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Confidence Intervals for the Probability
of Superiority Effect Size Measure and
the Area Under a Receiver Operating

Characteristic Curve
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It is good scientific practice to the report an appropriate estimate of effect size

and a confidence interval (CI) to indicate the precision with which a population

effect was estimated. For comparisons of 2 independent groups, a probability-

based effect size estimator (A) that is equal to the area under a receiver operating

characteristic curve and closely related to the popular Wilcoxon-Mann-Whitney

nonparametric statistical tests has many appealing properties (e.g., easy to under-

stand, robust to violations of parametric assumptions, insensitive to outliers). We

performed a simulation study to compare 9 analytic and 3 empirical (bootstrap)

methods for constructing a CI for A that can yield very different CIs for the

same data. The experimental design crossed 6 factors to yield a total of 324

cells representing challenging but realistic data conditions. Results were examined

using several criteria, with emphasis placed on the extent to which observed CI

coverage probabilities approximated nominal levels. Based on the simulation study

results, the bias-corrected and accelerated bootstrap method is recommended for

constructing a CI for the A statistic; bootstrap methods also provided the least

biased and most accurate standard error of A. An empirical illustration examining

score differences on a citation-based index of scholarly impact across faculty at

low-ranked versus high-ranked research universities underscores the importance of

choosing an appropriate CI method.

Correspondence concerning this article should be addressed to John Ruscio, The College of New

Jersey, P.O. Box 7718, Ewing, NJ 08628. E-mail: ruscio@tcnj.edu
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202 RUSCIO, MULLEN

CONFIDENCE INTERVALS FOR THE PROBABILITY OF

SUPERIORITY WHEN COMPARING TWO

INDEPENDENT GROUPS

According to the American Psychological Association’s (2009) Publication Man-

ual, it is almost always necessary to report an appropriate estimate of effect size

in the Results section of a publication in order for the reader to fully understand

the magnitude of the effect and properly contextualize the importance of the

findings. The use of effect size estimates in published studies is not required by

all journals, but it does serve as a useful adjunct to the standard reporting of

statistical significance. Stating that there is a statistically significant effect implies

that there is an effect beyond what would be expected due to sampling error.

A well-chosen effect size estimator can be used to characterize the magnitude

of the effect and help readers understand the practical significance of results

(Wilkinson & the APA Task Force on Statistical Inference, 1999). In addition,

the Publication Manual recommends reporting a confidence interval (CI) to

provide information on the precision with which the population effect size has

been estimated. This can be useful for interpreting results within a study and

for comparing results across studies (Thompson, 2002; Wilkinson et al., 1999).

When comparing two independent groups, an effect size index A that esti-

mates what Grissom and Kim (2005) call the “probability of superiority” (p. 98)

has a number of desirable characteristics (Ruscio, 2008). Unlike conventional

statistics that are not robust to violations of their parametric assumptions and

can be difficult to interpret without statistical expertise, the nonparametric effect

size index A simply estimates the probability that a member of one population

scores higher than a member of another population. After reviewing important

differences between A and conventional effect size indices—plus connections

between A, nonparametric test statistics, and the area under a receiver oper-

ating characteristic (ROC) curve—we expand upon and evaluate methods for

constructing CIs for the versatile A statistic.

CONVENTIONAL EFFECT SIZE ESTIMATORS FOR

TWO INDEPENDENT GROUPS

When comparing two independent groups, researchers can describe the magni-

tude of an effect in several ways. To help illustrate each of these, we introduce

a small sample of hypothetical data (nx D ny D 15) representing health ratings

for members of randomly assigned treatment (x) and control (y) groups; higher

ratings indicate better health:

x D f6; 7; 8; 7; 9; 6; 5; 4; 7; 8; 7; 6; 9; 5; 4g

y D f4; 3; 5; 3; 6; 2; 2; 1; 6; 7; 4; 3; 2; 4; 3g
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CONFIDENCE INTERVALS FOR A 203

The most commonly used effect size estimator for data like these is Cohen’s

d, the standardized mean difference (Cohen, 1988). This is calculated as the

difference between the group Ms divided by the within-group SD, and it es-

timates the standardized mean difference between the populations from which

the two samples were drawn.1 Because this is standardized, results for different

variables within a study or the same variable measured in different studies can

be compared even when their scales differ. Weaknesses include the fact that d

is sensitive to unequal group sizes when unequal SDs are pooled across groups,

nonrobust to outliers, and can be difficult to understand for those untrained in

statistics (McGrath & Meyer, 2006; Ruscio, 2008). For our illustrative data,

d D 1:728. This is clearly a very large effect, but it may not be clear to

laypersons to say that members of the treatment group members scored 1.728

SD units higher than members of the control group.

Another way to estimate the size of an effect is the point-biserial correlation

(rpb). This is calculated as the correlation between group membership (coded

using any two unique values) and the dependent variable, and it estimates the

corresponding population correlation. Like Cohen’s d , rpb is also standardized.

When squared, it represents the proportion of variance in the dependent variable

that can be explained by group membership. In addition to sharing many of

the limitations of d, such as being nonrobust to outliers and nonintuitive for

laypersons, rpb is especially sensitive to the relative sizes of the two groups.

The extent and implications of this heightened sensitivity to group sizes are

discussed and illustrated by McGrath and Meyer (2006) and Ruscio (2008). For

our illustrative data, rpb D :667. Many people would find it difficult to grasp

what it means to say that group membership correlated rpb D :667 with health

ratings (or that it explains 44.4% of the variance in health ratings; :6672 D :444).

ESTIMATING THE PROBABILITY OF SUPERIORITY

An alternative to indices such as d and rpb is to express the size of an effect

using a statistic that estimates the probability that a randomly selected member

of population X scores higher than a randomly selected member of population

Y : � D P r.X > Y /. In contrast to a comparison of means or another location

measure, this is conventionally referred to as stochastic superiority (e.g., Vargha

& Delaney, 2000) or the probability of superiority (e.g., Grissom & Kim, 2005).

An estimate of � may be easier to understand than d or rpb , especially for

those with little or no statistical expertise (Hsu, 2004). For example, rather

than estimating a health benefit in within-group SD units or as a correlation

1Closely related estimates are Glass’s (1976) � and Hedges’s (1981) g, which differ from

Cohen’s d in the denominator used to standardize the mean difference between groups. For an

excellent overview of these and other effect size estimators, see Kirk (1996).
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204 RUSCIO, MULLEN

with group membership, one can estimate the probability of better health with

treatment than without it. In addition to being a more intuitive statistic than d

or rpb , the nonparametric estimate of � described later is not sensitive to group

sizes and is much more robust to unequal variances or outliers (Ruscio, 2008).

Two distinct ways of estimating � have been described. First, Wolfe and Hogg

(1971) introduced a statistic that McGraw and Wong (1992) later popularized

using the label of “common language effect size” (CL). This is calculated using

standard parametric assumptions of population normality and equal variances,

and in the case of equal-size groups (n D nx D ny), CL can be expressed

in terms of the usual t value for a comparison of two independent groups as

CL D ˆ. tp
n
/, where ˆ is the normal cumulative distribution function (i.e.,

ˆŒz’� D ’). For our illustrative data, Mx � My D 2:867 and sMx�My
D 1:651,

so t D 4:732; with n D 15, CL D ˆ. 4:732p
15

/ D :889. Even those untrained in

statistics should have a fairly easy time understanding what it means to say that

there is an 88.9% chance that the health rating would be higher for a randomly

chosen member of the treatment group than for a randomly chosen member of

the control group.

Whereas CL retains the parametric assumptions that render d and rpb sensitive

to outliers, subsequent investigators provided a nonparametric estimator of � that

addresses these concerns. Delaney and Vargha (2002) expressed it in this form:

A D Œ#.x > y/ C :5#.x D y/�=nx ny ; (1)

where # is the count function, x and y are vectors of scores for the two groups.

Scores are compared across groups in all pairwise combinations, and ties are

accommodated by assigning half credit. Here’s how A would be calculated for

our illustrative data. Beginning with x1 D 6 and comparing this to each value of

y yields 12 instances in which x1 > yi , 2 ties, and 1 instance in which yi > x1,

so the numerator of A begins at 12 C :5.2/ D 13. For x2 D 7, this adds 14.5 to

the numerator of A (14 instances in which x2 > yi plus .5 for 1 tie). Continuing

through x15 D 4, the numerator of A sums to 199. The denominator of A is

nxny D 15 � 15 D 225, so A D 199=225 D :884. The slight difference between

the estimates CL D :889 and A D :884 suggests that the parametric assumptions

imposed by CL are not entirely satisfied. When these assumptions are satisfied,

CL will equal A. When they are not, we prefer using A, which does not require

these assumptions and is therefore a more robust estimator of �. From this point

forward, we focus exclusively on the use of A as an estimator of �.

The A statistic is closely related to several other statistics that require only

ordinal data, such as the familiar Wilcoxon Rank Sum and Mann-Whitney U

nonparametric test statistics (Delaney & Vargha, 2002; Fagerland & Sandvik,

2009; Zhou, 2008). Whereas these statistics are commonly used to test null

hypotheses, neither they nor the A statistic are used frequently as an effect
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CONFIDENCE INTERVALS FOR A 205

size estimator. Fortunately, readily available software can be used to obtain A

with either of these procedures. SPSS calculates Mann-Whitney U D #.Y1 <

Y2/ C :5#.Y1 D Y2/, in which case A can be calculated as

A D
nxny � U

nxny

: (2)

SPSS also reports the Wilcoxon test statistic as Wm, which can be converted

to U (for use in Equation 2) as follows: U D Wm � Œns.ns C 1/�=2, where ns

is the smaller of the two sample sizes. Provided that one verifies how they are

calculated, nonparametric test statistics from other software can be used. For

example, the R function for the Wilcoxon test reports W D nxny � U , which

equals the numerator in Equation 2.

In addition to its relation to nonparametric test statistics, A is equal to a key

statistic in signal detection theory (Swets, 1988; Swets, Dawes, & Monahan,

2000). Specifically, one can construct an ROC curve and obtain the area under

the curve (AUC) as a measure of accuracy that is independent of the decision

threshold (Fawcett, 2006). An ROC curve is plotted within a unit square as the

relationship between the true positive rate (sensitivity) and false positive rate

(1 � specificity) with which members of two groups are distinguished using

one or more thresholds. For example, the graph on the left in Figure 1 shows

the ROC curve for the illustrative data presented earlier. The graph on the right in

Figure 1 shows that AUC can be calculated as the sum of the areas of the seven

numbered trapezoids. When calculated using the trapezoidal method, A D AUC

(Hanley & McNeil, 1982); the SPSS module for ROC analysis provides AUC

calculated in this way.

FIGURE 1 Receiver operating characteristic (ROC) curve for the illustrative data. The

graph on the left shows the ROC curve, and the graph on the right shows that the area under

the curve can be calculated as the sum of the areas of seven numbered trapezoids.
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206 RUSCIO, MULLEN

CONSTRUCTING CONFIDENCE INTERVALS FOR A

The attractive features of A have been described elsewhere (e.g., Ruscio, 2008),

and the focus of the present research is on methods for constructing a CI for

A. As noted earlier, the APA Publication Manual (2009) recommends providing

CIs to indicate the precision with which parameters have been estimated. Prior

research has introduced and examined many techniques for constructing a CI

for A, but we believe there remains room for improvement because considerably

greater emphasis has been placed on analytic CI methods rather than more

computationally intensive, empirical CI methods. Some analytic approaches first

require the calculation of an SE that is then used to construct a CI, whereas

others use alternative methods that do not involve an SE. There are at least

nine different analytic approaches to construct a CI for A,2 all but two of which

yield an interval symmetric about A. In other words, most analytic methods

deal with sampling error by adding and subtracting the same amount to A,

which yields a symmetric CI. Symmetric CIs presume symmetric sampling

distributions, so one might expect the performance of these analytic methods

to degrade as the sampling distribution of A deviates from symmetry. This

sampling distribution will be symmetric only when A D :50, and it will become

increasingly skewed as A departs from .50. Two analytic methods use iterative

approaches that allow asymmetric CIs. As an alternative to analytic approaches,

bootstrap methods can be used to generate empirical sampling distributions

(Efron & Tibshirani, 1993; Rodgers, 1999). We include three bootstrap methods

in the present study, two of which can provide intervals that are asymmetric

about A.

Analytic CI Methods

Two methods that involve calculating an SE to then construct a CI are given by

Hanley and McNeil (1982). Their work is grounded in the construction and

analysis of ROC curves. Because they calculate AUC using the trapezoidal

method, and therefore A D AUC, their formulas for the SE of AUC can be

used to calculate the SE of A. There are two different formulas given by Hanley

2Two additional analytic methods were not included in our study because they deal with a

slightly different statistic or a special type of data. First, a method introduced by Mee (1990) yields

a CI centered on a variant of A that is calculated with no credit for tied scores. For example, using

the illustrative data set presented earlier, whereas A D 199=225 D :88 when half credit is given for

the 18 pairwise comparisons with tied scores, A D 190=225 D :84 when no credit is given for these

ties. Because it is designed for use with a slightly different statistic, it would not be appropriate to

evaluate the performance of this method in a study of CIs for A. Second, a method introduced by

Ryu and Agresti (2008) provides an alternative for use with multinomial data.
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CONFIDENCE INTERVALS FOR A 207

and McNeil to calculate the SE.3 One formula is nonparametric, and we call

this the HM1 method. The other formula assumes population normality and

equal variances; Hanley and McNeil refer to this as the bi-negative exponential

formula, and we call this the HM2 method. Once the SE is calculated using

either formula, it is inserted into a Wald-type expression to construct a 95% CI:

CI:95 D A ˙ 1:96 � SE: (3)

The SPSS module on ROC curves provides AUC as well as a CI constructed

using either of the Hanley and McNeil formulas (nonparametric or bi-negative

exponential).

A traditional formula to calculate an SE for A appears in many sources (e.g.,

Grissom & Kim, 2001, p. 141), and this can also be inserted into Equation

3 to construct a Wald-type CI. We call this the TR method, shorthand for

“traditional.”

Several other analytic approaches do not involve the calculation of an SE to

construct a CI for A. One is presented by Fligner and Policello (1981), which we

call the FP method, and another by Cliff (1993), which we call the CL method.

These two approaches first calculate the • statistic, an index for comparing two

distributions (Cliff, 1993) that is related to A as follows: A D .• C 1/=2. The

FP and CL methods construct CIs for •, and the endpoints of these intervals can

be converted back into the units of A using the equation shown earlier. Vargha

and Delaney (2000) present an approach that they refer to as the Rank Welch

method, which we call the RW method. Brunner and Munzel (2000) present an

analytic approach to constructing CIs for A; we call this the BM method.

Whereas each of these seven analytic methods yields symmetric CIs that may

extend beyond the theoretical range of values for A, the final two allow asym-

metric CIs and respect the theoretical boundaries. Newcombe (2006a, 2006b)

presented and studied a number of analytic methods, including many refinements

of the Hanley and McNeil (1982) methods. Because the one that performed best

in Newcombe’s (2006b) simulation study was the fifth method listed, we follow

others’ lead in calling this the M5 method (Brown, Newcombe, & Zhao, 2009;

Ryu & Agresti, 2008; Zhou, 2008). The M5 method uses an iterative technique

to locate each end of the CI, which respects theoretical boundaries and allows

asymmetry. Brown et al. introduced another iterative technique; we call this the

BNZ method.

The top portion of Table 1 summarizes each of these nine analytic methods,

including their assumptions as well as the results for the illustrative data set

3For the Hanley and McNeil formulas, as well as all other analytic methods, we refer readers

to the primary sources cited here for details. We present only the details required to understand and

evaluate our implementation of the bootstrap methods because this is the novel component of our

investigation.
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208 RUSCIO, MULLEN

TABLE 1

Overview of Analytic and Bootstrap Methods

Analytic Method Assumptions SE 95% CI

Hanley and McNeil (1982) Normal sampling distribution .060 .767, 1.001

Nonparametric (HM1) No ties

Hanley and McNeil (1982) Normal sampling distribution .064 .759, 1.010

Bi-negative exponential

(HM2)

No ties

Populations normal with equal

variances

Traditional (TR) Normal sampling distribution .107 .674, 1.094

No ties

Fligner and Policello

(1981; FP)

Normal sampling distribution .774, .994

Populations normal

Cliff (1993; CL) Normal sampling distribution .759, 1.010

Populations normal

Rank Welch (RW; Vargha

& Delaney, 2000)

Sampling distribution follows t

distribution

.721, 1.048

No ties

Brunner and Munzel

(2000; BM)

Sampling distribution follows t

distribution

.764, 1.005

Newcombe (2006b; M5) No ties .694, .959

Populations normal with equal

variances

Brown, Newcombe, &

Zhao (2009; BNZ)

No ties .700, .949

Populations normal with equal

variances

Bootstrap Method Assumptions SE 95% CI

Bootstrap SE (BSE) Normal sampling distribution .058 .770, .998

Sample representative of population

Bootstrap percentile (BP) Sample representative of population .751, .978

Bootstrap bias-corrected

and accelerated (BCA)

Sample representative of population .709, .964

Note. SE D standard error; CI D confidence interval. For bootstrap methods, B D 1,999

bootstrap samples were used.

shown earlier. Figure 2 plots the CIs constructed using each method, which

shows that seven of the nine analytic methods produced symmetric intervals, six

of which extended above the maximum possible value of A D 1. This illustrates

one of the common weaknesses of many analytic methods, the possibility that a

CI can extend into impossible values. In addition, analytic methods require one
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CONFIDENCE INTERVALS FOR A 209

FIGURE 2 Confidence intervals constructed using all 12 methods included in this study,

with the point estimate of A D :884 plotted for each; the dotted vertical line is plotted

at the theoretical maximum value of A D 1. Note. HM1 D Hanley and McNeil (1982)

nonparametric; HM2 D Hanley and McNeil (1982) bi-negative exponential; TR D traditional;

FP D Fligner and Policello (1981); CL D Cliff (1993); RW D Rank Welch (Vargha &

Delaney, 2000); BM D Brunner and Munzel (2000); M5 D Newcombe (2006b); Method

5; BNZ D Brown, Newcombe, & Zhao (2009); BSE D bootstrap standard error; BP D
bootstrap percentile; BCA D bootstrap bias-corrected and accelerated.

or more assumptions that are frequently violated in practical applications (e.g.,

normal populations with equal variances, no tied scores, symmetric sampling

distributions). These concerns motivated the search for alternative methods that

make fewer or more realistic assumptions, that yield asymmetric and boundary-

respecting CIs, and that might therefore provide better CI coverage.

Empirical CI Methods

Rather than making assumptions about the shape of a theoretical sampling

distribution and estimating its parameters, bootstrap methods treat a sample

of data as an unbiased estimate of the population (Efron & Tibshirani, 1993;

Rodgers, 1999). A large number of samples is drawn from the observed data

such that each is of the same size as the observed data; scores are sampled with

replacement. Each bootstrap sample is submitted to analysis to contribute one

statistical value to the empirical sampling distribution. For example, one can

sample nx scores from the observed distribution for one group and ny scores

from the observed distribution for the other group (in both instances sampling
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210 RUSCIO, MULLEN

with replacement), calculate A for this two-group bootstrap sample of data, and

then repeat this procedure a large number of times B to generate an empirical

sampling distribution for A. This sampling distribution can be used in several

ways to construct a CI for A. First, one can calculate the SE of A as the SD of

all values in the empirical sampling distribution and substitute this into Equation

3 to construct a Wald-type CI. We call this the BSE (for bootstrap SE) method.

Like most of the analytic methods, the BSE method provides symmetric CIs

that may extend into impossible values.

In contrast, two other bootstrap methods can provide asymmetric CIs and

do not yield CIs that extend into impossible values. In what is known as the

percentile method, which we call the BP method, one sorts the B values in

the empirical sampling distribution and identifies the values at the 2.5th and

97.5th percentiles as the limits of a 95% CI. Because the limits of the CI

are located based on ordinal position, not a multiple of an SE, the lower and

upper limits may or may not be equidistant from A. Finally, a bias-corrected

and accelerated method described by Efron and Tibshirani (1993), which we

call the BCA method, adjusts the percentiles used to form the limits of the CI

based on factors such as the skewness of the empirical sampling distribution.

Because the BCA method provides more accurate CIs than the percentile method

for some applications, we included both in this study. The bottom portion of

Table 1 gives CIs for each bootstrap method for the illustrative data set; B D

1,999 bootstrap samples were used so that the tails of the empirical sampling

distribution would be well defined and the thresholds for the 2.5th and 97.5th

percentiles would fall between, not at, positions in the rank-ordered series of

values. Because the BP and BCA bootstrap methods are based on locations

within an empirical sampling distribution, their CIs cannot extend above the

maximum possible value of A D 1. Figure 2 reveals the asymmetry of the BP

and BCA intervals; the distance from A to the lower limit of the CI is greater

than the distance to the upper limit.

THE PRESENT STUDY

A number of studies (e.g., Brown et al., 2009; Newcombe, 2006b; Ryu &

Agresti, 2008; Zhou, 2008) have examined the performance of methods for

constructing CIs for A, including many of those listed earlier. The present study

was designed to build on previous research by including a broader range of

CI methods and spanning a broader range of data conditions. We included nine

analytic methods that have either shown promising results in prior investigations

or that have not yet been studied rigorously as well as three empirical methods,

few of which have been included in prior work. Our simulation study included

data conditions selected to pose realistic challenges for all 12 methods. The study
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CONFIDENCE INTERVALS FOR A 211

was designed such that assumptions underlying various methods were sometimes

satisfied and sometimes not, and violations of assumptions were substantial but

not extreme. To identify the CI methods that perform best, key criteria involved

the extent to which observed CI coverage probabilities approximated the nominal

level of 95% as robustly as possible across data conditions. Secondary criteria

involved the length of the CIs (shorter CIs are preferable), the extent to which

coverage errors were evenly distributed below the lower limits and above the

upper limits, and how often CIs extended into impossible values.

METHOD

Design and Data Generation

A simulation study was performed using programs written for the R computing

environment (R Development Core Team, 2011). There were 324 cells in the

fully crossed factorial design, which contained six factors whose levels spanned

challenging yet realistic data conditions. We included data conditions that were

both favorable (e.g., normal populations, equal variances, no tied scores) and

unfavorable (e.g., skewed populations, unequal variances, tied scores) to the

methods under study while avoiding conditions sufficiently extreme that they

might “stack the deck” against any particular methods. Moreover, to ensure the

ability to perform the study in a timely manner as well as to analyze and present

the results coherently, we limited the number of factors and levels to those that

seemed most informative.

1. Effect size. The degree of separation between groups was indexed using

Cohen’s d, with three levels of d D 0:00, 0.50, and 2.00. These levels

correspond to no effect, a medium effect (by the conventional rules of

thumb; Cohen, 1988), and a very large effect that might pose a challenge

for some techniques (i.e., because the actual sampling distribution of A

will be negatively skewed for large effects, symmetric CIs may extend

above the theoretical maximum value of 1.00).

2. Sample size. Total sample size spanned small to moderate values, specif-

ically N D 30, 60, or 120.

3. Group sizes. Groups were either equal in size or unequal such that one

group contained 3 times as many cases as the other. In other words, the

base rate of the larger group was either P D :25, .50, or .75. For example,

with a total N of 60, group sizes were 15/45, 30/30, or 45/15.

4. Variance ratio. Populations were created with variances that were either

equal (VR D 1:1) or unequal (VR D 4:1). When VR D 4:1, the higher

scoring population possessed greater variance. Because all factors in the
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212 RUSCIO, MULLEN

design were fully crossed, this means that the design included cases of

positive as well as negative relationships between variance ratios and

relative group sizes.

5. Distributions. Populations were created such that both were normal, both

were positively skewed, or one was skewed in each direction. Skewed

distributions were generated using the g-and-h transformations shown in

Hoaglin (1985); briefly, g controls asymmetry and h controls tail weight

relative to a normal distribution (in which g D :00 and h D :00). For

positive skew, we used g D :30 and h D :00 (which corresponds to

skewness of .95 and kurtosis of 1.64); for negative skew, we used g D

�:30 and h D :00.

6. Response scales. Scores were either left in truly continuous form or cut

into seven ordered categories using equally spaced thresholds applied

to the distribution of scores pooled across populations. Using ordered

categories represents the fact that in actual research data (e.g., collected

using Likert-type response scales) there are often a nontrivial number of

tied scores. This might pose a challenge for CI techniques that assume

there are no tied scores.

Within each of the 3 (effect size) � 3 (sample size) � 3 (group sizes) � 2

(variance ratio) � 3 (distributions) � 2 (response scales) D 324 cells in the

study’s design, a pair of finite populations each with N D 100,000 was created

using equally spaced quantiles, and 1,000 replication samples were drawn at

random for analysis. To implement bootstrap methods, B D 1; 999 bootstrap

samples were drawn for each replication sample.

Data Analysis

For each of the 1,000 replication samples, A was calculated using Equation 1. For

each value of A, nine different analytic methods were used to construct CIs. Of

these, three methods (HM1, HM2, and TR) involved calculating SEs to construct

CIs using Equation 3 and six methods (FP, CL, RW, BM, M5, and BNZ) did not.

The empirical approach was used to construct three more CIs. The empirical

sampling distribution of B D 1,999 values of A for each replication sample was

used to construct CIs for A following the BSE, BP, and BCA methods.

RESULTS

Several measures were calculated for each of the 12 CI methods studied. First,

the mean coverage level was calculated for each method as the percentage of

the samples’ CIs that contained the population value of A; coverage in the 94%
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TABLE 2

Summary of Confidence Interval Results for All Data Conditions

Method

Mean %

Coverage

% Within

Control Limits

Mean %

< LL

Mean %

> UL

Mean

Length

% UL

> 1

Mean

Symmetry

HM1 93.45 26.85 5.01 1.53 .2810 12.26 1.00

HM2 93.75 25.31 4.48 1.77 .2781 13.26 1.00

TR 97.66 20.99 1.06 1.28 .3391 26.36 1.00

FP 92.46 32.72 5.23 2.31 .2738 13.43 1.00

CL 92.93 59.57 5.25 1.81 .2729 12.84 1.00

RW 96.20 54.01 1.99 1.81 .2950 20.67 1.00

BM 92.80 59.57 4.90 1.81 .2782 13.14 1.00

M5 96.68 28.70 1.19 2.13 .2722 0.00 0.77

BNZ 92.40 37.65 2.11 5.50 .2355 0.00 0.79

BSE 91.42 32.41 6.17 2.41 .2512 10.65 1.00

BP 92.49 46.60 5.05 2.46 .2492 0.00 0.90

BCA 94.40 68.83 2.92 2.67 .2592 0.00 0.81

Note. LL D lower limit of confidence interval; UL D upper limit of confidence interval;

HM1 D Hanley and McNeil (1982) nonparametric; HM2 D Hanley and McNeil (1982) bi-negative

exponential; TR D traditional; FP D Fligner and Policello (1981); CL D Cliff (1993); RW D Rank

Welch (Vargha & Delaney, 2000); BM D Brunner and Munzel (2000); M5 D Newcombe (2006b),

method 5; BNZ D Brown, Newcombe, & Zhao (2009); BSE D bootstrap standard error; BP D
bootstrap percentile; BCA D bootstrap bias-corrected and accelerated.

to 96% range was considered an excellent approximation to the nominal 95%

level. Second, the percentage of all cells for which each method’s CI coverage

was within 95% control limits4 was calculated to assess robustness across data

conditions; the higher the percentage within control limits, the better. Third

and fourth, the percentages of samples for which the population value of A

fell below the lower bound of the CI or above the upper bound of the CI

were calculated; percentages in the 2% to 3% range were considered excellent

approximations to the nominal 2.5% coverage error rate at each end. Fifth, the

mean length of all CIs was calculated; the shorter the CIs, the better. Sixth,

percentages of samples for which CIs extended above the theoretical maximum

value of A D 1 was calculated; the smaller the percentage, the better. Seventh,

the mean ratio of the upper to lower CI segments’ lengths was calculated as an

index of the symmetry of the CIs; values less than 1.00 reflect sensitivity to the

asymmetry of the sampling distribution, though we are aware of no criterion

for the “best” sensitivity. Results across all data conditions are summarized in

Table 2.

4With 1,000 replication samples per cell, 95% control limits correspond to CI coverage values

of 93.65% to 96.35%.
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214 RUSCIO, MULLEN

By nearly all measures, the BCA method provided the most accurate CIs.

Population values fell within the CIs of the BCA method 94.40% of the time,

which was closer to the nominal coverage value of 95% than for any other

method. Coverage ranged as low as 91.42% (for the BSE method) to as high

as 97.66% (for the TR method), but only the BCA method yielded an overall

coverage value between 94% and 96%. Across conditions, the BCA method’s

coverage was within the 95% control limits 68.83% of the time; values for other

methods ranged from 20.99% (for the TR method) to 59.57% (for the CL and

BM methods). The BCA method was the only approach for which coverage

error rates fell between 2% and 3% at both ends of the CIs (2.92% for lower

limits, 2.67% for upper limits), and no other method yielded rates that were

proportionally as similar to one another (i.e., 2.92/2.67 D 1.09, less than any

other method’s ratio of the larger to smaller rate). The BCA method produced

CIs that were shorter (mean length D .2592) than those for all but one analytic

method, which ranged from .2722 (for the M5 method) to .3391 (for the TR

method). Shorter CIs were produced by the BNZ method (.2355) and the other

bootstrap methods (.2492 for BP and .2512 for BSE), but these alternatives did

not fare as well as the BCA method by any other measures; their shorter lengths

corresponded to liberal coverage probabilities.

Four methods respect the theoretical boundaries for A (0 to 1), but among the

other methods the upper limits of CIs frequently extended above the theoretical

maximum of 1. This occurred almost exclusively for the one third of data

conditions with d D 2:00, in which the percentages shown in Table 2 were nearly

triple their size. The extent of CI asymmetry was measured as the ratio of the

distance from A to the upper limit to the distance from A to the lower limit. Ratios

less than one are indicative of CIs shorter on the upper end than the lower end,

which corresponds to a negatively skewed sampling distribution. Across all data

conditions, the BP method yielded less asymmetry (0.90) than the BCA method

(0.81), the BNZ method (0.79), or the M5 method (0.77). These means masked

significant heterogeneity across population effect sizes. For data conditions with

d D 2:00, when sampling distributions were negatively skewed, all four methods

yielded intervals shorter on the upper than lower end (.75 for BP, .54 for BCA,

.43 for M5, and .37 for BNZ). For data conditions with d D 0:00, when sampling

distributions should be fairly symmetric, CIs were symmetric for the BP, BCA,

and M5 methods (1.00, 1.00, and 1.03, respectively) but longer on the upper

than lower end for the BNZ method (1.25). Because there is no criterion for

evaluating performance by this measure, it is unclear whether the BNZ method’s

substantially greater sensitivity to any departures from normality in the sampling

distribution, including chance-level deviations from normality among samples

drawn from a population with a null effect size, represents a strength or a liability.

In addition to evaluating CI construction across all data conditions, we also

examined results within each level of each design factor in the study as well
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CONFIDENCE INTERVALS FOR A 215

as when all four assumptions made by various analytic methods were satisfied

(normal populations, equal variances, no tied scores, and normal sampling dis-

tributions). This provided 17 separate comparisons of all 12 CI methods. To help

assess robustness across these data conditions, we calculated the percentage of

cells for which coverage was within 95% control limits. These results are shown

in Table 3, with bold print highlighting the best performing method within each

comparison—as well as methods that did not differ statistically significantly

from the best (by z test for dependent proportions, two-tailed ’ D :05)—and

italics highlighting especially poorly performing methods (less than 50% as

TABLE 3

Percentage of Cells With Coverage Within Control Limits

Analytic Empirical

Factors and

Levels HM1 HM2 TR FP CL RW BM M5 BNZ BSE BP BCA

Sample sizes

N D 30 13.0 19.4 20.4 18.5 42.6 47.2 41.7 26.9 24.1 10.2 22.2 43.5

N D 60 28.7 29.6 20.4 34.3 63.0 57.4 60.2 33.3 43.5 25.9 47.2 75.9

N D 120 38.9 26.9 22.2 45.5 73.1 57.4 76.9 25.9 45.4 61.1 70.4 87.0

Effect sizes

d D 0:00a 33.3 28.7 36.1 50.0 76.9 76.9 83.3 36.1 37.0 44.4 63.9 73.1

d D 0:50 31.5 29.6 26.9 41.7 70.6 81.5 75.0 34.3 28.7 37.0 52.8 70.4

d D 2:00 15.7 17.6 0.0 6.5 22.2 3.7 20.4 15.7 47.2 15.7 23.1 63.0

Group sizes

P D :25 25.9 28.7 16.7 27.8 51.9 61.1 56.5 26.9 29.6 19.4 31.5 63.0

P D :50 28.8 27.8 30.6 38.9 70.4 55.6 69.4 38.9 41.7 45.4 62.0 74.1

P D :75 25.9 19.4 15.7 31.5 56.5 45.4 52.8 20.4 41.7 32.4 46.3 69.4

Variance ratios

VR D 1 W 1b 32.1 32.1 28.4 34.0 60.5 56.8 57.4 37.7 47.5 31.5 44.4 68.5

VR D 4 W 1 21.6 18.5 13.6 31.5 58.6 51.2 61.7 19.8 27.8 33.3 48.8 69.1

Distributions

Normalc 34.3 30.6 26.9 41.7 54.6 56.5 54.6 39.8 43.5 24.1 43.5 76.9

CSkewed 33.3 27.8 17.6 34.3 58.3 59.3 61.1 23.1 38.0 31.5 46.3 68.5

˙Skewed 13.0 17.6 18.5 22.2 65.7 46.3 63.0 23.1 31.5 41.7 50.0 61.1

Scales

Continuousd 27.2 27.2 36.4 33.3 53.7 53.7 51.2 48.8 60.5 25.9 42.0 73.5

Categorical 26.5 23.5 5.6 32.1 65.4 54.3 67.9 8.6 14.8 38.9 51.2 64.2

All assumptions

satisfieda;b;c;d 33.3 33.3 100.0 55.6 77.8 100.0 66.7 100.0 100.0 33.3 66.7 100.0

Top 0 0 1 0 5 5 7 1 1 0 0 15

Bottom 17 17 16 11 1 1 1 11 6 12 1 0

Note. Bold print highlights the highest percentage for a row or a value not statistically significantly different

from the highest (using z tests for dependent proportions, ’ D :05, two-tailed). Italics highlight percentages less

than 50% of the highest value for a row. The numbers of bold and italicized entries are tallied for each method

(column) and presented as the “top” and “bottom” sums, respectively, at the bottom of the table. HM1 D Hanley

and McNeil (1982) nonparametric; HM2 D Hanley and McNeil (1982) bi-negative exponential; TR D traditional;

FP D Fligner and Policello (1981); CL D Cliff (1993); RW D Rank Welch (Vargha & Delaney, 2000); BM D
Brunner and Munzel (2000); M5 D Newcombe (2006b), method 5; BNZ D Brown, Newcombe, & Zhao (2009);

BSE D bootstrap standard error; BP D bootstrap percentile; BCA D bootstrap bias-corrected and accelerated.
aSymmetric (normal or t) sampling distribution. bEqual population variances. c Normal population distribu-

tions. d No tied scores.
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216 RUSCIO, MULLEN

TABLE 4

Summary of Standard Error Results for

All Data Conditions

Method Mean SE Bias Accuracy

HM1 .0717 .0057 .0082

HM2 .0710 .0050 .0102

TR .0865 .0205 .0229

BSE .0641 �.0019 .0027

Note. HM1 D Hanley and McNeil (1982) nonparamet-

ric; HM2 D Hanley and McNeil (1982) bi-negative exponen-

tial; TR D traditional; BSE D bootstrap standard error.

good as the best). The BCA method was the best or among the best in 15 of 17

comparisons, and it was never among the especially poor performers. No other

method was nearly as robust. Each was among the especially poor performers

at least once and among the best less than half the time.5

For the four methods that involve the calculation of SEs (HM1, HM2, TR,

and BSE), pertinent results are shown in Table 4. The BSE method yielded the

smallest mean SE (.0641), followed by comparable values for the HM1 and HM2

methods (.0717 and .0710, respectively), and then the TR method (.0865). As a

point of comparison, the observed SE was calculated within each cell of the de-

sign as the SD of the A values for the 1,000 replication samples; the mean of these

observed SE values was .0660. Residual SEs were calculated as the SE calculated

using one method minus the observed SE for that cell. Bias was then calculated as

the mean of these residuals, and accuracy was calculated as the mean of the abso-

lute values of these residuals. The HM1 and HM2 methods mildly overestimated

SEs (by 8% to 9% of their observed values, respectively) and were fairly accurate

5As an additional examination of robustness to more extreme data conditions and at the

suggestion of an anonymous reviewer, we ran supplementary analyses with four ordered categories

(rather than continuous response scales or seven ordered categories, as in the main study). Crossed

with all other factors in the design, this yielded results for 162 new cells. Because these analyses

were supplementary, we included only 100 replication samples per cell (rather than 1,000 as in the

main study). The results showed that the BCA method remained competitive, and arguably the best

choice, under these new conditions. Only five methods attained mean coverage levels between 94%

and 96%: CL, RW, BM, BP, and BCA; these were also the five methods at or not significantly

different from the best performer in terms of the percentage of cells within 95% control limits.

Among these five methods, the BP and BCA methods yielded shorter CIs (mean length D .2352

and .2433, respectively) than the CL, RW, and BM methods (mean length D .2579, .2673, .2648,

respectively). Whereas the bootstrap methods respected the theoretical boundaries of the A statistic,

the CL, RW, and BM methods produced CIs that extended above 1.00 for 3.70%, 4.98%, and 4.46%

of all samples. Thus, even with very few ordered categories, there appears to be no reason to prefer

an alternative to the BCA method.
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CONFIDENCE INTERVALS FOR A 217

(average error of 12% and 15%, respectively). The TR method overestimated by

a larger amount (31%) and was less accurate (average error of 35%). Though

the BSE method underestimated by a small amount (3%), it was the least biased

and the most accurate (average error of 4%) method for calculating an SE.

AN EMPIRICAL ILLUSTRATION

Hirsch (2005) introduced a citation-based measure of scholarly impact designed

to reward both the quantity and quality of an individual’s published papers. This

h index is calculated as the largest number h such that an author has published

at least h papers that have been cited at least h times each. Publishing a large

number of rarely cited papers will not yield a large score on the h index; nor

will publishing a small number of highly cited papers. A high score on the h

index can be attained only by publishing many influential papers. How useful a

measure of scholarly impact is the h index? Ruscio, Seaman, D’Oriano, Stremlo,

and Mahalchik (2011) collected several large samples of citation data to assess

the h index and many alternative indices of scholarly impact in a variety of ways.

Their largest sample included citation counts for 10 randomly selected professors

from each of 175 universities’ psychology departments. The departments were

ranked by the National Research Council (Goldberger, Maher, & Flattau, 1995).

For present purposes, a small subset of their data was analyzed. Specifically, all

of the full professors sampled from the top 11 and bottom 11 programs were

selected, which yielded n D 45 full professors at the high-ranked universities

and n D 47 full professors at the low-ranked universities. Scores on the h index

were compared across these two groups.

The top graph in Figure 3 shows the score distributions for each group, which

ranged from 1 to 53 (Mdn D 17, IQR D 13 to 26) for professors at high-ranked

universities and from 0 to 14 (Mdn D 3, IQR D 2 to 6) for professors at low-

ranked universities. For these data, A D :895, which corresponds to an 89.5%

chance that a randomly selected full professor from a high-ranked university

would score higher on the h index than a randomly selected full professor from a

low-ranked university. This is a very large effect, and it would be useful to know

something about how precisely the population effect size has been estimated

from these data. Constructing a CI would address this issue. Unfortunately,

most of the assumptions required by the analytic CI methods were violated.

Because the h index can only take integer values, there were many tied

scores; out of the 45 � 47 D 2,115 pairwise score comparisons, there were 54

ties. Both groups’ distributions were nonnormal (skewness D 0.71 and 1.13

for professors at high- and low-ranked universities) and the variances were

heterogeneous (SDs D 12.26 and 3.81). Due to the large estimated effect size,

it would be unreasonable to assume a symmetric sampling distribution for A.
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218 RUSCIO, MULLEN

FIGURE 3 (See Figure 3 caption on page 219.)
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CONFIDENCE INTERVALS FOR A 219

As expected, when B D 1,999 bootstrap samples were used to construct an

empirical sampling distribution, it was negatively skewed (skewness D �0.39;

see Figure 3, middle graph). The only CI method likely to be robust in the face

of these challenging—but by no means uncommon—conditions is the BCA

method, which assumes only that the sample is representative of the population.

Because these individuals were selected at random from the target population,

there is little or no reason to doubt the representativeness of the sample.6

CIs constructed using all 12 methods are shown in the bottom graph of

Figure 3. Perhaps the most striking feature of this graph is the variability across

the intervals. Their symmetry (or asymmetry) and relative lengths reflect the

findings of the simulation study. There is no question that the choice of a CI

method has consequences, that one is not splitting hairs when asking which

should be preferred. The TR method yielded an interval so wide that its upper

limit surpassed the maximum possible value of A D 1. All of the other intervals

spanned admissible values, but only the M5, BNZ, BP, and BCA methods

produced asymmetric intervals that reflect the asymmetry of the sampling dis-

tribution. A single sample of data does not afford a conclusion as to which of

these CIs is the most appropriate; we present these results only to illustrate the

trends observed in our simulation study, not as a follow-up test. Because the

simulation results suggest that the BCA method is most likely to provide good

coverage, we would recommend using the CI produced using this method.

6One might argue that the sample may be unrepresentative due to the luck of the draw, that

with N D 92 it is not possible to evaluate the potential sample bias that could emerge by chance.

However, it is important to consider that there is a finite, and in fact a rather small, population of

full professors in the psychology departments of the top 11 and bottom 11 universities. For example,

if a typical university’s psychology department has a faculty of 30 members and approximately half

are full professors, one would expect there to be a population of about 330 full professors at 22

universities. In the context of this admittedly rough estimate, a sample of 92 is not so small and is

likely to be reasonably representative.

FIGURE 3 (See Figure 3 artwork on page 218.) Analysis of scores on the h index for 45

full professors at high-ranked universities and 47 full professors at low-ranked universities.

The top graph shows the score distributions (densities) for each group. The middle graph

shows the empirical sampling distribution (density) of A obtained using B D 1,999 bootstrap

samples. The bottom graph shows confidence intervals constructed using all 12 methods

included in this study, with the point estimate of A D :895 plotted for each; the dotted

vertical line is plotted at the theoretical maximum value of A D 1. Note. HM1 D Hanley and

McNeil (1982) nonparametric; HM2 D Hanley and McNeil (1982) bi-negative exponential;

TR D traditional; FP D Fligner and Policello (1981); CL D Cliff (1993); RW D Rank

Welch (Vargha & Delaney, 2000); BM D Brunner and Munzel (2000); M5 D Newcombe

(2006b); Method 5; BNZ D Brown, Newcombe, & Zhao (2009); BSE D bootstrap standard

error; BP D bootstrap percentile; BCA D bootstrap bias-corrected and accelerated.
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220 RUSCIO, MULLEN

DISCUSSION

The goal of this investigation was to determine the best methods for constructing

CIs for the effect size estimator A, which equals the area under an ROC curve.

Results support the BCA method, which yielded a mean coverage value closer to

the nominal 95% level than any other method, the most coverage values within

95% control limits, coverage error rates close to 2.5% at both ends of the CIs,

and intervals that were shorter than those produced by most other methods. In

addition, the BCA method is among those that respect the theoretical boundaries

for A and allow asymmetric CIs. Compared with the 11 other methods evaluated

in this study, the performance of the BCA method was the most robust across

a broad array of data conditions, including those that violated one or more

of the assumptions made by many analytic methods (e.g., normal populations,

equal variances, no tied scores, symmetric sampling distributions). Along with

several other methods, the BCA method performed exceptionally well when

these four assumptions were satisfied. In the full series of 17 comparisons within

specific data conditions, the BCA method was usually (15 times) among the best

performers and was never among the especially poor performers. Programs to

calculate A, calculate its SE using the bootstrap, and construct a CI using the

BCA method are available at http://www.tcnj.edu/�ruscio/taxometrics.html

The two conditions under which the BCA method was not among the best

performers suggest one important cautionary note. Other methods’ coverage

rivaled or surpassed that of the BCA method when the null hypothesis was

true (in this study, when d D 0:00) or nearly true (when d D 0:50). Thus,

constructing CIs using the BCA method may not be the best way to test

the null hypothesis of � D :50, which represents stochastic equality (i.e.,

Pr.X > Y / D Pr.Y > X/). Even when applied to the same data, different

data-analytic methods may be most appropriate for different research purposes.

For example, in the context of correlation analysis, Lee and Rodgers (1998)

recommended different bootstrap methods for CI construction than for testing

the null hypothesis of ¡ D 0. Future research would be required to determine

whether any of the CI methods studied here is preferable to methods designed

explicitly to test the null hypothesis of � D :50 (see Brunner & Munzel, 2000;

Cliff, 1996; Delaney & Vargha, 2002; Fagerland & Sandvik, 2009; Fligner &

Policello, 1981; Neuhauser, Losch, & Jockel, 2007; Ryu & Agresti, 2008; for

related work on sample size determination, see Vollandt & Horn, 1997). We

recommend choosing a method that appears best suited to the purpose at hand.

The present study suggests that if one wants to calculate an SE for A (e.g., to

weight effect size estimates in a meta-analysis) or construct a CI for A, bootstrap

methods seem to be a good choice; specifically, one can use the BSE method

to calculate an SE and the BCA method to construct a CI. This study sheds

no light on the selection of a method to test the null hypothesis of � D :50.
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This would require, at minimum, the examination of Type I error rates for null

effects and statistical power for nonnull effects (see Delaney & Vargha, 2002,

for an excellent overview of available methods).

The robust performance of the BCA method for CI construction appears to

stem from two features. First, the empirical approach of this bootstrap technique

frees the user from the more restrictive assumptions of the analytic methods.

Bootstrapping accommodates tied scores, affords robustness to population distri-

butions that deviate from normality and equal variances, respects the theoretical

boundaries of the A statistic, and enables the construction of asymmetric CIs

when sampling distributions are skewed. Second, the bias correction and accel-

eration of the BCA method provided helpful adjustments to the CI limits relative

to those obtained using the BP method. Both of these bootstrap methods share

all of the desirable characteristics listed earlier, yet the BCA method performed

considerably better than the BP method. Because both methods locate CI limits

within the same empirical sampling distribution, the improved performance of

the latter must be due to its adjustment of the CI limits through bias correc-

tion and acceleration. Bootstrapping is more computationally intensive than the

analytic methods, but not prohibitively so. Analyzing a sample of data with

N D 120 using B D 1,999 bootstrap samples takes < 1 s on a laptop computer

running the programs cited earlier.

One well-known weakness of the bootstrap, including the BCA method, is

its sensitivity to sample size. The assumption that the sample is representative

of the population is increasingly untenable with smaller samples. In this study,

total samples were small to modest in size (N D 30, 60, or 120). With N D 60

or 120 the BCA method outperformed all others. With N D 30 its performance

was not statistically significantly different from that of the RW method, which

was the top performer, or the CL and BM methods, which performed only

slightly (and not significantly) more poorly than the BCA method. With even

smaller samples, it is possible that the RW method or others could significantly

surpass the BCA method. On the other hand, even though we did not study

large samples (N > 120), it seems safe to assume that the BCA method will

continue to perform well because these will be even more representative of the

populations from which they are drawn. For samples of at least modest size

(N � 60), investigators calculating A as an effect size estimate or AUC as a

component of an ROC analysis can rely on the BCA method to construct CIs

with good coverage. With samples as small as N D 30, the BCA still performed

about as well as or better than all other methods tested here and seems to be a

safe choice.

This study’s design spanned a broad array of data conditions, including many

that violated one or more of the assumptions of analytic methods. Because

bootstrap methods make fewer assumptions for constructing CIs for A, one might

expect that the BCA method would continue to outperform others under more
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severe violations (e.g., more skew, more unequal variances, more tied scores).

In addition to further study under more extreme data conditions, it might be

worthwhile to examine CI methods for applications of the A statistic in other

research designs. McGraw and Wong (1992) and Vargha and Delaney (2000)

introduced ways to use the CL and A statistics, respectively, with correlated

rather than independent groups as well as with more than two groups. We dealt

exclusively with two independent groups in the present research because virtually

all prior research has done the same and this design appears to be the most

common application in practice. Future research should explore the construction

of CIs for other applications of the A statistic.
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