1)	=	2,	we	find	that	
the	critical	value	is	c2	=	5.99.	This	is	always	a	nondirectional	test,	so	you’d	reject	H0	
whenever	the	c2	calculated	for	your	data	exceeds	the	critical	value.	Here,	17.79	>	5.99,	so	
we’d	reject	H0.	This	means	that	there	is	a	statistically	significant	association	between	
treatment	and	outcome.	
	 To	describe	and	interpret	the	findings,	you	examine	the	observed	and	expected	
frequencies	to	see	where	and	how	they	differ.	In	this	case,	systematic	desensitization	
yielded	more	cures	than	expected,	psychodynamic	therapy	yielded	about	as	many	cures	as	
expected,	and	no	treatment	yielded	fewer	cures	than	expected.		

Effect Size 
	 There	is	no	widely	accepted	measure	of	effect	size	for	the	c2	test	of	independence,	
except	in	one	special	case.	If	both	variables	are	dichotomous,	the	frequencies	can	be	
organized	into	a	2	´	2	table	and	you	can	calculate	f	(the	phi	coefficient).	That’s	a	type	of	
correlation,	and	therefore	it’s	also	a	measure	of	effect	size	with	the	usual	rules	of	thumb	
(.10	=	small,	.30	=	medium,	.50	=	large).		
	 For	a	2	´	2	table	of	frequencies,	the	c2	test	of	independence	can	also	be	calculated.	In	
fact,	the	p	value	for	f	and	the	c2	test	would	be	identical.	These	are	equivalent	statistics.	If	
you’ve	performed	the	c2	test,	you	can	convert	the	result	into	f	to	report	this	as	a	measure	
of	effect	size:	

	 	 f	=	sqrt(c2	/	N)	

	 Keep	in	mind	that	this	only	applies	to	2	´	2	tables.	If	there	are	more	than	two	categories	
for	either	of	the	variables,	f	cannot	be	calculated.	

Using SPSS 
	 To	perform	the	c2	test	of	independence	in	SPSS,	you	need	to	enter	the	raw	data,	not	the	
frequencies	themselves.	Enter	your	data	into	two	variables	(columns)	using	numerical	
codes	to	represent	the	categories	for	each;	it	makes	no	difference	what	numbers	you	use	to	
represent	the	categories.	To	serve	as	an	illustration,	the	treatment	data	analyzed	above	are	
used.	The	first	variable	is	“Treatment”,	coded	as	1	=	systematic	desensitization,	2	=	
psychodynamic	therapy,	and	3	=	no	treatment.	The	second	variable	is	“Outcome”,	coded	as	
1	=	cured	and	2	=	not	cured.	The	full	data	set	wouldn’t	fit	onto	the	screen,	but	here’s	a	
portion	that	shows	some	variability	in	scores:	
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	 Next,	you	use	the	following	command:	
	 	 crosstabs	
	 	 /tables	=	outcome	by	treatment	
	 	 /stats	=	chisq	
	 	 /cells	=	count	exp	

	 To	run	the	command,	list	the	two	variables	(here,	“Outcome”	and	“Treatment”)	on	the	
second	line.	The	first	variable	you	list	will	form	the	rows	in	the	table,	and	the	second	
variable	you	list	(after	the	word	“by”)	will	form	the	columns	in	the	table.	Reversing	their	
order	will	not	affect	the	statistical	results.	
	 SPSS	will	produce	three	tables,	but	you	can	ignore	the	first	one	(labeled	“Case	
Processing	Summary”).	The	second	table	shows	the	observed	and	expected	frequencies	for	
each	cell,	labeled	as	“Count”	and	“Expected	Count”.48	The	third	table	contains	the	test	
results.	Use	the	first	row	of	this	table	to	find	the	c2	value	(labeled	“Pearson	Chi-Square”),	
the	df,	and	the	p	value	(labeled	“Asymp.	Sig.	(2-tailed)”).	The	bottom	row	contains	N	
(labeled	“N	of	Valid	Cases”).	Here	are	the	results	for	the	test	shown	earlier:	

																																																								
48	SPSS	rounds	expected	frequencies	to	one	decimal	place	in	the	output,	but	it	uses	many	more	decimals	to	
perform	calculations.	
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APA Style 
	 To	report	the	results	of	a	c2	test	of	independence,	the	statistical	information	is	provided	
just	as	it	is	for	the	c2	goodness	of	fit	test.	If	the	test	is	not	statistically	significant,	you	can	
state	this	simply.	If	the	test	is	statistically	significant,	you	need	to	explain	the	pattern	of	
results.	There	are	many	ways	to	do	this,	and	the	goal	is	to	help	the	reader	understand	the	
nature	of	the	association	between	the	two	variables.	Here’s	how	you	might	report	the	c2	
test	shown	above:		

	 When	subjects	diagnosed	with	specific	phobias	were	randomly	assigned	to	treatment	

conditions,	cure	rates	were	statistically	significantly	different	for	systematic	

desensitization	(80%),	psychodynamic	therapy	(48%),	and	no-treatment	control	(20%),	

χ2(2,	N	=	75)	=	17.79,	p	<	.001.	

	 Notice	that	percentages	revealed	the	pattern	of	results.	Percentages	were	calculated	
from	the	observed	frequencies	(e.g.,	for	desensitization,	24	cured	out	of	30	=	80%).	

Problems 
	 A	total	of	100	students,	including	60	psychology	majors	and	40	students	in	other	
majors,	are	enrolled	in	an	introductory	psychology	course.	The	final	course	grades	of	all	
students	are	categorized	as	As,	Bs,	Cs,	Ds,	or	Fs.	The	observed	frequencies	are	as	follows:	
Psychology	Majors:	 	 A	=	23		 B	=	20		 C	=	11	 	 D	=	5	 	 F	=	1	

Other	Majors:		 	 A	=	9	 	 B	=	8	 	 C	=	11	 	 D	=	9	 	 F	=	3	



	 176	

1.	 If	you	perform	a	c2	test	of	independence,	what	null	hypothesis	will	be	tested?	

2.	 Construct	a	table	showing	the	observed	frequencies.	Leave	room	in	each	cell	to	show	
the	expected	frequencies.	

3.	 Calculate	the	expected	frequency	for	each	cell	in	the	table.	

4.	 What	is	the	df	for	this	test?	
5.	 What	is	the	critical	region	for	this	test?	

6.	 Calculate	c2.	

7.	 Are	the	results	statistically	significant?	How	can	you	tell?	

8.	 Is	there	an	appropriate	measure	of	effect	size	for	this	test?	If	so,	calculate	it.	

9.	 Write	the	results	for	this	c2	test	of	independence	in	APA	style.	

*	*	*	

	 A	total	of	114	prisoners	released	on	parole	were	classified	by	race	(white	vs.	non-white)	
and	high	school	diploma	(no	vs.	yes).	Among	white	individuals,	14	had	their	HS	diploma	
and	14	did	not.	Among	non-white	individuals,	27	had	their	HS	diploma	and	59	did	not.	

10.	If	you	perform	a	c2	test	of	independence,	what	null	hypothesis	will	be	tested?	

11.	Construct	a	table	showing	the	observed	frequencies.	Leave	room	in	each	cell	to	show	
the	expected	frequencies.	

12.	Calculate	the	expected	frequency	for	each	cell	in	the	table.	

13.	What	is	the	df	for	this	test?	
14.	What	is	the	critical	region	for	this	test?	

15.	Calculate	c2.	

16.	Are	the	results	statistically	significant?	How	can	you	tell?	

17.	Is	there	an	appropriate	measure	of	effect	size	for	this	test?	If	so,	calculate	it.	

18.	Write	the	results	for	this	c2	test	of	independence	in	APA	style.	

*	*	*	

19.	Using	SPSS,	enter	the	treatment	data	that	served	as	the	illustration	in	this	chapter.	
Follow	the	instructions	in	the	text	for	how	to	organize	the	data	file	and	enter	the	
commands	to	perform	a	c2	test	of	independence.	Check	that	your	output	matches	
what’s	shown	in	the	text.	

20.	Using	SPSS,	enter	the	grade	distribution	data	used	in	the	first	series	of	problems.	Follow	
the	instructions	in	the	text	for	how	to	organize	the	data	file	and	enter	the	commands	to	
perform	a	c2	test	of	independence.	Check	that	your	results	match	what	you	found	when	
you	ran	the	test	by	hand.	

21.	Using	SPSS,	enter	the	race	and	education	data	used	in	the	second	series	of	problems.	
Follow	the	instructions	in	the	text	for	how	to	organize	the	data	file	and	enter	the	
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commands	to	perform	a	c2	test	of	independence.	Check	that	your	results	match	what	
you	found	when	you	ran	the	test	by	hand.	

Problems 1 – 9 are due at the beginning of class. 



	 178	

20. Selecting a Statistical Test 

Overview 
	 A	total	of	15	statistical	tests	were	introduced	in	this	text.	They	can	be	grouped	into	a	
few	broad	types	based	on	the	kinds	of	research	designs	and	data	for	which	they’re	used.	In	
this	final	chapter,	we’ll	explore	how	to	select	the	most	appropriate	statistical	test	to	
address	a	particular	research	question.	A	summary	of	the	key	decision	points	is	provided	in	
Appendix	C.	

The Menu of Choices 
	 The	15	statistical	tests	introduced	in	this	text	are	listed	below.	To	select	the	most	
appropriate	test	to	address	a	particular	research	question,	the	key	is	to	determine	what	
kind	of	research	design	and	data	are	involved.	This	chapter	deal	with	ways	to	test	for	
differences	between	means,	test	relationships	between	two	or	more	variables,	or	test	the	
goodness	of	fit	between	observed	and	expected	frequencies.	

	 1.	 One	sample	z	test	
	 2.	 One	sample	t	test	
	 3.	 Independent	groups	t	test	
	 4.	 Related	samples	t	test	
	 5.	 Independent	groups	ANOVA	
	 6.	 Related	samples	ANOVA	
	 7.	 Factorial	ANOVA	
	 8.	 Correlation	(Pearson	product-moment	correlation)	
	 9.	 Spearman	rank-order	correlation	
	 10.	 Point-biserial	correlation	
	 11.	 Phi	coefficient	
	 12.	 Regression	(simple	linear	regression)	
	 13.	 Multiple	regression	
	 14.	 c2	goodness	of	fit	test	
	 15.	 c2	test	of	independence	

Testing Differences Between Means 
	 The	z,	t,	and	F	tests	can	all	be	used	to	compare	means.	One	important	clue	as	to	whether	
the	most	appropriate	test	to	address	a	particular	research	question	is	of	this	type	is	that	
these	tests	all	require	a	quantitative	(interval	or	ratio	scale)	dependent	variable,	or	
outcome	measure,	whose	mean	can	be	calculated	for	comparison.	If	you	have	nominal	
(qualitative)	or	ordinal	(ranked)	data	only,	none	of	these	tests	should	be	used.	
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One Variable Whose M Will Be Compared to Population µ 
	 When	you	want	to	compare	the	average	scores	on	a	single	variable	to	a	population	
average,	either	a	one	sample	z	test	or	a	one	sample	t	test	should	be	used.	Each	requires	
that	you	specify	a	value	for	µ,	the	population	mean,	that	serves	as	the	null	hypothesis.	The	
test	result	will	tell	you	whether	M,	the	sample	mean,	is	sufficiently	far	from	µ	that	the	
difference	is	statistically	significant.	
	 To	choose	between	z	and	t,	all	that	you	need	to	consider	is	whether	or	not	you	know	s,	
the	population	standard	deviation.	If	you	have	this	information,	you	use	the	z	test.	If	not,	
you	use	the	t	test,	which	uses	the	sample	standard	deviation	(SD)	as	an	estimate	of	s.	

Categorical Independent Variable(s) 
	 When	you	want	to	compare	means	across	a	series	of	conditions	in	a	study,	either	a	t	test	
or	an	ANOVA	should	be	used.	Each	of	these	begins	with	a	null	hypothesis	of	no	difference	
across	conditions,	and	the	test	result	will	tell	you	whether	sample	means	differ	enough	to	
be	statistically	significantly	different.	
	 If	the	research	design	involves	a	single	between-subjects	independent	variable,	
meaning	that	subjects	are	divided	into	groups	along	one	factor,	you	use	an	independent	
groups	t	test	or	an	independent	groups	ANOVA.	To	choose	between	t	and	ANOVA,	all	
that	you	need	to	consider	is	how	many	groups	are	being	compared.	If	there	are	only	two	
groups,	you	use	the	t	test.	If	there	are	three	or	more	groups,	you	use	the	ANOVA.		
	 If	the	research	design	involves	a	single	within-subjects	independent	variable,	meaning	
that	the	same	subjects	are	measured	in	all	conditions	or	specific	subjects	are	matched	to	
one	another	and	then	assigned	to	conditions,	you	use	a	related	samples	t	test	or	a	related	
samples	ANOVA.	To	choose	between	t	and	ANOVA,	all	that	you	need	to	consider	is	how	
many	conditions	are	being	compared.	If	there	are	only	two	conditions,	you	use	the	t	test.	If	
there	are	three	or	more	conditions,	you	use	the	ANOVA.		
	 If	the	research	design	involves	two	or	more	independent	variables,	you	use	a	factorial	
ANOVA.	This	test	can	be	used	with	any	combination	of	between-subjects	or	within-subjects	
factors.	For	simplicity,	this	text	only	detailed	the	procedure	for	how	to	perform	a	factorial	
ANOVA	with	two	between-subjects	factors.	

Testing Relationships Between Two or More Variables 
	 Correlation,	regression,	and	the	c2	test	of	independence	can	all	be	used	to	test	the	
relationship	between	two	or	more	variables.	Because	means	are	not	compared	across	
conditions,	the	data	need	not	be	quantitative.	Some	of	these	tests	can	accommodate	
nominal	or	ordinal	data.	

Association Between Two Variables 
	 When	you	want	to	determine	whether	two	variables	are	associated	with	one	another,	
some	type	of	correlation	or	the	c2	test	of	independence	should	be	used.	Each	of	these	
begins	with	a	null	hypothesis	of	no	association	between	variables,	and	the	test	result	will	
tell	you	whether	the	association	observed	in	the	sample	is	strong	enough	to	be	statistically	
significant.	
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	 To	choose	between	the	various	correlational	analyses,	all	that	you	need	to	consider	is	
what	types	of	data	the	two	variables	are.	There	are	many	possible	combinations,	and	this	
text	reviewed	the	five	that	are	encountered	most	frequently.	
	 If	you	have	two	quantitative	variables,	you	use	an	ordinary	correlation	(aka	Pearson	
product-moment	correlation	coefficient,	symbolized	r).	
	 If	you	have	two	ranked	variables,	you	use	Spearman’s	rank-order	correlation	
(symbolized	rS).	
	 If	you	have	one	quantitative	and	one	dichotomous	variable,	meaning	that	the	latter	
identifies	members	of	two	groups,	you	use	a	point-biserial	correlation	(symbolized	rpb).	
This	is	equivalent	to	using	an	independent	groups	t	test,	meaning	that	their	p	values	would	
be	identical	and	you’d	reach	the	same	conclusion	regarding	your	null	hypothesis.	
	 If	you	have	two	dichotomous	variables,	meaning	that	each	variable	identifies	members	
of	two	groups,	you	use	a	phi	coefficient	(symbolized	f).		
	 If	you	have	two	nominal	variables,	meaning	that	each	variable	identifies	members	of	
two	or	more	categories,	you	use	the	c2	test	of	independence.	The	phi	coefficient	is	a	
special	case	of	this	test,	and	they’re	equivalent	when	both	variables	are	dichotomous.	

Making Predictions 
	 When	you	want	to	use	one	or	more	variables	to	determine	how,	and	how	accurately,	
they	predict	scores	on	a	single	outcome	variable,	either	regression	or	multiple	
regression	should	be	used.	Each	of	these	begins	with	a	null	hypothesis	of	no	predictive	
validity,	or	no	variance	in	the	outcome	variable	explained	by	the	predictor(s),	and	the	test	
result	will	tell	you	whether	the	predictive	validity	observed	in	the	sample	is	strong	enough	
to	be	statistically	significant.	
	 To	choose	between	regression	and	multiple	regression,	all	that	you	need	to	consider	is	
how	many	predictor	variables	will	be	entered	into	the	regression	equation.	If	you	have	one	
predictor,	you	use	regression	(aka	simple	linear	regression).	If	you	have	more	than	one	
predictor,	you	use	multiple	regression.	

Testing Goodness of Fit Between Observed and Expected Frequencies 
	 One	remaining	statistical	test	is	unique.	The	c2	goodness	of	fit	test	doesn’t	involve	a	
comparison	of	means	across	conditions	or	the	association	between	two	or	more	variables.	
Instead,	this	is	used	with	a	single	categorical	variable	when	you	want	to	determine	whether	
the	observed	frequencies,	or	counts,	in	the	cells	of	a	table	differ	sufficiently	from	the	
expected	frequencies	to	be	statistically	significant.	Identifying	research	questions	for	which	
this	test	is	most	appropriate	should	be	very	easy	because	it’s	the	only	test	we’ve	considered	
that	involves	a	single	categorical	variable.	

Problems 
	 For	each	of	the	following	studies,	indicate	which	of	the	15	statistical	tests	introduced	in	
this	text	should	be	used	and	explain	why	this	is	the	most	appropriate	choice.	Make	sure	to	
name	the	test	fully	(e.g.,	“t	test”	is	not	sufficiently	specific	because	there	are	three	kinds,	
and	if	you	mean	“point-biserial	correlation”	you	need	to	specify	that	rather	than	writing	
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only	“correlation”).	Also,	make	sure	you	justify	your	choice.	An	example	of	a	well-justified	
choice	would	be	“Related	samples	t	test;	the	design	is	within-subjects	and	there	were	only	
two	conditions.”	
1.	 A	demographer	working	for	the	U.S.	Census	Bureau	wants	to	compare	salaries	for	urban	

vs.	rural	areas.	She	gets	a	sample	of	psychologists,	some	who	live	in	urban	areas	and	
some	who	live	in	rural	areas.	Do	earnings	differ	across	these	areas?	

2.	 A	cognitive	psychologist	wonders	whether	talking	on	a	cell	phone	impairs	the	ability	to	
concentrate	while	driving.	An	experiment	is	performed	using	a	driving	simulator,	and	
subjects	asked	to	drive	a	standard,	challenging	course	under	one	of	three	randomly	
assigned	conditions:	(1)	driving	while	holding	and	talking	on	a	cell	phone,	(2)	driving	
while	talking	on	a	hands-free	phone,	and	(3)	driving	while	talking	with	a	passenger	
seated	in	the	simulator.	After	a	practice	period	to	become	accustomed	to	the	task,	the	
test	begins	and	the	dependent	variable	is	whether	a	passing	score	is	earned.	Is	there	a	
difference	in	passing	rates	across	experimental	conditions?	

3.	 First-year	college	students	were	surveyed	about	how	much	they	liked	their	roommates	
at	three	points	in	time:	within	five	minutes	of	meeting	them,	after	the	first	week	of	
classes,	and	at	the	end	of	the	semester.	Ratings	were	made	on	a	7-point	Likert	scale.	
Does	degree	of	liking	change	over	the	course	of	the	semester?	

4.	 People	are	measured	to	determine	how	fair-skinned	they	are;	this	is	assessed	using	a	
quantitative	scale.	A	dermatologist	then	counts	the	number	of	suspicious	moles	on	each	
person’s	skin.	Is	there	a	relationship	between	skin	fairness	and	the	number	of	
suspicious	moles?	

5.	 A	clinical	psychologist	wondered	whether	adults	with	attention	deficit	hyperactivity	
disorder	(ADHD)	had	reflexes	that	differed	in	speed	from	those	of	the	general	
population.	She	located	a	test	of	reaction	time	that	was	normed	on	adults	in	the	U.S.	(μ	=	
200	msec).	From	treatment	centers	in	her	home	state,	a	random	sample	of	141	adults	
diagnosed	with	ADHD	were	tested	for	reaction	time	(M	=	220,	SD	=	27).	Do	adults	with	
ADHD	differ	in	reaction	time	from	the	general	population?	

6.	 A	large	sample	of	adults	living	together	in	self-reported	“committed	relationships”	
(which	includes,	but	is	not	limited	to,	marriage)	in	an	urban	area	is	studied	to	
determine	whether	there	is	an	association	between	the	employment	status	of	partners.	
Both	members	of	each	couple	are	classified	independently	as	working	full	time	or	not	
working	full	time.	Is	there	an	association	between	the	employment	status	of	men	and	
women	in	committed	relationships?	

7.	 Each	child	in	the	4th	grade	at	a	large	elementary	school	is	classified	by	the	teacher	as	
predominantly	right-handed,	left-handed,	or	ambidextrous.	The	children’s	art	teachers	
rate	their	artistic	ability	on	a	10-point	scale.	Does	artistic	ability	differ	by	handedness?	

8.	 A	clinical	psychologist	wants	to	use	scores	on	a	childhood	behavior	checklist	to	predict	
the	severity	of	depression	among	young	adults.	A	sample	of	children	who	were	assessed	
for	behavioral	problems	is	followed	over	time.	Among	those	who	later	seek	counseling	
services	for	any	mood	disturbance,	one	of	the	measures	that	is	administered	assesses	
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their	level	of	depression.	How	can	scores	on	the	childhood	behavior	checklist	best	be	
used	to	predict	severity	of	depression?	

9.	 A	sociologist	wanted	to	see	if	there	was	a	relationship	between	a	family’s	educational	
status	and	the	eliteness	of	the	college	that	their	oldest	child	attended.	She	measured	
educational	status	by	counting	how	many	years	of	education	the	parents	had	received	
and	she	counted	colleges	that	accepted	fewer	than	one-third	of	their	applicants	as	elite.	
Is	there	an	association	between	family	educational	status	and	college	eliteness?	

10.	A	nutritionist	wanted	to	find	out	if	coffee	and	tea,	as	served	in	restaurants,	differed	in	
caffeine	content.	She	went	to	30	restaurants,	ordered	coffee	and	tea	in	each	one,	and	
had	the	caffeine	content	of	each	beverage	tested.	Do	these	servings	of	coffee	and	tea	
differ	in	caffeine	levels?	

11.	Teenagers	in	a	small	community	believe	that	the	local	police	single	them	out	for	traffic	
stops	more	often	than	adult	drivers.	To	investigate	this,	a	researcher	randomly	selected	
six	traffic	tickets	from	each	month	in	one	year,	for	a	total	of	72	tickets.	Because	the	age	
of	the	driver	was	recorded	on	the	ticket,	the	investigator	was	able	to	determine	that	11	
tickets	went	to	teen	drivers	and	the	other	61	tickets	went	to	adults.	According	to	the	
Department	of	Motor	Vehicles,	8%	of	licensed	drivers	in	the	town	are	teenagers.	Does	
the	percentage	of	tickets	given	to	teen	drivers	differ	from	the	percentage	of	teen	
drivers?	

12.	A	developmental	psychologist	is	interested	in	the	study	of	aggression.	She	observes	
aggressive	behavior	on	school	playgrounds	to	test	for	gender	differences	in	both	
physical	and	verbal	aggression.	Does	the	level	of	aggression	differ	by	gender,	by	type	of	
aggression,	or	both?	

13.	A	kinesiologist	and	a	psychologist	collaborated	on	a	study	to	investigate	the	
relationship	between	exercise	and	mental	health	in	a	random	sample	of	adult	men.	
Exercise	was	measured	as	the	number	of	minutes	of	aerobic	activity	per	week	and	
mental	health	was	measured	using	a	self-report	scale.	The	investigators	noticed	that	
whereas	the	distribution	of	exercise	was	positively	skewed,	the	distribution	of	mental	
health	better	approximated	normality.	Because	of	this,	they	converted	both	quantitative	
variables	to	ranks.	Is	there	an	association	between	exercise	and	mental	health?	

14.	Researchers	assisted	a	large,	metropolitan	psychiatric	hospital	in	predicting	the	length	
of	stay	of	newly	admitted	patients.	Among	a	sample	of	800	patients	that	spent	an	
average	of	16.3	days	in	the	hospital,	a	wealth	of	information	was	available.	How	well	
does	a	model	that	includes	five	variables	(primary	diagnosis	of	schizophrenia,	primary	
diagnosis	of	mood	disorder,	secondary	diagnosis	of	alcohol	or	drug	problem,	number	of	
previous	admissions,	and	age)	predict	the	length	of	stay?	

15.	A	scientific	supply	company	has	developed	a	new	breed	of	lab	rat,	which	it	claims	
weighs	the	same	as	the	classic	white	rat	(μ	=	485	grams,	σ	=	50	grams).	A	researcher	
obtained	a	sample	of	76	of	the	new	breed	of	rats,	weighed	them,	and	found	M	=	515	
grams.	Is	the	company’s	claim	true?	

*	*	*	
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16.	In	1997,	Nabisco	came	out	with	a	clever	advertising	campaign,	the	Chips	Ahoy	
Challenge.	Nabisco	guaranteed	that	there	were	more	than	1,000	chocolate	chips	in	
every	bag,	and	they	challenged	consumers	to	count.	Suppose	25	people	go	to	the	trouble	
of	counting	the	chips	in	one	bag	apiece.	Do	their	findings	statistically	significantly	refute	
Nabisco’s	claim?	

17.	A	developmental	psychologist	seeks	to	determine	whether	children’s	exposure	to	pets	
in	the	home	affects	the	likelihood	of	keeping	similar	kinds	of	pets	later	in	life.	A	sample	
of	middle-aged	adults	is	asked	what	kind	of	pet	(if	any)	predominated	in	their	home	
when	growing	up,	using	five	categories:	furry	(dogs,	cats,	hamsters,	etc.),	finned	(fish),	
feathered	(birds),	scaly	(reptiles,	amphibians),	or	none.	They	also	indicate	whether	they	
have	kept	any	pets	of	that	category	as	adults.	Is	there	an	association	between	the	kinds	
of	pets	kept	as	kids	and	as	adults?	

18.	A	clinical	psychologist	wanted	to	compare	three	treatments	for	Generalized	Anxiety	
Disorder	(GAD).	She	put	an	ad	in	the	local	paper	to	find	people	with	GAD.	Based	on	
severity	of	symptoms,	she	matched	the	volunteers	for	her	study	into	triads	and	
randomly	assigned	each	of	the	matched	cases	to	one	of	the	three	treatments.	Outcomes	
were	assessed	individually	by	a	clinician	blind	to	treatment	assignments.	Are	the	
treatments	equally	effective?	

19.	An	economist	wants	to	predict	how	much	an	increase	in	the	minimum	wage	will	
increase	unemployment	among	low-skilled	workers.	He	collects	data	on	the	minimum	
wage	in	different	places	and	at	different	times,	along	with	the	corresponding	
unemployment	rates	among	low-skilled	workers.	How	much	does	an	increase	in	the	
minimum	wage	increase	the	unemployment	rate?	

20.	A	dentist	wanted	to	determine	whether	childhood	fluoride	supplements	reduced	the	
number	of	cavities.	She	took	a	sample	of	adults	who	were	raised	in	regions	without	
fluoride	in	the	water	supply,	asked	whether	each	had	regularly	taken	fluoride	
supplements,	and	tallied	the	number	of	cavities	in	the	dental	record.	Is	there	a	
relationship	between	fluoride	supplements	and	cavities?	

21.	An	investigator	wonders	whether	the	reduced	mental	alertness	due	to	sleep	
deprivation	can	be	counteracted	by	consuming	caffeine.	Three	groups	of	volunteers	are	
subjected	to	varying	amounts	of	sleep	deprivation	(0	hours,	1	hour,	or	2	hours).	One-
half	of	all	volunteers	is	given	a	standardized	dose	of	caffeine,	the	other	half	is	not.	Does	
mental	alertness	differ	by	sleep	deprivation,	caffeine	intake,	or	both?	

22.	A	behavioral	therapist	had	patients	with	spider	phobias	rate	the	level	of	their	fear	on	a	
10-point	scale.	He	then	asked	each	patient,	in	turn,	to	enter	a	room	with	a	spider	in	a	
cage	and	come	as	close	to	the	spider	as	they	felt	comfortable.	Do	people	with	more	self-
rated	fear	stay	a	greater	distance	away	from	the	spider?	

23.	A	developmental	psychologist	wondered	if	birth	order	had	an	impact	on	academic	
performance.	She	found	families	with	two	children	and	obtained	the	high	school	GPA	of	
each	child.	Is	there	a	difference	in	GPA	between	first-born	and	second-born	children?	

24.	A	real	estate	agent	wonders	how	accurately	the	selling	price	of	homes	can	be	predicted.	
She	constructs	a	data	set	that	includes	the	square	footage	of	the	home,	the	acreage	of	
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the	lot,	the	number	of	bedrooms,	the	number	of	bathrooms,	and	the	average	price	of	
homes	sold	within	the	same	development	over	the	past	two	years.	How	accurately	can	
the	selling	price	of	homes	be	predicted	from	these	variables?	

25.	A	psychologist	wanted	to	investigate	the	relationship	between	the	technical	skill	and	
creativity	of	children’s	drawings.	A	sample	of	kids	provided	drawings,	and	art	teachers	
ranked	these	from	highest	to	lowest	in	terms	of	technical	proficiency	at	drawing	and	
then	from	highest	to	lowest	in	terms	of	the	creativity	of	artistic	expression.	Is	technical	
skill	related	to	creativity	in	drawing?	

26.	A	conservation	biologist	wonders	whether	placement	on	the	endangered	species	list	
improves	the	chances	that	a	species	will	avoid	extinction.	He	catalogues	reptile	species	
that	were	considered	equally	threatened	25	years	ago,	but	among	which	one-half	were	
subsequently	placed	on	the	endangered	species	list	and	the	other	half	were	not,	and	
classifies	the	rate	of	population	decline	in	its	natural	habitat	as	either	sped	up	or	slowed	
down.	Is	status	as	an	endangered	species	associated	with	whether	the	decline	sped	or	
slowed?	

27.	A	behavioral	economist	wonders	whether	portion	sizes	influence	weight	change.	Rather	
than	performing	a	one-shot	experiment	in	the	laboratory,	she	arranges	for	dining	halls	
on	three	college	campuses	to	systematically	vary	their	portion	sizes	for	one	full	
semester.	One	serves	small	portions,	another	serves	medium-sized	portions,	and	the	
third	serves	large	portions.	Students	who	regularly	eat	in	these	dining	halls	are	asked	to	
weigh	themselves	at	the	beginning	and	the	end	of	the	semester,	and	their	change	in	
weight	is	the	dependent	variable.	Does	portion	size	affect	weight	change?	

28.	Across	U.S.	cities,	the	average	vacancy	rate	for	apartments	is	μ	=	10%	(σ	=	4.6%).	An	
urban	studies	major	obtained	a	sample	of	15	rust-belt	cities	and	found	that	the	average	
vacancy	rate	was	M	=	13.3%.	Does	the	vacancy	rate	for	these	cities	differ	from	the	U.S.	
average?	

29.	In	Los	Angeles	County,	members	of	grand	juries	serve	for	a	one-year	term	and	are	paid	
at	the	rate	of	$25/working	day.	Individuals	are	either	self-nominated	or	nominated	by	
judges.	Twenty-three	percent	of	all	citizens	that	are	eligible	to	serve	on	the	grand	jury	
are	Hispanic.	Of	144	nominees	in	a	given	year,	only	8	were	Hispanic.	Does	this	
represent	evidence	of	racism?	

30.	An	exercise	physiologist	classifies	people—on	the	basis	of	their	body	mass	index,	heart	
rate,	and	lung	capacity—as	above	or	below	average	in	terms	of	fitness.	He	then	directs	
the	same	people	to	walk	on	a	treadmill,	individually,	at	an	increasing	speed	until	they	
can	no	longer	walk.	The	speed	when	a	person	maxes	out	is	the	dependent	variable.	Is	
there	a	difference	in	maximum	walking	speed	based	on	fitness	level?	

*	*	*	
31.	Individuals	who	behave	in	hard-driving,	competitive,	and	ambitious	ways	have	been	

described	as	exhibiting	the	Type	A	personality,	in	contrast	to	the	Type	B	personality	
that’s	characterized	as	more	relaxed	and	easy-going.	When	people	classified	as	Type	A	
or	Type	B	are	confronted	with	an	experimental	task	designed	to	induce	frustration,	do	
they	experience	different	levels	of	frustration?	
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32.	A	researcher	asks	male	and	female	volunteers	to	describe	their	most	recent	dream.	
Each	dream	is	rated	by	an	expert	as	low,	medium,	or	high	in	aggressive	content.	Do	men	
have	more	aggressive	dreams	than	women?	

33.	A	manufacturer	of	computer	components	is	trying	to	improve	its	keyboards.	A	sample	
of	12	administrative	assistants	spends	one	hour	typing	on	each	of	six	newly	designed	
keyboards.	The	performance	of	each	keyboard	is	rated	on	a	7-point	scale	from	“very	
poor”	to	“very	good”.	Are	there	systematic	differences	in	the	performance	ratings	of	the	
keyboards?	

34.	Members	of	married	couples	complete	a	questionnaire	that	measures	how	liberal	or	
conservative	their	attitudes	are.	Do	the	data	support	the	notion	that	similarities	in	
attitudes	are	important	for	interpersonal	attraction?	

35.	Nationwide,	5th	graders	achieve	µ	=	70	on	a	standardized	test	of	reading	achievement.	A	
particular	teacher	notices	that	for	the	25	students	in	her	class,	M	=	75.	Does	this	suggest	
that	her	students	are	reading	better	than	average?	

36.	A	researcher	hypothesizes	that	a	particular	chemical	contained	in	the	urine	of	male	rats	
affects	the	behavior	of	other	males—but	not	females—in	the	colony,	specifically	that	it	
makes	them	more	anxious.	To	test	this	hypothesis,	the	investigator	measures	the	
activity	levels	of	male	and	female	rats	that	are	each	placed,	alone,	into	a	cage	that’s	
either	sterile	or	painted	with	the	chemical	extracted	from	male	rat	urine.	Is	the	
researcher’s	hypothesis	supported	by	the	data?	

37.	An	observer	visits	several	large	lecture	halls	across	all	the	major	departments	at	a	
college	over	a	period	of	one	week.	Each	laptop	computer	that’s	in	use	during	class	time	
is	coded	as	being	a	Mac	or	a	PC.	Are	students’	preferences	equally	divided	between	
these	types	of	computer?	

38.	An	instructor	records	students’	scores	on	both	a	midterm	and	a	final	exam.	How	
accurately	do	midterm	exam	scores	predict	final	exam	scores?	

39.	The	Pepsi	Challenge,	which	began	in	the	1970s,	involves	a	blind	taste	test	between	Coke	
and	Pepsi	colas.	A	researcher	wonders	whether	preferences	depend	on	age.	One	
hundred	people	who	complete	the	Pepsi	challenge	report	their	age,	and	whether	they	
each	preferred	Coke	or	Pepsi	is	revealed	and	recorded.	Is	age	related	to	cola	
preference?	

40.	For	a	science	fair	project,	a	child	exposes	newly	sprouted	bean	plants	to	one	of	four	
types	of	music	for	several	hours	each	day:	classical,	pop,	rap,	or	country.	The	height	of	
each	plant	is	measured	after	two	weeks.	Does	type	of	music	affect	plant	growth?	

41.	Prior	to	entering	the	NFL	draft,	college	football	players	are	assessed	on	a	series	of	seven	
physical	tests	that	include	the	40-yard	dash,	bench	press,	and	vertical	jump	(this	does	
not	include	position-specific	drills	and	physical	measurements).	One	measure	of	
success	in	the	NFL	is	being	a	starting	player	during	the	first	year	on	a	team.	How	well	do	
these	seven	measures	predict	the	number	of	games	started	in	the	first	year?	

42.	College	players	who	hope	to	be	drafted	by	NFL	teams	also	complete	the	Wonderlic,	a	
brief	intelligence	test.	An	investigator	ranks	the	career	success	of	24	quarterbacks	who	
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played	in	the	NFL.	Is	success	associated	with	the	rank-ordering	of	Wonderlic	scores	for	
these	24	quarterbacks?	

43.	Over	the	past	30	years,	an	average	of	µ	=	12	batters	per	week	are	hit	by	wild	pitches	in	
MLB	games	(s	=	3).	For	a	sample	of	n	=	8	weeks	with	unusually	hot	weather,	the	weekly	
average	was	M	=	15.5.	Does	hot	weather	affect	the	likelihood	of	being	hit	by	a	pitch?	

44.	The	chair	of	a	committee	formed	to	create	a	new	licensing	exam	wonders	whether	
examinees	with	severe	test	anxiety	will	have	greater	difficulty	passing	a	written	test.	A	
sample	of	60	examinees	includes	equal	numbers	of	individuals	who	score	at	very	low	or	
very	high	levels	on	a	measure	of	test	anxiety.	Is	test	anxiety	associated	with	whether	the	
examinees	pass	or	fail	the	written	test?	

45.	A	drop	in	the	number	of	white	blood	cells	(lymphocytes)	in	the	blood	is	associated	with	
an	increased	susceptibility	to	disease.	Lymphocyte	counts	are	taken	for	a	sample	of	men	
before	and	during	a	period	of	emotional	distress.	Does	this	form	of	stress	decrease	the	
number	of	white	blood	cells?	

Problems 1 – 15 are due at the beginning of class. 
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21. Reproducibility 

Overview 
	 The	publication	of	scientific	research	in	a	peer-reviewed	scholarly	journal	lends	a	seal	
of	approval	to	the	quality	of	the	work	and	the	credibility	of	the	findings.	To	some	extent	
this	confidence	is	well	earned,	as	editors	and	peer	reviewers	generally	do	a	good	job	of	
detecting	problems	and	only	publishing	studies	that	meet	reasonable	quality-control	
standards.	However,	this	process	depends	on	the	integrity	of	authors	to	report	their	
research	fully	and	honestly	as	well	as	the	integrity	of	editors	and	reviewers	to	assess	it	
carefully	and	free	of	bias.	Even	at	the	most	prestigious	and	selective	journals,	there	is	no	
guarantee	that	published	findings	are	correct.	In	recent	years,	psychological	scientists	have	
been	paying	greater	attention	to	the	reproducibility	of	research	by	examining	how	often	
findings	can	be	replicated	and	what	can	be	done	to	prevent	mistaken	conclusions	from	
being	published.	In	this	chapter,	we’ll	learn	about	questionable	research	practices	that	can	
lead	to	false	findings	being	published	as	well	as	ways	to	reduce	the	chances	of	this	
happening.	

False Findings 
	 In	2005,	John	Ioannidis	published	a	paper	that	stirred	up	some	controversy,	to	put	it	
mildly.	It	was	titled	“Why	Most	Published	Research	Findings	Are	False”.49	That’s	a	pretty	
bold	claim,	and	Ioannidis	meant	exactly	what	he	said.	Though	his	article	appeared	in	a	
medical	journal,	he	was	not	criticizing	any	particular	scientific	field.	Rather,	he	was	
pointing	out	just	how	weak	statistical	evidence	can	be.		
	 Many	investigators	believe	that	simply	using	a	=	.05	provides	good	protection	against	
Type	I	errors,	but	Ioannidis	showed	that	this	is	mistaken.	The	actual	probability	of	reaching	
a	false-positive	conclusion—of	mistaking	results	that	can	be	explained	by	chance	for	
evidence	of	a	systematic	effect—is	often	surprisingly	high,	exceeding	50%	much	of	the	
time.	Ioannidis	made	his	case	using	simple	math	and	argued	that	this	conclusion	holds	true	
across	a	wide	range	of	plausible	assumptions	regarding	research	contexts.	He	also	
discussed	factors	that	would	increase	the	likelihood	of	false	findings,	such	as	using	smaller	
sample	sizes;	studying	phenomena	with	smaller	effect	sizes;	allowing	greater	flexibility	in	
designs,	definitions,	outcomes,	and	analyses;	having	financial	and	other	interests	in	certain	
results,	or	holding	prejudices;	and	studying	hotter	topics,	with	more	scientific	teams	
involved.	
	 Ioannidis	sounded	the	alarm	using	probabilities,	and	his	calculations	required	making	
some	assumptions.	Those	uncomfortable	with	his	assumptions,	or	uninterested	in	
hypothetical	calculations,	might	have	found	this	an	easy	argument	to	dismiss.	Before	long,	
the	concerns	he	expressed	would	be	hard	to	ignore.	

																																																								
49	Ioannidis,	J.	P.	A.	(2005).	Why	most	published	research	findings	are	false.	PLoS	Medicine,	2,	696-701.	
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Replication Crisis 
	 Everyone	learns	in	their	research	training	that	replication	is	a	cornerstone	of	the	
scientific	method.	We	know	that	a	single	finding	may	be	mistaken	and	that	independent	
corroboration	in	follow-up	studies	builds	trust	that	the	finding	is	real.	Unfortunately,	it’s	
relatively	rare	to	perform	replication	studies	that	put	this	to	a	test.	There	are	many	
possible	reasons	for	this,	most	of	which	involve	greater	interest	in	and	reward	for	
generating	original	ideas	than	for	attempting	to	replicate	prior	research.	The	“publish	or	
perish”	culture	of	scientific	research	exerts	a	strong	pressure	on	investigators	to	be	
productive	in	ways	that	are	valued	by	journal	editors,	reviewers,	and	members	of	
committees	that	make	decisions	about	hiring,	tenure,	promotion,	grant	support,	and	
professional	honors.	Replication	has	not	been	valued	nearly	as	highly	as	original	research.	
	 As	a	consequence,	in	psychology	as	in	most	competitive	scientific	fields,	replication	has	
historically	been	given	little	attention.	In	part	because	of	some	high-profile	cases	of	
scientific	misconduct50,	however,	researchers	have	recently	become	increasingly	curious	
about	how	many	of	the	findings	in	the	published	literature	are	trustworthy.	A	project	by	
the	Open	Science	Collaboration51	sheds	light	on	this	question.	Research	teams	replicated	
100	studies	published	in	three	leading	journals	in	psychology.	They	followed	all	of	the	
methods	used	in	the	original	studies	as	closely	as	possible.	The	authors	of	the	report	on	this	
massive	project	found	that	effect	sizes	in	the	replication	studies	were	about	one-half	as	
large,	on	average,	as	those	in	the	original	studies.	Whereas	97%	of	the	original	findings	
were	statistically	significant,	only	36%	were	in	the	replication	studies.	Based	on	a	variety	of	
criteria	for	evaluating	the	outcomes,	the	authors	concluded	that	fewer	than	one-half	of	the	
original	findings	had	been	replicated	successfully.	Though	some	critics	have	argued	that	
this	project	underestimates	reproducibility	to	some	extent,	it	still	underscores	the	
possibility	that	Ioannidis	was	on	to	something,	namely	that	a	lot	of	published	research	
findings	may	be	false.	

Questionable Research Practices 
	 How	can	so	many	bright,	hard-working	scientists	publish	results	that	are	in	fact	
mistaken?	Actually,	there	are	a	lot	of	ways	this	can	happen.	Outright	fraud	might	account	
for	a	few	instances,	but	the	far	more	common	culprits	are	likely	to	be	a	number	of	biases	in	
how	research	is	designed,	how	data	are	analyzed,	and	how	results	are	reported.	There	are	
so	many	choices	that	investigators	have	available	that	if	they	take	advantage	of	this	
flexibility,	this	can	greatly	increase	their	chances	of	finding	something	that	seems	
interesting.	For	example,	to	demonstrate	just	how	easy	it	is	to	generate	apparent	support	
even	for	false	hypotheses,	one	research	team	reported	findings	from	a	pair	of	studies	that	

																																																								
50	For	example,	Karen	Ruggiero	(former	psychology	professor	at	Harvard	University)	fabricated	data	on	
gender	and	discrimination	and	retracted	at	least	two	published	articles.	Brian	Wansink	(former	behavioral	
economist	at	Cornell	University)	committed	a	variety	of	types	of	academic	misconduct	and	has	retracted	18	
published	articles	and	corrected	15	papers,	with	concerns	remaining	about	many	others.	In	perhaps	the	best-
known	case	in	the	social	sciences,	Diederik	Stapel	(former	social	psychology	professor	at	Tilburg	University)	
fabricated	data	in	dozens	of	studies	and	has	retracted	58	publications.	
51	Open	Science	Collaboration	(2015).	Estimating	the	reproducability	of	psychological	science.	Science,	349,	
aac4716.	
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are	hard	to	believe.52	First,	they	showed	that	
listening	to	a	children’s	song	made	people	
feel	older.	That	would	be	surprising,	but	it	
could	be	true.	Second,	they	showed	that	
listening	to	a	song	about	older	age	makes	
people	younger.	Not	how	they	feel,	but	their	
actual	age—music	had	reversed	the	aging	
process!	
	 You’re	probably	sufficiently	skeptical	
that	you	suspect	something	is	wrong	with	
this	research.	What	the	investigators	did	
was	to	intentionally	take	advantage	of	what	
they	called	researcher	degrees	of	freedom	
by,	for	example,	collecting	and	analyzing	
much	more	data	(e.g.,	experimental	
conditions,	dependent	variables)	than	they	
reported.	They	presented	only	a	few	results	
that	appeared	to	support	the	hypotheses.	
The	authors	demonstrated	that	if	you	collect	
enough	data	and	try	enough	analyses,	
eventually	you’re	bound	to	find	something	
you	like,	something	that	will	make	for	an	
interesting	report.	Consider	this	comic	by	
Randall	Monroe	at	xkcd.com,	for	example.	

Þ	
	 Testing	each	color	of	jelly	bean	is	like	
collecting	as	many	dependent	variables	as	
possible	in	a	study	and	performing	separate	
statistical	tests	for	all	of	them.	Running	a	lot	
of	tests,	using	many	different	variables,	can	
increase	the	chances	of	obtaining	at	least	
one	statistically	significant	result.	This	
makes	it	easier	to	publish	your	research,	but	
it	also	increases	the	chances	of	false-positive	
findings	entering	the	literature.	As	noted	in	
the	context	of	ANOVA	models,	when	you	
make	multiple	comparisons	you	increase	the	
experimentwise	Type	I	error	rate.	It’s	highly	
problematic	to	focus	attention	only	on	the	
statistically	significant	finding(s)	without	
noting	how	many	tests	were	performed.	
	 The	idea	that	actual	working	scientists	
might	test	20	different	colors	of	jelly	beans,	
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but	then	headlines	would	emphasize	the	single	statistically	significant	finding	might	seem	
far-fetched.	Surely	research	this	poorly	done	wouldn’t	survive	the	peer-review	process	at	a	
reputable	journal?	Surely	journalists	reporting	on	scientific	discoveries	would	know	better	
than	to	isolate	one	finding	and	ignore	the	many	failed	tests?	Unfortunately,	as	noted	earlier,	
even	professionals	aren’t	100%	reliable	in	these	regards.	For	example,	consider	these	
actual	headlines	from	the	fall	of	1999:	

“Heart	Patients	Fared	Better	after	Secret	Prayers”	
Toronto	Star,	October	26	

“Prayer’s	‘Medicinal’	Value	Gets	an	Amen	from	Study”	
San	Diego	Union-Tribune,	November	3	

“Scientists	‘Prove	the	Power	of	Prayer’”	
London	Daily	Telegraph,	November	11	

	 This	study	received	a	lot	of	media	attention,	and	the	message	was	clear	and	consistent:	
Scientific	data	support	the	effectiveness	of	prayer	as	health	care.	What	evidence	supported	
these	bold	claims?	

	 A	team	of	researchers53	randomly	assigned	990	patients	in	a	coronary	care	unit	to	a	
treatment	group	that	received	prayers	for	their	swift	recovery	or	a	no-prayer	control	
group.	Thirty-five	health	outcomes	were	recorded	for	all	patients,	including	pneumonia,	
major	surgery,	cardiac	arrest,	or	death.	Because	the	researchers	used	a	=	.05	for	all	tests,	
sampling	error	alone	would	be	expected	to	yield	1	or	2	statistically	significant	results	for	
their	35	tests.	And	that’s	just	what	they	found:	The	only	significant	difference	between	
groups	was	that	patients	in	the	prayer	condition	had	better	“Swan-Ganz	catheter”	ratings.	
Despite	the	very	strong	possibility	that	these	results	represent	nothing	more	than	sampling	
error,	this	study	was	published	in	a	major	medical	journal.	Though	the	authors	themselves	
are	careful	to	state	that	“we	have	not	proven	that	God	answers	prayer	or	that	God	even	
exists”	(Harris	et	al.,	1999,	p.	2277),	the	headlines	quoted	earlier	show	that	the	media	
proclaimed	prayer	to	be	an	effective	remedy	for	disease.	The	evidence	was	basically	the	
same	as	that	linking	green	jelly	beans	to	acne.	
	 Performing	a	lot	of	tests	but	focusing	attention	only	on	the	favorable	results—counting	
the	hits	and	ignoring	the	misses—is	among	a	number	of	common	research	practices	that	
cross	the	line	between	rigorously	testing	a	hypothesis	and	fishing	for	support	in	ways	that	
boost	the	rate	of	false	findings.	A	study	of	psychological	scientists54	found	that	many	
admitted	to	engaging	in	questionable	research	practices	such	as	failing	to	report	all	
dependent	variables	(63%)	or	experimental	conditions	(28%),	deciding	whether	to	collect	
more	data	based	on	whether	results	were	significant	(56%),	“rounding	off”	a	p	value	that’s	
actually	above	an	a	level	to	make	it	appear	significant	(22%),	and	selectively	reporting	
studies	that	“worked”	(46%).	Reported	levels	of	engaging	in	these	questionable	research	

																																																								
52	Simmons,	J.	P.,	Nelson,	L.	D.,	&	Simonsohn,	U.	(2011).	False-positive	psychology:	Undisclosed	flexibility	in	
data	collection	and	analysis	allows	presenting	anything	as	significant.	Psychological	science,	22,	1359-1366.	
53	Harris	et	al	(1999).	A	randomized,	controlled	trial	of	the	effects	of	remote,	intercessory	prayer	on	outcomes	
in	patients	admitted	to	the	coronary	care	unit.	Archives	of	Internal	Medicine,	159,	2273-2278.		
54	John,	L.	K.,	Loewenstein,	G.,	&	Prelec,	D.	(2012).	Measuring	the	prevalence	of	questionable	research	
practices	with	incentives	for	truth	telling.	Psychological	science,	23,	524-532.	
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practices	increased	when	the	anonymous	respondents	were	given	stronger	incentives	to	be	
honest	and	when	they	were	asked	about	their	general	prevalence	among	all	scientists.	

Academic Culture 
	 Questionable	research	practices	emerge	within	research	communities.	Aspects	of	the	
academic	culture	that	shapes	these	communities,	especially	those	involving	the	publication	
of	scientific	papers,	can	either	encourage	or	discourage	questionable	research	practices.	

Publish or Perish 
	 The	“publish	or	perish”	nature	of	academic	culture	is	at	least	partly	responsible	for	the	
popularity	of	questionable	research	practices.	Publishing	more	papers,	especially	in	
reputable	journals,	leads	to	professional	success.	Those	whose	publication	records	fall	
short	are	less	likely	to	be	hired,	tenured,	promoted,	or	granted	honors	or	awards.	The	
constant	pressure	to	be	publishing	new	papers	propels	the	search	for	statistically	
significant	results.	As	we	have	seen,	seeking	statistical	significance	can	compromise	
scientific	integrity	at	many	stages	of	the	research	process.	In	this	way,	the	natural	
inclination	to	seek	professional	success	can	pave	the	way	for	questionable	research	
practices	that	increase	the	likelihood	of	false	findings.		

Peer Review 
	 When	a	paper	is	submitted	for	publication	in	a	scientific	journal,	an	editor	is	tasked	
with	deciding	whether	to	accept	the	paper,	reject	it,	or	require	revisions	such	as	changing	
the	text,	performing	new	analyses,	or	perhaps	even	collecting	new	data.	The	editor	will	ask	
a	few	scientists	with	relevant	expertise	to	read	the	submitted	work,	write	a	review	that	
objectively	evaluates	its	strengths	and	weaknesses,	and	offer	advice	to	help	reach	a	
decision	about	publishing	the	paper.	This	process	generally	works	well.	When	questionable	
research	practices	are	identified	as	cause	for	concern,	this	helps	to	prevent	the	publication	
of	false	findings.	However,	reviewers	are	only	human,	meaning	that	they	respond	to	
incentives	and	have	their	own	limitations	and	biases.	Several	implications	of	this	
observation	lead	to	concerns	about	peer	review	as	a	mechanism	of	quality	control.	
	 First,	reviewers	are	not	paid	for	this	work.	Instead,	this	is	volunteer	activity	expected	of	
all	those	who	participate	in	the	field	of	study.	As	a	consequence,	scholars	may	not	be	as	
devoted	to	conscientious	reviewing	as	they	are	to	other	aspects	of	their	jobs.	It’s	easier	to	
read	a	paper	quickly	and	write	some	fairly	superficial	comments	than	to	read	it	very	
carefully	and	write	a	detailed,	technically	sound	review.	Without	being	paid	for	their	time	
and	effort,	individuals	may	not	work	as	hard	as	possible,	and	questionable	research	
practices	may	be	missed.	
	 Second,	the	default	procedure	at	most	journals	is	for	peer	reviews	to	be	provided	
anonymously.	The	editor	who	solicits	these	reviews	will	know	the	reviewers’	identities,	but	
the	authors	of	the	work	being	evaluated	will	not.	This	enables	reviewers	to	be	honestly	and	
constructively	critical	without	fear	of	reprisal	from	authors,	but	it	also	weakens	incentives	
to	be	conscientious.	There	is	very	little	professional	recognition	for	work	that	is	done	
anonymously.	Again,	this	can	lead	to	reviews	that	overlook	questionable	research	practices.	
	 Third,	even	dedicated	reviewers	can	and	do	make	honest	mistakes,	failing	to	notice	
important	problems	or	falsely	identifying	acceptable	practices	as	problematic.	Particularly	
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when	questionable	research	practices	involve	things	that	are	hidden	(e.g.,	a	large	number	
of	statistical	tests	are	run	but	only	those	that	yield	statistically	significant	results	are	
reported),	it	will	be	easy	for	them	to	be	missed	even	by	conscientious	reviewers.	
	 Fourth,	reviewers	tend	to	be	less	critical	of	articles	submitted	for	publication	when	they	
like	the	authors’	conclusions.	We	all	have	soft	spots,	or	blind	spots.	If	biases	are	
idiosyncratic	(e.g.,	some	people	value	experimental	research	especially	highly	whereas	
others	value	correlational	research	even	more	highly),	they	can	be	identified	and	
discounted	or	they	will	tend	to	cancel	out.	Either	way,	a	reasonable	appraisal	of	a	paper	can	
be	reached	by	obtaining	reports	from	several	peer	reviewers.	However,	shared	biases	can	
cause	substantial	problems.	To	the	extent	that	reviewers	tend	to	share	the	same	biases	as	
authors,	important	flaws	in	research	can	be	overlooked.	This	means	that	questionable	
research	practices	might	go	unnoticed,	with	reviewers	recommending	publication	of	work	
despite	important	flaws.	For	example,	there	appears	to	be	a	widely-shared,	left-leaning	
political	bias	among	social	psychologists.55	This	makes	it	easier	to	publish	social	
psychological	research	when	the	findings	flatter	liberals,	even	when	questionable	research	
practices	have	been	followed.	Among	other	problems,	this	raises	the	risk	of	false	findings	
being	published	despite	the	approval	of	peer	reviewers.	
	 Fifth,	on	a	related	note,	one	type	of	bias	is	shared	by	all	or	most	members	of	a	research	
community:	The	desire	to	continue	publishing	their	own	work.	It’s	unlikely	that	reviewers	
will	call	into	question	methods	they	use	in	their	own	research.	Even	if	everyone	recognizes	
that	a	practice	is	suboptimal	and	that	better	alternatives	exist,	it	may	be	persist	because	it	
makes	investigators’	lives	easier.	For	example,	using	introductory	psychology	students	as	
research	subjects	helps	investigators	collect	data	cheaply	and	fairly	quickly.	The	limitations	
of	such	samples	are	well	known	(e.g.,	undergraduate	students	enrolled	in	psychology	
courses	may	not	be	representative	of	the	population	to	which	one	would	like	to	generalize	
the	findings,	the	quality	of	data	provided	by	students	required	to	participate	in	research	
may	be	poor),	but	reviewers	who	also	like	to	rely	on	unpaid	convenience	samples	may	not	
want	to	point	out	these	limitations	very	forcefully,	if	at	all.	The	same	goes	for	data	collected	
online	(e.g.,	through	Amazon’s	Mechanical	Turk,	or	MTurk).	Though	it	costs	money,	it	has	
greatly	streamlined	the	data	collection	process	for	many	investigators.	That’s	great,	
provided	the	data	are	of	sufficiently	high	quality	for	scientific	research,	but	unfortunately	
the	bar	for	accepting	online	data	may	have	been	set	extremely	low	(e.g.,	responses	were	
shown	to	be	as	reliable	as	those	of	introductory	psychology	students).	The	point	being	
made	here	is	not	that	any	particular	practice	is	necessarily	objectionable.	Many	research	
questions	can	be	addressed	effectively	using	introductory	psychology	students	as	subjects	
or	by	collecting	data	online.	Rather,	the	issue	is	that	authors	may	be	given	a	free	pass	on	
some	questionable	research	practices	if	the	reviewers	also	tend	to	engage	in	them.	The	
pressure	for	everyone	to	continue	publishing	their	work	constitutes	a	shared	bias	within	a	
community	of	scholars	that	can	weaken	the	safeguards	against	publishing	false	findings.	

																																																								
55	Jussim,	L.,	Crawford,	J.	T.,	Anglin,	S.	M.,	&	Stevens,	S.	T.	(2015).	Ideological	bias	in	social	psychological	
research.	In	Social	psychology	and	politics	(pp.	107-126).	Psychology	Press.	
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Potential Remedies 
	 The	picture	that	emerges	is	one	of	researchers	frequently	engaging	in	questionable	
research	practices	with	the	goal	of	obtaining	statistically	significant	results,	which	has	
come	to	be	known	as	p	hacking	and	leads	to	an	alarmingly	high	rate	of	false	findings	in	the	
published	literature.	What	can	be	done	about	this?	There	are	many	possible	remedies.	

Replication 
	 The	standard	solution	to	the	problem	of	false	findings	is	replication.	In	practice,	
however,	we	have	seen	that	this	doesn’t	work	as	well	as	one	might	hope.	The	publish-or-
perish	culture	of	academic	research	rewards	productivity,	which	is	usually	assessed	
through	the	frequency	and	impact	of	scholarly	publications.	Replication	studies	are	more	
difficult	to	publish	because	they	are	inherently	less	interesting,	and	usually	less	impactful,	
than	original	research.	Thus,	expecting	scientists	to	perform	replication	studies	because	
their	philosophy	of	science	suggests	they	should	may	be	unrealistic.	Researchers	are	not	
the	only	professionals	whose	philosophical	principles	crash	on	the	shores	of	self-interest.	
	 On	the	bright	side,	however,	some	steps	are	being	taken	to	encourage	replication	
research.	Agencies	or	foundations	supporting	research	have	targeted	some	of	the	available	
funding	specifically	for	replication	studies.	Journals	sometimes	solicit	papers	reporting	the	
results	of	replication	studies.	Particularly	as	more	prestigious	journals	devote	space	to	
replication	research,	this	will	demonstrate	its	value	and	provide	a	compelling	incentive	for	
investigators	to	undertake	such	work.	At	least	in	some	fields	of	study,	journals	frequently	
require	that	papers	contain	multiple	studies	to	provide	evidence	of	successful	replication	
within	a	program	of	research.	Another	idea	is	to	require	that	undergraduate	or	graduate	
students	perform	replication	studies	as	part	of	their	training	in	research	methods.	

Clearly Label Exploratory Research 
	 Research	can	be	designed	either	to	develop	ideas	or	to	test	them,	and	it	is	usually	not	
possible	to	address	both	of	these	goals	in	a	single	study.	The	goal	of	exploratory	research	is	
to	develop	ideas.	This	is	done	by	collecting	information	on	a	wide	range	of	variables,	
perhaps	with	very	little	experimental	control,	and	then	examining	the	data	in	many	ways	to	
search	for	interesting	patterns.	One	need	not	have	any	hypotheses	to	perform	useful	
exploratory	research,	nor	is	strong	evidence	required	to	raise	the	possibility	that	observed	
trends	may	be	worthy	of	further	testing.	Findings	are	tentative,	and	follow-up	research	is	
needed	to	replicate	and	better	understand	them.		
	 The	goal	of	hypothesis-testing	research,	in	contrast,	is	to	subject	ideas	to	rigorous	tests.	
This	is	done	by	designing	a	study	such	that	the	evidence	will	either	support	or	refute	a	
hypothesis.	This	entails	careful	experimental	control,	collecting	a	large	sample	of	data,	
performing	demanding	statistical	tests,	or	other	techniques	to	help	rule	out	alternative	
explanations	for	results.		
	 If	the	last	two	paragraphs	sound	familiar,	that’s	because	they	were	copied	from	the	
beginning	of	Chapter	1.	They	bear	repeating	here,	in	the	context	of	reproducibility.	There’s	
nothing	wrong	with	doing	exploratory	research	as	long	as	it’s	clearly	labeled.	However,	it’s	
easy	to	blur	the	lines	between	exploration	and	hypothesis-testing,	and	doing	so	can	easily	
produce	false	findings.	When	authors	pretend	that	they	had	hypothesized	the	results	all	
along,	this	is	known	as	HARKing	(short	for	Hypothesizing	After	the	Results	are	Known).	
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Misrepresenting	exploratory	research	as	hypothesis-testing	by	introducing	the	study	with	
hypotheses	and	selectively	presenting	only	those	results	that	support	them	can	lead	to	
unwarranted	confidence	in	the	findings.		
	 There	are	many	reasons	why	HARKing	can	be	tempting.	For	example,	journals	often	
impose	strict	limits	on	the	length	of	research	reports,	so	trimming	anything	not	related	to	
statistically	significant	findings	helps	to	stay	within	the	allowed	space.	Moreover,	a	paper	
that	begins	with	hypotheses	and	ends	with	supportive	evidence	tells	a	more	compelling	
“story”	than	a	paper	that	describes	a	wide	range	of	variables,	tested	in	many	ways,	that	led	
to	a	few	statistically	significant	results.	Regardless	of	the	motivation,	it	is	ethically	
irresponsible	to	disguise	exploratory	findings	as	the	results	of	hypothesis-testing	research.	
	 The	honest	way	to	avoid	this	problem	is	to	be	explicit,	throughout	the	research	process,	
about	when	ideas	are	being	developed	and	when	they	are	being	tested.	The	same	data	
should	never	be	used	for	both	purposes.	You	should	keep	this	in	mind	when	designing	a	
study,	analyzing	the	data,	interpreting	the	results,	and	reporting	the	findings.	

Registered Reports 
	 Some	journals	offer	investigators	the	opportunity	to	submit	a	registered	report.	The	
way	this	works	is	that	a	proposal	describing	the	theory,	hypotheses,	methods,	and	planned	
analyses	is	subjected	to	peer	review	before	a	study	is	conducted.	If	the	proposal	is	accepted	
and	the	authors	follow	the	protocol	they	specified	in	advance,	the	paper	will	be	published	
regardless	of	the	results.	Journal	editors	and	reviewers	are	just	as	susceptible	to	
confirmation	bias	as	anyone	else,	and	they	tend	to	raise	more	objections	to	research	that	
reports	findings	inconsistent	with	their	preferred	beliefs.	Using	registered	reports	avoids	
that	problem	by	evaluating	only	the	theory	and	methods	of	proposed	research,	not	its	
outcomes.	Registered	reports	also	reduce	or	eliminate	many	of	the	incentives	for	p	hacking	
or	HARKing.	When	statistically	significant	findings	are	no	longer	a	prerequisite	for	
publication,	there	is	less	temptation	to	take	advantage	of	researcher	degrees	of	freedom	to	
obtain	them.	Though	registered	reports	are	not	yet	common,	those	journals	that	do	allow	
them	encourage	investigators	to	focus	on	theory	and	methods	to	design	worthwhile	
research,	letting	the	chips	fall	where	they	may	when	it	comes	to	the	results.		

Open Science 
	 Whether	or	not	registered	reports	are	used,	following	guidelines	for	open	science	can	
reduce	the	likelihood	of	false	findings.	This	entails	making	science	as	transparent	as	
possible	to	enable	outsiders	to	check	findings,	and	there	are	many	ways	to	do	this.	For	
example,	one	might	post	a	detailed	research	plan	before	beginning	a	study	to	enhance	the	
credibility	of	subsequent	findings.	Knowing	what	was	hypothesized	and	how	it	would	be	
tested	reduces	concerns	about	HARKing	or	p	hacking.	Another	way	to	make	science	more	
open	is	to	archive	research	reports,	raw	data,	code	used	to	perform	analyses,	or	other	
materials	in	a	public	repository	such	as	the	Open	Science	Framework	offered	by	the	Center	
for	Open	Science.	The	more	information	is	provided,	the	easier	it	becomes	for	others	to	
examine	the	methods	and	results	of	the	study	for	themselves	and	identify	any	questionable	
research	practices	that	might	call	into	question	the	findings.	
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Make and Follow Plans 
	 Even	when	investigators	are	not	submitting	a	registered	report	or	adopting	an	open	
science	approach	to	documenting	their	research,	they	will	reduce	the	likelihood	of	false	
findings	if	they	devise	a	plan	for	the	research	and	then	follow	the	plan.	The	more	carefully	a	
study	is	crafted,	the	more	detailed	the	hypotheses	and	methods	(including	the	planned	
analyses),	and	the	more	scrupulously	these	plans	are	followed,	the	less	opportunity	there	
will	be	for	HARKing	or	p	hacking	and	the	more	trustworthy	the	end	results.	

Report Comprehensively 
	 Finally,	it	is	important	to	be	comprehensive	when	reporting	research.	This	means	
listing	all	experimental	conditions,	all	variables	collected,	all	analyses	performed,	and	all	
results	obtained.	Fully	describing	the	method	includes	the	criteria	for	removing	any	data	as	
well	as	the	rationale	for	the	data	analysis	plan.	The	more	variables	are	collected,	the	more	
ways	there	are	to	perform	analyses,	especially	multivariate	analyses	that	statistically	
control	for	the	influence	of	one	or	more	variables	before	examining	the	relationships	
between	key	independent	and	dependent	variables.	To	interpret	results	correctly,	it	is	
critical	to	know	how	many	analyses	were	performed,	why	each	one	was	done,	and	what	the	
results	were.	Space	constraints	may	make	it	difficult	or	impossible	to	include	all	of	this	
information	in	the	text	of	an	article,	but	footnotes	and	online	supplementary	material	can	
be	used	to	direct	interested	readers	to	the	comprehensive	reporting	of	all	essential	details.	

Problems 
1.	 One	foundation	of	the	scientific	method	is	that	findings	can	be	trusted	when	they	are	

successfully	replicated,	ideally	independently	by	researchers	unaffiliated	with	the	
original	investigators.		

	 a.	 Why	is	it	important	to	replicate	findings?		

	 b.	 Why	do	investigators	seldom	attempt	to	replicate	their	own	or	others’	findings?		

2.	 In	a	scientific	research	report,	the	method	section	should	read	like	a	recipe	that	
someone	else	could	follow	to	repeat	the	study	as	closely	as	possible.	Even	if	these	
instructions	are	thorough	and	clear,	when	a	new	investigator	follows	them	there	is	no	
guarantee	that	the	original	findings	will	themselves	be	reproduced.	What	are	two	
distinct	reasons	why	not?		

3.	 In	terms	of	research	design	and	data	analysis,	what	are	the	differences	between	
exploratory	research	and	hypothesis-testing	research?	Why	is	it	important	to	clearly	
identify	exploratory	research	to	reduce	the	risk	of	false	findings?	

4.	 What	are	HARKing	and	p	hacking,	and	in	what	ways	are	they	similar	and	different	from	
one	another?	

5.	 What	are	registered	reports	and	open	science,	and	in	what	ways	are	they	similar	and	
different	from	one	another??	

6.	 For	several	decades,	there	has	been	a	debate	about	whether	clinical	psychologists	
should	seek	prescription	privileges,	the	legal	authority	to	prescribe	medications.	Many	
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psychologists	would	like	to	expand	graduate	training	in	clinical	psychology	to	add	this	
mode	of	treatment,	whereas	many	others	believe	that	those	who	wanted	to	prescribe	
medication	should	attend	medical	school,	as	psychiatrists	do.	The	arguments	on	both	
sides	are	numerous	and	complex.	In	an	article	published	in	the	journal	Professional	
Psychology:	Research	and	Practice,	Antonuccio,	Danton,	and	DeNelsky	(1995)	
contributed	to	this	debate	by	arguing	that	psychotherapy,	not	medication,	should	be	the	
treatment	of	choice	for	depression.	

a.	 How	does	the	fact	that	this	article	was	published	lend	greater	credibility	to	the	
authors’	argument?	

b.	 Despite	publication	in	a	scholarly	journal,	why	might	it	be	appropriate	to	approach	
the	authors’	argument	with	some	skepticism?	

7.	 Simmons,	Nelson,	and	Simonsohn	(2011,	p.	1360)	reported	two	studies	that	“were	
conducted	with	real	participants,	employed	legitimate	statistical	analyses,	and	are	
reported	truthfully.	Nevertheless,	they	seem	to	support	hypotheses	that	are	unlikely	
(Study	1)	or	necessarily	false	(Study	2).”	The	authors	performed	these	studies	to	
demonstrate	a	variety	of	factors	that	can	lead	to	false	findings.	Read	their	report	
(quoted	below),	making	sure	you	consult	the	footnote	explaining	what	ANCOVA	is.		

	 Study	1:	Musical	Contrast	and	Subjective	Age		

	 In	Study	1,	we	investigated	whether	listening	to	a	children’s	song	induces	an	age	
contrast,	making	people	feel	older.	In	exchange	for	payment,	30	University	of	
Pennsylvania	undergraduates	sat	at	computer	terminals,	donned	headphones,	and	were	
randomly	assigned	to	listen	to	either	a	control	song	(“Kalimba,”	an	instrumental	song	
by	Mr.	Scruff	that	comes	free	with	the	Windows	7	operating	system)	or	a	children’s	
song	(“Hot	Potato,”	performed	by	The	Wiggles).		

	 After	listening	to	part	of	the	song,	participants	completed	an	ostensibly	unrelated	
survey:	They	answered	the	question	“How	old	do	you	feel	right	now?”	by	choosing	
among	five	options	(very	young,	young,	neither	young	nor	old,	old,	and	very	old).	They	
also	reported	their	father’s	age,	allowing	us	to	control	for	variation	in	baseline	age	
across	participants.		

	 An	analysis	of	covariance	(ANCOVA)	revealed	the	predicted	effect:	People	felt	older	
after	listening	to	“Hot	Potato”	(adjusted	M	=	2.54	years)	than	after	listening	to	the	
control	song	(adjusted	M	=	2.06	years),	F(1,	27)	=	5.06,	p	=	.033.		

	 In	Study	2,	we	sought	to	conceptually	replicate	and	extend	Study	1.	Having	
demonstrated	that	listening	to	a	children’s	song	makes	people	feel	older,	Study	2	
investigated	whether	listening	to	a	song	about	older	age	makes	people	actually	younger.		

	 Study	2:	Musical	Contrast	and	Chronological	Rejuvenation		

	 Using	the	same	method	as	in	Study	1,	we	asked	20	University	of	Pennsylvania	
undergraduates	to	listen	to	either	“When	I’m	Sixty-Four”	by	The	Beatles	or	“Kalimba.”	
Then,	in	an	ostensibly	unrelated	task,	they	indicated	their	birth	date	(mm/dd/	yyyy)	
and	their	father’s	age.	We	used	father’s	age	to	control	for	variation	in	baseline	age	
across	participants.		
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	 An	ANCOVA	revealed	the	predicted	effect:	According	to	their	birth	dates,	people	were	
nearly	a	year-and-a-half	younger	after	listening	to	“When	I’m	Sixty-Four”	(adjusted	M	=	
20.1	years)	rather	than	to	“Kalimba”	(adjusted	M	=	21.5	years),	F(1,	17)	=	4.92,	p	=	.040.		

	 Which	of	the	questionable	research	practices	described	in	this	chapter	might	have	
allowed	the	investigators	to	take	advantage	of	researcher	degrees	of	freedom	and	
thereby	produce	false	findings?		

8.	 What	steps	could	have	been	taken	to	prevent	the	(likely)	false	findings	in	these	two	
studies?		

Problems 1 – 6 are due at the beginning of class. 

	



	

Appendix A: Statistical Tables 

Unit Normal Table 

	



	

t Table 

	



	

q Table 

	



	

c2 Table 

	



	

Appendix B: Statistical Power 
	 The	table	presented	below	provides	rough	sample	size	guidelines	for	various	research	
designs.	Three	assumptions	are	made.	First,	all	applicable	assumptions	of	statistical	tests	
(e.g.,	independence	of	observations,	normality	of	population	distributions,	equal	population	
variances)	are	satisfied.	
	 Second,	two-tailed	tests	with	α	=	.05	are	used.	One-tailed	tests	or	larger	values	of	α	(e.g.,	
.10)	yield	larger	values	of	statistical	power,	the	required	sample	sizes	would	be	smaller	
than	those	listed	in	the	table;	the	opposite	is	true	for	smaller	values	of	α	(e.g.,	.01	or	.001),	
which	yield	smaller	values	of	statistical	power	and	would	require	larger	sample	sizes.	
	 Third,	the	desired	level	of	statistical	power	is	.80.	To	achieve	higher	statistical	power,	
larger	sample	sizes	than	those	listed	in	the	table	are	required.	
	 For	more	information,	consult	Cohen’s	(1988)	book	on	statistical	power.56	
Research	
Design	

Statistical	
Test	

Effect	Size	
Measure	

Rules	of	
Thumb		

Sample	Size	Required	
for	Power	=	.80	

Two	independent	
groupsa	 t	 d	

0.20	=	small	
0.50	=	medium	
0.80	=	large	

N	=	786	(393	per	group)	
N	=	128	(64	per	group)	
N	=	52	(26	per	group)	

Three	independent	
groupsa	 F	 η2	

.01	=	small	

.09	=	medium	

.25	=	large	

N	=	966	(322	per	group)	
N	=	156	(52	per	group)	
N	=	63	(21	per	group)	

Four	independent	
groupsa	 F	 η2	

.01	=	small	

.09	=	medium	

.25	=	large	

N	=	1,096	(274	per	group)	
N	=	180	(45	per	group)	
N	=	64	(18	per	group)	

Correlation	between	
two	variables	 r	 r	

.10	=	small	

.30	=	medium	

.50	=	large	

N	=	783	
N	=	85	
N	=	28	

χ2	test	of	independence	
(1	df)	 χ2	 f	

.10	=	small	

.30	=	medium	

.50	=	large	

N	=	785	
N	=	87	
N	=	26	

a	Tests	for	related	samples	usually	require	smaller	samples	than	those	for	independent	groups;	how	much	
smaller	depends	on	the	correlations	between	scores	for	the	related	samples.	
	

																																																								
56	Cohen,	J.	(1988).	Statistical	power	analysis	for	the	behavioral	sciences	(2nd	ed.).	New	York:	Academic	Press.	



	

Appendix C: Selecting a Statistical Test 

Testing Differences Between Means 

One Variable Whose M Will Be Compared to Population μ 
Population	standard	deviation	(s)	known	®	one	sample	z	test	
Population	standard	deviation	(s)	unknown	®	one	sample	t	test	

Categorical Independent Variable(s) 
Subjects	form	independent	groups	(nobody	participates	in	more	than	one	condition):	
	 Two	groups	®	independent	groups	t	test57	
	 More	than	two	groups	®	independent	groups	ANOVA	
Subjects	are	tested	repeatedly	or	matched	(everyone	participates	in	every	condition):		
	 Two	conditions	®	related	samples	t	test	
	 More	than	two	conditions	®	related	samples	ANOVA	

More	than	one	categorical	independent	variable	®	factorial	ANOVA	

Testing Relationships Between Two or More Variables 

Association Between Two Variables 
Two	quantitative	variables	®	correlation	(r)	
Two	ranked	variables	®	Spearman’s	rank-order	correlation	(rS)	
One	quantitative	and	one	dichotomous	variable	®	point-biserial	correlation	(rpb)58	
Two	dichotomous	variables	®	phi	coefficient	(f)59	
Two	categorical	variables	®	c2	test	of	independence60	

Making Predictions 
One	predictor	variable	®	regression	(aka	simple	linear	regression)	
Two	or	more	predictor	variables	®	multiple	regression	

Testing Goodness of Fit Between Observed and Expected Frequencies 
Sample	contains	only	one	categorical	variable	®	c2	goodness	of	fit	test	
																																																								
57	The	independent	groups	t	test	is	equivalent	to	the	point-biserial	correlation.	
58	The	point-biserial	correlation	is	equivalent	to	the	independent	groups	t	test.	
59	The	phi	coefficient	is	equivalent	to	the	c2	test	of	independence.	
60	If	both	variables	are	dichotomous,	the	c2	test	of	independence	is	equivalent	to	the	phi	coefficient.	



	

Appendix D: Symbols and Abbreviations 
Unless	otherwise	noted,	the	following	symbols	and	abbreviations	refer	to	sample	statistics	
rather	than	population	parameters.	

Descriptive Statistics 
N	 Sample	size	
n	 Subsample	size	

X	 Score	for	an	individual		

M	 Sample	mean	

µ	 Population	mean	(Greek	letter	“mu”)	

SD	 Sample	standard	deviation	

s	 Population	standard	deviation	(Greek	letter	“sigma”)	

Mdn	 Median	
IQR	 Interquartile	range	

z Score and z Test 
z	 Standard	score	for	individual	or	sample	

H0	 Null	hypothesis	

H1	 Alternative	hypothesis	

sM	 Standard	error	of	the	mean	

a	 Size	of	critical	region	(Greek	letter	“alpha”)	

d	 Cohen’s	effect	size	measure	for	comparing	two	means	
p	 Probability	value	



	

t Tests 
t	 Value	for	one	sample,	related	samples,	or	independent	groups	test	

df	 Degrees	of	freedom	
SDM	 Standard	error	of	the	mean	

D	 Difference	score	
Y1	 Score	in	one	condition	

Y2	 Score	in	the	other	condition	

MD	 Mean	of	the	difference	scores	
SDD	 Standard	deviation	of	the	difference	scores	

µD	 Population	mean	difference	score	

SDMD	 Standard	error	of	the	mean	difference	score	

SDp	 Pooled	standard	deviation	

SDM1-M2	 Standard	error	of	the	difference	between	two	groups’	means	

ANOVAs 
k	 Number	of	conditions	being	compared	
F	 Ratio	of	systematic	to	error	variance	

h2	 Effect	size	measure	for	comparing	two	or	more	means	(Greek	letter	“eta”	
squared)	

Correlation 
r	 Correlation	coefficient	(Pearson’s)	

r	 Population	correlation	coefficient	(Greek	letter	“rho”)	

rS	 Spearman’s	rank-order	correlation	coefficient	

rpb	 Point-biserial	correlation	coefficient	for	one	dichotomous	and	one	
continuous	variable	

f	 Correlation	coefficient	for	two	dichotomous	variables	(Greek	letter	“phi”)	

r2	 Coefficient	of	determination	

r’	 Correlation	coefficient	corrected	for	measurement	error	

rxx	 Reliability	of	variable	X	
ryy	 Reliability	of	variable	Y	



	

Regression 
Y’	 Predicted	value	of	criterion	variable	

X	 Predictor	variable	(simple	linear	regression)	
b	 Regression	slope	(simple	linear	regression)	

a	 Regression	intercept	(simple	linear	regression)	
X1,	X2,	X3,	…	 Predictor	variables	(multiple	regression)	

b1,	b2,	b3,	…	 Regression	coefficients	(multiple	regression)	

b0		 Regression	constant	(multiple	regression)	
SEest	 Standard	error	of	the	estimate	

c2 Tests 
c2	 Value	for	goodness	of	fit	or	independence	test	(Greek	letter	“chi”	squared)	

fO	 Observed	frequency	

fE	 Expected	frequency	
T	 Total	frequency	for	all	cells	

TR	 Total	frequency	for	one	row	

TC	 Total	frequency	for	one	column	

f	 Effect	size	measure	for	two	dichotomous	variables	(Greek	letter	“phi”)	

	
	



	

Appendix E: Formulas 
See	Appendix	D	for	definitions	of	the	symbols	and	abbreviations	that	appear	in	these	
formulas.	When	performing	calculations,	pay	close	attention	to	the	use	of	parentheses	and	
the	order	of	operations.	

Descriptive Statistics 
M	=	SX	/	N	

SD	=	sqrt(S(X	–	M)2	/	(N	–	1))	

z Score and z Test 
z	=	(X	–	µ)	/	s	

z	=	(M	–	µ)	/	sM	

sM	=	s	/	sqrt(N)	

d	=	(M	–	µ)	/	s	

t Tests 
SDM	=	SD	/	sqrt(N)	

t	=	(M	–	µ)	/	SDM		

d	=	(M	–	µ)	/	SD		

D	=	Y1	–	Y2	
SDMD	=	SDD	/	sqrt(N)	

t	=	MD	/	SDMD	

SDp	=	sqrt((SD12	+	SD22)	/	2)	
d	=	(M1	–	M2)	/	SDp	

SDM1-M2	=	sqrt(2)	´	SDp	/	sqrt(n)	

SDp	=	sqrt((SD12	´	df1	+	SD22	´	df2)	/	(df1	+	df2))	

SDM1-M2	=	sqrt((SDp2	/	n1)	+	(SDp2	/	n2))	
t	=	(M1	–	M2)	/	SDM1-M2	



	

ANOVAs 
F	=	t2	

HSD	=	q	´	sqrt(MSerror	/	N)	

Correlation 
r	=	S(zx	´	zy)	/	N	

rpb	=	sqrt(t2	/	(t2	+	df))	

r’	=	r	/	sqrt(rxx	´	ryy)	

Regression 
Y’	=	bX	+	a	

Y’	=	b1X1	+	b2X2	+	b3X3	+	…	+	bkXk	+	b0	

c2 Tests 
c2	=	S((fO	–	fE)2	/	fE)	

fE	=	TR	´	TC	/	T	

f	=	sqrt(c2	/	N)	
	


